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Abstract. We derive a refinement of the spectral expansion of Arthur’s trace formula.
The expression is absolutely convergent with respect to the trace norm.
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1. Introduction

The trace formula is an important tool for the study of automorphic forms on arithmetic
quotients. It was introduced by Selberg, who mostly considered the case of quotients of
the upper half-plane ([Sel56]), and later developed by Arthur in his groundbreaking work
on the subject, which deals with the adelic quotients G(F )\G(A) for a general reductive
group G defined over a number field F . (See [Art05] for an excellent survey on the theory.)
In essence, the trace formula is an equality between a sum of geometric distributions which
are certain weighted orbital integrals, and a sum of spectral distributions which are suit-
ably defined weighted traces of representations. For applications, it is important to have
an explicit description of these distributions. In [Art82b] Arthur derived an expression
for the spectral side of the non-invariant trace formula in terms of certain limits of inter-
twining operators. In this paper we explicate these terms further and write them as linear
combinations of products of first-order derivatives of intertwining operators. The basis
for this refinement is provided by the combinatorial identities for certain piecewise power
series proved in the companion paper [FLc]. Applying these identities in the context of
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the trace formula we obtain Theorems 1 and 2 below, which are then used to explicate the
spectral side in Corollary 1. We also explicate special cases of the Maass-Selberg relations
in Theorem 4. We emphasize that our formula relies on Arthur’s original expansion. We
do not provide any shortcut for the derivation of the latter.

A key feature of our refined spectral expansion is its absolute convergence with respect
to the trace norm. This relies on previous work by the third named author and generalizes
earlier results in this direction ([Lan90, Mül89, Mül98, Ji98, Mül00, Mül02, MS04]). Re-
markably, Arthur was able to finesse this difficulty in his work. This is partly because his
emphasis is on comparing trace formulas on two different groups. However, for other appli-
cations of the trace formula the absolute convergence may be indispensable. An example
is the work of the second and third named authors on Weyl’s law with remainder for the
groups GL(n) [LM09]. (Note that in this case the absolute convergence had been already
obtained in [MS04] by a different argument, which is special to GL(n).) Another possible
application of the refined spectral expansion is to the problem of limit multiplicities for
GL(n), which we plan to consider in a future paper.

A preliminary announcement of some of the results of this paper and [FLc] was made in
[FLM09].1
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formula II” forms a part of the first-named author’s 2009 Habilitation at Heinrich-Heine-
Universität Düsseldorf.

2. Combinatorial formulas

2.1. Notation. Let G be a reductive group defined over a number field F . All algebraic
subgroups of G considered in the following will be tacitly assumed to be defined over
F . We will mostly use, with some minor modifications, the notation and conventions of
[Art82a, Art82b]. In particular:

• A is the ring of adeles of F , Af the ring of finite adeles and F∞ = R⊗Q F .
• U(gC) is the universal enveloping algebra of the complexified Lie algebra of G(F∞).
• z is the center of U(gC).
• T0 is a fixed maximal F -split torus.
• M0 is the centralizer of T0, which is a minimal Levi subgroup defined over F .

1Note the following typo on p. 15564 of [ibid.]: the sum over s ∈ W (M) should be replaced by the
average over s ∈W (M).



ON THE SPECTRAL SIDE OF ARTHUR’S TRACE FORMULA – ABSOLUTE CONVERGENCE 3

• A0 is the identity component of T0(R), which is viewed as a subgroup of T0(A) via
the diagonal embedding of R into F∞.
• L is the set of Levi subgroups containing M0, i.e. the (finite) set of centralizers of

subtori of T0.
• W0 = NG(F )(T0)/M0 is the Weyl group of (G, T0), where NG(F )(H) is the normalizer

of H in G(F ).
• For any s ∈ W0 we choose a representative ws ∈ G(F ).
• W0 acts on L by sM = wsMw−1

s .

For M ∈ L we use the following additional notation.

• TM is the split part of the identity component of the center of M .
• W (M) = NG(F )(M)/M , which can be identified with a subgroup of W0.
• AM = A0 ∩ TM(R).
• a∗M is the R-vector space spanned by the lattice X∗(M) of F -rational characters of
M ; a∗M,C = a∗M ⊗R C.
• aM is the dual space of a∗M , which is spanned by the co-characters of TM .
• HM : M(A)→ aM is the homomorphism given by e〈χ,HM (m)〉 = |χ(m)|A =

∏
v |χ(mv)|v

for any χ ∈ X∗(M).
• M(A)1 ⊂M(A) is the kernel of HM .
• L(M) is the set of Levi subgroups containing M .
• P(M) is the set of parabolic subgroups of G with Levi part M .
• F(M) = FG(M) =

∐
L∈L(M)P(L) is the (finite) set of parabolic subgroups of G

containing M .
• W (M) acts on P(M) and F(M) by sP = wsPw

−1
s .

• ΣM is the set of reduced roots of TM on the Lie algebra of G.
• For any α ∈ ΣM we denote by α∨ ∈ aM the corresponding co-root.
• L2

disc(AMM(F )\M(A)) is the discrete part of L2(AMM(F )\M(A)), i.e. the closure
of the sum of all irreducible subrepresentations of the regular representation of
M(A).
• Πdisc(M(A)) denotes the countable set of equivalence classes of irreducible unitary

representations ofM(A) which occur in the decomposition of L2
disc(AMM(F )\M(A))

into irreducibles.

For any L ∈ L(M) we identify a∗L with a subspace of a∗M . We denote by aLM the annihilator
of a∗L in aM . For any integer i ≥ 0 let

Li(M) = {L ∈ L(M) : dim aLM = i}
and

Fi(M) =
⋃

L∈Li(M)

P(L),

so that F(M) =
∐d

i=0Fi(M) where d is the co-rank of M . We endow aM0 with the
structure of a Euclidean space by choosing a W0-invariant inner product. This choice
fixes Haar measures on the spaces aLM and their duals (aLM)∗. We follow Arthur in the
corresponding normalization of Haar measures on the groups M(A) ([Art78, §1]).
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For any P ∈ P(M) we use the following notation.

• aP = aM .
• NP is the unipotent radical of P and MP is the unique L ∈ L(M) (in fact the

unique L ∈ L(M0)) such that P ∈ P(L).
• ΣP ⊂ a∗P is the set of reduced roots of TM on the Lie algebra of NP .
• ∆P is the subset of simple roots of P , which is a basis for (aGP )∗.
• a∗P,+ is the closure of the Weyl chamber of P , i.e.

a∗P,+ = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ΣP} = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ∆P}.

• δP is the modulus function of P (A).
• v∆P

is the co-volume of the lattice spanned by ∆P in (aGP )∗ and

θP (λ) = v−1
∆P

∏
α∈∆P

〈λ, α∨〉 , λ ∈ a∗M,C.

• P ◦ ∈ P(M) is the parabolic subgroup opposite to P (with respect to M), i.e. ΣP ◦ =
−ΣP and ∆P ◦ = −∆P .
• Ā2(P ) is the Hilbert space completion of

{φ ∈ C∞(M(F )NP (A)\G(A)) : δ
− 1

2
P φ(·x) ∈ L2

disc(AMM(F )\M(A)) ∀x ∈ G(A)}

with respect to the inner product

(φ1, φ2) =

∫
AMM(F )NP (A)\G(A)

φ1(g)φ2(g) dg.

Let α ∈ ΣM . We say that two parabolic subgroups P,Q ∈ P(M) are adjacent along α,
and write P |αQ, if ΣP ∩ ΣQ◦ = {α}. Alternatively, P and Q are adjacent if the closure
PQ of PQ belongs to F1(M). Any R ∈ F1(M) is of the form PQ for a unique unordered
pair {P,Q} of parabolic subgroups in P(M), namely P and Q are the maximal parabolic
subgroups of R, and P |αQ with α∨ ∈ Σ∨P ∩ aRM . Switching the order of P and Q changes
α to −α.

2.2. Intertwining operators. Fix a maximal compact subgroup K = K∞Kf of G(A) =
G(F∞)G(Af ) which is admissible with respect to M0. For any P ∈ P(M) let

• HP : G(A) → aP be the extension of HM to a left NP (A)- and right K-invariant
map,
• A2(P ) the dense subspace of Ā2(P ) consisting of its K- and z-finite vectors, i.e. the

space of automorphic forms φ on NP (A)M(F )\G(A) such that δ
− 1

2
P φ(·k) is a square-

integrable automorphic form on AMM(F )\M(A) for all k ∈ K,
• ρ(P, λ), λ ∈ a∗M,C, the induced representation of G(A) on Ā2(P ) given by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)−HP (x)〉.

It is isomorphic to Ind
G(A)
P (A)

(
L2

disc(AMM(F )\M(A))⊗ e〈λ,HM (·)〉).
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For P,Q ∈ P(M) let

MQ|P (λ) : A2(P )→ A2(Q), λ ∈ a∗M,C,

be the standard intertwining operator [Art82b, §1], which is the meromorphic continuation
in λ of the integral

[MQ|P (λ)φ](x) =

∫
NQ(A)∩NP (A)\NQ(A)

φ(nx)e〈λ,HP (nx)−HQ(x)〉 dn, φ ∈ A2(P ), x ∈ G(A).

These operators satisfy the following properties.

(1) MP |P (λ) ≡ Id for all P ∈ P(M) and λ ∈ a∗M,C.
(2) For any P,Q,R ∈ P(M) we have MR|P (λ) = MR|Q(λ) ◦MQ|P (λ) for all λ ∈ a∗M,C.

In particular, MQ|P (λ)−1 = MP |Q(λ).

(3) MQ|P (λ)∗ = MP |Q(−λ) for any P,Q ∈ P(M) and λ ∈ a∗M,C. In particular, MQ|P (λ)
is unitary for λ ∈ ia∗M .

(4) If P |αQ then MQ|P (λ) depends only on 〈λ, α∨〉.
Arthur’s expression for the spectral side of the trace formula involves certain limits of

these intertwining operators. Let P ∈ P(M) and λ ∈ ia∗M . For Q ∈ P(M) and Λ ∈ ia∗M
define

MQ(P, λ,Λ) = MQ|P (λ)−1MQ|P (λ+ Λ) = MP |Q(λ)MQ|P (λ+ Λ).

Then (MQ(P, λ, ·))Q∈P(M) is a (G,M)-family with values in the space of operators on
A2(P ) [Art82b, p. 1310]. Therefore the limit

MM(P, λ) = lim
Λ→0

∑
Q∈P(M)

MQ(P, λ,Λ)

θQ(Λ)

exists. More generally, for any L ∈ L(M) and Q ∈ P(L) the restriction MQ(P, λ, ·) of
MQ1(P, λ, ·) to ia∗L does not depend on Q1 ∈ P(M) provided that Q1 ⊂ Q, and the limit

ML(P, λ) = lim
Λ∈ia∗L
Λ→0

∑
Q∈P(L)

MQ(P, λ,Λ)

θQ(Λ)

exists.

2.3. The main formulas. Our main result is an explicit evaluation of the limitML(P, λ)
in terms of first order derivatives of the intertwining operators MP1|P2 . To describe our two
formulas we need some more notation.

A flag f is an ascending chain Q0 ⊂ · · · ⊂ Qm = G of parabolic subgroups of G such
that Qi−1 is maximal in Qi for i = 1, . . . ,m (or equivalently dim aQi = dim aQi−1

− 1). The
length m of the chain is therefore the co-rank of Q0. We denote by G(L) the set of flags
with Q0 ∈ P(L). For any flag f ∈ G(L) choose for i = 0, . . . ,m−1 an auxiliary vector µi in
the relative interior of a∗Qi,+ such that the lattice spanned by µ0, . . . , µm−1 has co-volume

one in the vector space (aGQ0
)∗.
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Let s : F(M)→ P(M) be a map such that s(Q) ⊂ Q for all Q; in particular s(P ) = P
for P ∈ P(M). We call s a selector. For any smooth function f on a∗M and µ ∈ a∗M denote
by Dµf the directional derivative of f along µ ∈ a∗M . Then the expression

∂sf (P, λ) =
1

m!
Ms(Q0)|P (λ)−1Dµ0Ms(Q0)|s(Q1)(λ) · · ·

DµiMs(Qi)|s(Qi+1)(λ) · · ·Dµm−1Ms(Qm−1)|s(Qm)(λ)Ms(G)|P (λ)

does not depend on the choice of the auxiliary vectors µi (cf. [FLc, §4, 7]), although it
depends in general on the choice of s.

Theorem 1. For M ∈ L, P ∈ P(M), L ∈ L(M) and any selector s : F(M)→ P(M) we
have

ML(P, λ) =
∑

f∈G(L)

∂sf (P, λ).

A consequence of this formula is thatML(P, λ) can be expressed in terms of first order
derivatives of the operators MP1|P2 for pairs of adjacent parabolic subgroups P1 and P2.
Indeed, for any Q, Q′ ∈ P(M) there exists a sequence

Q = P0|α1P1 . . . Pk−1|αkPk = Q′

of adjacent parabolic subgroups starting with Q and ending with Q′. By the product rule,
this implies

(1) DµMQ|Q′(λ) =
k∑
j=1

MQ|Pj−1
(λ)DµMPj−1|Pj(λ)MPj |Q′(λ).

We now give a more elegant expression for ML(P, λ) which has the same feature. Let
again m = dim aGL be the co-rank of L in G. Denote by BP,L the set of m-tuples β =

(β∨1 , . . . , β
∨
m) of elements of Σ∨P whose projections to aL form a basis for aGL , and let vol(β) be

the co-volume in aGL of the lattice spanned by this basis. For any β = (β∨1 , . . . , β
∨
m) ∈ BP,L

let

ΞL(β) = {(Q1, . . . , Qm) ∈ F1(M)d : β∨i ∈ aQiM , i = 1, . . . ,m}
= {(P1P ′1, . . . , PmP

′
m) : Pi|βiP ′i , i = 1, . . . ,m}.

For a pair P1|αP2 of adjacent parabolic subgroups in P(M) write

δP1|P2(λ) = D$MP1|P2(λ) : A2(P2)→ A2(P1),

where $ ∈ a∗M is such that 〈$,α∨〉 = 1. Equivalently, if MP1|P2(λ) = Φ(〈λ, α∨〉) for a
meromorphic function Φ of one complex variable, we have δP1|P2(λ) = Φ′(〈λ, α∨〉).

For any m-tuple X = (Q1, . . . , Qm) ∈ ΞL(β) with Qi = PiP ′i , Pi|βiP ′i , denote by ∆X (P, λ)
the expression

vol(β)

m!
MP1|P (λ)−1δP1|P ′1(λ)MP ′1|P2

(λ) · · · δPm−1|P ′m−1
(λ)MP ′m−1|Pm(λ)δPm|P ′m(λ)MP ′m|P (λ).
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We need one further combinatorial ingredient. Let µ = (µ1, . . . , µm) ∈ (a∗M)m. Then for
any β = (β1, . . . , βm) ∈ BP,L there exists an m-tuple (Q1, . . . , Qm) ∈ ΞL(β) and µ ∈ a∗L
such that µ − µi ∈ a∗Qi,+ for all i = 1, . . . ,m. The vector µ ∈ a∗L is in fact uniquely
determined by the linear equations 〈µ, β∨i 〉 = 〈µi, β∨i 〉, i = 1, . . . ,m. Moreover, for µ in
general position (i.e. away from a finite set of hyperplanes) the m-tuple (Q1, . . . , Qm) is
unique. More precisely (cf. [FLc, Remark 8.3]), a non-trivial linear dependency modulo
aLM

v := c1α
∨
1 + · · ·+ ckα

∨
k ∈ aLM , c1, . . . , ck ∈ Z, α1, . . . , αk ∈ ΣM , k ≥ 1,

is called minimal if any proper subsequence of (α∨1 , . . . , α
∨
k ) is linearly independent modulo

aLM .2 The conditions on µ are that for any minimal dependency as above we have

(1)
∑k

i=1 ci
〈
µπ(i), α

∨
i

〉
6= 0 for any non-constant function π : {1, . . . , k} → {1, . . . ,m},

and
(2) if v 6= 0 then 〈µj, v〉 6= 0 for j = 1, . . . ,m.

For such an m-tuple µ we obtain a map XL,µ : BP,L → F1(M)m with XL,µ(β) ∈ ΞL(β)

for all β ∈ BP,L. The second formula for ML(P, λ) is

Theorem 2. Let M ∈ L, P ∈ P(M), L ∈ L(M) and µ ∈ (a∗M)m be in general position.
Then we have

(2) ML(P, λ) =
∑

β∈BP,L

∆XL,µ(β)(P, λ).

Remark 1. The Theorem is in fact easy to prove for m = 1, where it reduces to the
calculation of a first order derivative by the product rule (1). In this case, the image of a∗L
in a∗M/a

∗
G is a line and the set P(L) consists of two elements R and R◦. For Q, Q′ ∈ P(M)

with Q ⊂ R, Q′ ⊂ R◦ we can writeML(P, λ) = MP |Q(λ)D|α∨R|$RMQ|Q′(λ)MQ′|P (λ), where
αR is the unique element of ∆R and $R ∈ a∗L is such that 〈$R, α

∨
R〉 = 1. If now

Q = P0|α1P1 . . . Pk−1|αkPk = Q′

is a sequence of adjacent parabolic subgroups then we obtain from (1) that

ML(P, λ) =
k∑
j=1

MP |Pj−1
(λ)D|α∨R|$RMPj−1|Pj(λ)MPj |P (λ).

Here, only the terms with αj /∈ ΣL
M contribute to the sum, and if P0, . . . , Pk is a minimal

sequence of adjacent parabolic subgroups (a gallery) then each root α ∈ ΣQ\ΣL
L∩Q appears

precisely once. In this case we can rewrite the result as

ML(P, λ) =
∑

β∈ΣP \ΣLL∩P

∆Q1(β)(P, λ),

where Q1(β) = Pj−1Pj for the unique 1 ≤ j ≤ k with αj = ±β. In Theorem 2 the minimal
sequence of parabolic subgroups is obtained by taking the chambers a∗Pj ,+ intersected by
−µ1 + a∗L.

2Of course, the integrality assumption on c1, . . . , ck entails no loss of generality.
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On the other hand, the case m = 2 is already much less evident. In this case, we can
rewrite (2) in a more geometric way. Note that the space a∗L/a

∗
G is two-dimensional and

for each root β ∈ ΣL the line 〈λ, β∨〉 = 0 is the union of two rays a∗Q,+, Q ∈ F1(L).
Assume for simplicity that L = M . Suppose that µ1−µ2 ∈ a∗P0,+

. We can write a∗M as the
union of closed convex cones a∗P0,+

∪ a∗P ◦0 ,+ ∪ C ∪ C
′ where no two cones intersect in their

interior. We can then reorder the right-hand side of (2) as the sum over all unordered
pairs {β1, β2} of roots in ΣP , where for each such pair we sum ∆X (P, λ) over the two pairs
X = (Q1, Q2) ∈ ΞM(β1, β2) for which the associated rays a∗Qi,+ are both contained in either
C or C ′.

Remark 2. There is also an important special case considered already in [Art82b, §7].
Namely, suppose that the operators MQ|P (λ) act as scalars and moreover that there exist
meromorphic functions φα : C→ C, one for each α ∈ ΣP , such that MP ′|P (λ) = φα(〈λ, α∨〉)
for all pairs P |αP ′ adjacent along α. In this case the expression ∆X (λ) does not depend
on X ∈ ΞL(β) and Theorem 2 reduces to [Art82b, Corollary 7.3].

2.4. Deduction of the main formulas. Before going further, we first verify that The-
orems 1 and 2 are direct consequences of the combinatorial results of [FLc]. We refer to
[ibid.] for terminology and facts about polyhedral fans which will be used below.

For each pair (G,M) of a reductive group G over F and a Levi subgroup M ∈ L of
co-rank d we consider the hyperplane arrangement H = H(G,M) in a∗M given by the root
hyperplanes

Hα = {λ ∈ a∗M : 〈λ, α∨〉 = 0}, α ∈ ΣM .

Recall that this gives rise to a polyhedral fan Σ(G,M) whose chambers are the closures of
the connected components of a∗M \ ∪α∈ΣMHα. In fact, P 7→ a∗P,+ defines an order reversing

bijection between FG(M) and Σ(G,M). Under this bijection the set Fi(M) corresponds
to the set Σi(G,M) of cones of codimension i. In particular, the chambers of Σ(G,M)
correspond to P(M) and two chambers a∗P,+ and a∗Q,+ are adjacent if and only if P and
Q are adjacent; for P |αQ the hyperplane Hα is spanned by the wall a∗P,+ ∩ a∗Q,+ = a∗

PQ,+
.

The fan Σ(G,M) is simplicial: for each P ∈ P(M) there are exactly d adjacent parabolic
subgroups, indexed by ∆P . The core of Σ(G,M) is a∗G.

Dually, we can also think of Σ(G,M) as the normal fan of the root zonotope Z(G,M)
which is by definition the Minkowski sum of the intervals [0, α∨], α ∈ ΣM . The faces
of Z(G,M) correspond to the cones of Σ(G,M), namely to F(M). For example, when
G = GL(n) and M is a maximal torus, the root zonotope is the well-known permutahedron
(cf. [Zie95, p. 17-18, 200], [Pos09]).

Changing G and M is reflected by standard operations on the fan Σ(G,M) or dually
on Z(G,M). Namely, for any Q ∈ F(M) the restricted fan Σ(G,M)⊃a

∗
Q,+ with respect to

a∗Q,+ ([FLc, §2]) is Σ(L,M) where L is the Levi subgroup of Q. Dually, Z(L,M) is up
to translation the face corresponding to Q in Z(G,M) (viewed as a zonotope in its own

right). On the other hand, if U = aLM for L ∈ L(M) then the induced fan Σ(G,M)] on
U⊥ = a∗L ([FLc, §7]) is Σ(G,L). Once again, Z(G,L) is the projection of Z(G,M) along
U .
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In the language of [FLc], Arthur’s notion of a (G,M)-family becomes a Σ(G,M)-
piecewise smooth function, i.e. a Σ(G,M)-piecewise element of the ring of smooth functions
on a∗M (considered as a flat module over Sym(aM)). The push-forward δΣ(G,M) of a (G,M)-
family (cP (λ))P∈P(M) (viewed as a Σ(G,M)-piecewise smooth function) is precisely the
function denoted by cM(λ) on [Art82b, p. 1297]. Moreover, the operations described sub-
sequently in [loc. cit.] correspond to the restriction of a Σ(G,M)-piecewise smooth function
c to Σ(G,M)⊃a

∗
Q,+ = Σ(MQ,M) and the operation c] with respect to U = aLM , respectively.

Recall the notion of a compatible family with respect to a fan [FLc, Definition 4.1]. In
the case of the fan Σ(G,M), a compatible family is a collection A = (AP )P∈P(M) of power
series AP ∈ E [[a∗M ]], where E is a finite-dimensional C-algebra, subject to the conditions
AP (0) = 1E for all P ∈ P(M) and AP1A−1

P2
∈ E [[α∨]] for all pairs P1|αP2 of adjacent

parabolic subgroups. Fix λ ∈ a∗M,C in general position. For each Q ∈ P(M) let AQ be
the Taylor expansion at Λ = 0 of the restriction of the operator MQ(P, λ,Λ) to a fixed
(finite-dimensional) (z, K)-isotypic subspace V of A2(P ). By the functional equations we
obtain a Σ(G,M)-compatible family with values in the algebra E = End(V ) and

AP1A−1
P2

= MP1|P (λ)−1MP1|P2(λ+ Λ)MP2|P (λ), P1, P2 ∈ P(M).

Using the dictionary above, Theorems 1 and 2 are then obtained by applying [FLc, Theorem
7.4] and [FLc, Theorem 8.2] respectively to A, Σ(G,M) and U = aLM .

3. A refined spectral expansion

In this section, we apply Theorems 1 and 2 to derive a refinement of the spectral side of
Arthur’s trace formula. Fix an open subgroup K0 of Kf . The space G(A)/K0 is a discrete
union of countably many copies of G(F∞) and in particular a differentiable manifold. Let
C∞(G(A);K0) be the space of smooth functions on G(A)/K0, viewed as right-K0-invariant
functions on G(A). We consider the topological vector space C(G(A), K0) of all functions
h ∈ C∞(G(A), K0) such that |h ∗X|L1(G(A)) < ∞ for all X ∈ U(gC) with the topology

induced by the seminorms |h ∗X|L1(G(A)). For any h ∈ C(G(A), K0) the image of the

operator ρ(P, λ, h) lies in the smooth and K0-invariant part of Ā2(P ).
The main technical statement of this paper is the following Theorem.

Theorem 3. Fix K0 ⊂ Kf and let M ∈ L, P ∈ P(M) and L ∈ L(M). Then for any
β ∈ BP,L and X ∈ ΞL(β) the seminorm∫

ia∗L

‖∆X (P, λ)ρ(P, λ, h)‖1 dλ

on C(G(A), K0) is continuous, where ‖·‖1 denotes the trace norm on Ā2(P ). Similarly, for
any selector s : F(M)→ P(M) and any flag f ∈ G(L) the seminorm∫

ia∗L

‖∂sf (P, λ)ρ(P, λ, h)‖1 dλ

is continuous.
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Implicit here is that for almost all λ ∈ ia∗L the operator ∆X (P, λ)ρ(P, λ, h) extends to a
trace class operator on Ā2(P ).

Remark 3. The case P = G essentially amounts to the trace-class conjecture of Selberg
which asserts that ρ(G, h) is of trace class. It was settled in [Mül89] for K-finite test
functions and independently in [Mül98] and [Ji98] in the general case.

Recall that L2
disc(AMM(F )\M(A)) splits as the completed direct sum of its π-isotypic

components for π ∈ Πdisc(M(A)). We have a corresponding decomposition of Ā2(P ) as a
direct sum of Hilbert spaces ⊕̂π∈Πdisc(M(A))Ā2

π(P ). Similarly, we have the algebraic direct
sum decomposition A2(P ) = ⊕π∈Πdisc(M(A))A2

π(P ), where A2
π(P ) is the K-finite part of

Ā2
π(P ). We further decompose

A2
π(P ) = ⊕τ∈K̂∞A

2
π(P )τ

according to isotypic subspaces for the action of K∞. Let A2
π(P )K0 be the subspace of

K0-invariant functions in A2
π(P ), and similarly for A2

π(P )K0,τ for any τ ∈ K̂∞. The latter
space is always finite-dimensional. For any π ∈ Πdisc(M(A)) let λπ denote the Casimir

eigenvalue of π∞. Let also λτ be the Casimir eigenvalue of τ ∈ K̂∞.
Theorem 3 will be proved by reducing it to the following statement in the co-rank one

situation.

Proposition 1. Let P,Q ∈ P(M) with P |αQ and let $ ∈ a∗M be such that 〈$,α∨〉 = 1.
Then there exist C, N and N1 such that

(3)

∫
iR
‖δP |Q(s$)

∣∣
A2
π(Q)K0,τ

‖(1 + |s|)−N ds ≤ C(1 + λ2
τ + λ2

π)N1

for any τ ∈ K̂∞ and π ∈ Πdisc(M(A)).

The following refinement of Arthur’s spectral expansion is a consequence of Theorem 3.
Let C(G(A)) be the inductive limit of C(G(A), K0) over the open subgroups K0 of Kf . For
any s ∈ W (M) let Ls be the smallest Levi subgroup in L(M) containing ws. It is also
characterized by the condition aLs = {H ∈ aM | sH = H} ([Art82b, p. 1299], cf. [OT92,
Theorem 6.27]). We set

ιs =
∣∣∣det(s− 1)aLsM

∣∣∣−1

.

For P ∈ F(M0) and s ∈ W (MP ) let M(P, s) : A2(P )→ A2(P ) be as in [Art82b, p. 1309].
This is a unitary operator which commutes with the operators ρ(P, λ, h) for λ ∈ ia∗Ls .

Corollary 1. For any h ∈ C∞c (G(A)) the spectral side of Arthur’s trace formula is given
by ∑

[P ]

1

|W (MP )|
∑

s∈W (MP )

ιs

∫
ia∗Ls

tr(ML(P, λ)M(P, s)ρ(P, λ, h)) dλ
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where the sum is over representatives in F(M0) of associate classes of parabolic subgroups.
We can also write it as∑

[P ]

1

|W (MP )|
∑

s∈W (MP )

ιs
∑

β∈BP,Ls

∫
ia∗Ls

tr(∆XLs,µ(β)(P, λ)M(P, s)ρ(P, λ, h)) dλ

or as ∑
[P ]

1

|W (MP )|
∑

s∈W (MP )

ιs
∑

f∈G(Ls)

∫
ia∗Ls

tr(∂sf (P, λ)M(P, s)ρ(P, λ, h)) dλ

with µ and s as in Theorem 1 and 2 above. In all these expressions the sums are finite and
the integrals are absolutely convergent with respect to the trace norm and define distributions
on C(G(A)).

We note that in the case G = GL(n) the absolute convergence statement of Corollary
1 (however without the more explicit formulas) was established by a different method in
[MS04].

Remark 4. It is natural to ask whether there is an analogous result for the geometric side,
namely whether the sum of weighted orbital integrals extends continuously to C(G(A)).
This would yield a trace formula identity for a large class of test functions. Such func-
tions play a role in Langlands’ idea of “beyond endoscopy.” At any rate, at least for the
semisimple part of the geometric side the answer is positive [FLb] (cf. also [FL11], where
the full geometric side is discussed for G = GL(2)).

4. The Maass-Selberg relations

As a byproduct of Theorems 1 and 2 we also get an explication of the Maass-Selberg
relations in the so-called singular case. Let χ be a cuspidal datum of G (i.e. a G(F )-
conjugacy class of pairs (L, σ) consisting of a Levi subgroup L of G defined over F and an
irreducible cuspidal representation σ of L(A)1). Furthermore, let M ∈ L be of co-rank d in
G, P ∈ P(M) and π a representation of M(A)1. We also need to fix a minimal parabolic
subgroup P0 ∈ P(M0). Let T0 ∈ aM0 be the vector defined in [Art81, Lemma 1.1]. Recall
the definition of the operator ωTχ,π(P, λ) on A2

χ,π(P ) for T ∈ aM0 and λ ∈ ia∗M ([Art82a,
p. 1278], [Art82b, §2]). It is given as the sum over all s ∈ W (M,π) := {s ∈ W (M) : sπ =
π} of

lim
Λ→sλ−λ

∑
Q∈P(M)

e〈Λ,YQ(T )〉MQ|P (λ)−1MQ|P (s, s−1(λ+ Λ))

θQ(Λ)
.

Here, MQ|P (s, λ) are the variants of the intertwining operators defined in [Art82b, p. 1292],
and YQ(T ) is the projection of t−1(T −T0) +T0 to aM , where t ∈ W0 is such that tQ ⊃ P0.

For ϕ ∈ A2
χ,π(P ) let E(g, ϕ, λ) be the Eisenstein series associated to ϕ and λ, which is

given by the meromorphic continuation of∑
γ∈P (F )\G(F )

ϕ(γg)e〈λ,HP (γg)〉.
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By Arthur’s asymptotic inner product formula for truncated Eisenstein series ([Art82c,
Corollary 9.2], [Art82a, p. 1279]) we have

(
ΛTE(·, ϕ1, λ), E(·, ϕ2, λ)

)
G(F )\G(A)1

=
(
ωTχ,π(P, λ)ϕ1, ϕ2

)
A2
χ,π

+ e(ϕ1, ϕ2, λ, T )

for all ϕ1, ϕ2 ∈ A2
χ,π(P ), where the error term e(ϕ1, ϕ2, λ, T ) is exponentially small in

minα∈∆0 〈α, T 〉 for T in the positive Weyl chamber with respect to P0. In the case where π
is cuspidal (and χ is the cuspidal datum associated to M and π) we have e(ϕ1, ϕ2, λ, T ) = 0
for T sufficiently regular ([Lan76], [Art80, §4]). (An alternative approach to these results
is contained in [JLR99] for cuspidal π and in [Lap11] for the general case.)

As before, by the functional equations for the operators MQ|P (s, λ) [Art82b, (1.2)] the
Taylor expansions AQ of MQ|P (λ)−1MQ|P (s, s−1(λ + Λ))MP |P (s−1, λ) at Λ = 0 form a
compatible family (when restricted to a finite-dimensional K0-fixed and τ -isotypic subspace
as before) and we have

AP1A−1
P2

= MP1|P (λ)−1MP1|P2(λ+ Λ)MP2|P (λ).

For adjacent parabolic subgroups Q|βQ′ in P(M) let t ∈ W0 be such that tQ ⊃ P0.
Then tβ ∈ a∗tM lifts to a unique simple root αQQ′ ∈ ∆0 and we have

YQ(T )− YQ′(T ) =
〈
αQQ′ , T − T0

〉
β∨.

Therefore, the collection Y (T ) = (YQ(T ))Q∈P(M) defines a piecewise linear function on

the fan Σ(G,M) and the Taylor series cQ of e〈Λ,YQ(T )〉 at Λ = 0 form a scalar-valued
compatible family. If 〈α, T − T0〉 > 0 for all α ∈ ∆0, as we may assume, the YQ(T ) form
even a positive AM -orthogonal set, i.e. they are precisely the vertices of their convex hull,
which is a polytope in aM . (Cf. [FLc, §4] and also [Art81, §7] for more details.)

We conclude that (the restrictions to suitable finite-dimensional subspaces of) the op-
erators cQAQ form a compatible family. Using [FLc], we can evaluate the limit in the
definition of ωTχ,π(P, λ) at the point Λ = 0, or equivalently in the case where sλ = λ for all
s ∈ W (M,π). The resulting expressions are explicit, although combinatorially complicated
polynomials in T .

To describe them, let s : F(M)→ P(M) be a selector and f ∈ G(M). Set

∂s;Tf (P, λ) =
1

d!
Ms(Q0)|P (λ)−1

d∏
i=1

[
Dµi−1

Ms(Qi−1)|s(Qi)(λ)

+
〈
µi, Ys(Qi−1)(T )− Ys(Qi)(T )

〉
Ms(Qi−1)|s(Qi)(λ)

]
Ms(G)|P (λ)
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with µi ∈ a∗Qi,+ as in §2.3. We can rewrite this expression as the sum over all 0 ≤ k ≤ d
and all indices 1 ≤ i1 < · · · < ik ≤ d of

1

d!

∏
i 6=i1,...,ik

〈
µi, Ys(Qi−1)(T )− Ys(Qi)(T )

〉
Ms(Qi1−1)|P (λ)−1

k−1∏
j=1

(
Dµij−1

Ms(Qij−1)|s(Qij )(λ)Ms(Qij )|s(Qij+1−1)(λ)
)
Dµik−1

Ms(Qik−1)|s(Qik )(λ)Ms(Qik )|P (λ).

For T = T0 only k = d contributes and we get ∂s;T0f (P, λ) = ∂sf (P, λ). Also, define

∆T
X (P, λ) =

vol(β)

d!
MP1|P (λ)−1

d∏
i=1

[(
δPi|P ′i (λ) +

〈
αPiP ′i

, T − T0

〉
MPi|P ′i (λ)

)
MP ′i |Pi+1

(λ)

]
,

where in the last factor Pd+1 is replaced by P . We can rewrite this analogously as the sum
over all 0 ≤ k ≤ d and all indices 1 ≤ i1 < · · · < ik ≤ d of

vol(β)

d!

∏
i 6=i1,...,ik

〈
αPiP ′i

, T − T0

〉
MPi1 |P (λ)−1

k∏
j=1

(
δPij |P ′ij

(λ)MP ′ij
|Pij+1

(λ)
)

with the convention that Pik+1
should be replaced by P in the last factor. This gives a

combinatorial expression for the polynomial ∆T
X (P, λ) as a sum of monomials in the root

coordinates 〈α, T − T0〉, α ∈ ∆0. Again we have ∆T0
X (P, λ) = ∆X (P, λ). We can now apply

the combinatorial formulas of [FLc, Corollary 4.3 and Theorem 8.1] to the operators cQAQ,
Q ∈ P(M), to get the following result.

Theorem 4. Assume that λ ∈ ia∗M is singular in the sense that sλ = λ for all s ∈ W (M,π).
Then

ωTχ,π(P, λ) =
∑

s∈W (M,π)

∑
f∈G(M)

∂s;Tf (P, λ)M(P, s)

=
∑

s∈W (M,π)

∑
β∈BP,M

∆T
XM,µ(β)(P, λ)M(P, s).

The leading term of this polynomial is simply the volume of the convex hull of the YQ(T )
times the operator

∑
s∈W (M,π) M(P, s), and the Theorem provides a combinatorial formula

for this volume (cf. [FLc, Pos09]). On the other hand, the value at T = T0 is given by the
formulas of Theorems 1 and 2 for L = M .

5. Proof of absolute convergence

In this section we give the proofs of our analytic results Theorem 3 and Corollary 1.
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5.1. Reduction of Theorem 3 to Proposition 1. Fix M ∈ L, P ∈ P(M), L ∈ L(M)
as above and let m be the co-rank of L in G. Using (1) the operators ∂sf (P, λ) can be
expressed as linear combinations of the operators ∆X (P, λ). Therefore it is enough to
show the first part of Theorem 3.

Fix β ∈ BP,L and X ∈ ΞL(β). Let

∆ = Id−Ω + 2ΩK∞

where Ω (resp. ΩK∞) is the Casimir operator of G(F∞) (resp. K∞). The operator
∆X (P, λ)ρ(P, λ,∆2k)−1, k ∈ N is defined on A2(P ). We will show the convergence of

(4)

∫
ia∗L

‖∆X (P, λ)ρ(P, λ,∆2k)−1‖1 dλ

for sufficiently large k. In particular for almost all λ, ∆X (P, λ)ρ(P, λ,∆2k)−1 extends to a
trace-class, and a fortiori bounded, operator on Ā2(P ). Since

‖∆X (P, λ)ρ(P, λ, h)‖1 ≤ ‖∆X (P, λ)ρ(P, λ,∆2k)−1‖1‖ρ(P, λ,∆2k ∗ h)‖
≤ ‖∆X (P, λ)ρ(P, λ,∆2k)−1‖1

∣∣h ∗∆2k
∣∣
L1(G(A))

this will imply Theorem 3.
It remains to show the convergence of (4). The operator ρ(P, λ,∆) acts on A2

π(P )K0,τ

by the scalar µ(π, λ, τ) = 1 + ‖λ‖2 − λπ + 2λσ. By [Mül02, (6.9)], this scalar satisfies

(5) |µ(π, λ, τ)|2 ≥ 1

4
(1 + ‖λ‖2 + λ2

π + λ2
τ ).

Suppose that X = (P1P ′1, . . . , PmP
′
m) with Pi|αiP ′i , i = 1, . . . ,m. Using the inequality

‖A‖1 ≤ dimV ‖A‖

for any linear operator A on a finite-dimensional Hilbert space V , and the unitarity of
MQ|P (λ), we reduce the problem to the convergence of∑

τ∈K̂∞

∑
π∈Πdisc(M(A))

dim(A2
π(P )K0,τ )

∫
ia∗L

|µ(π, λ, τ)|−2k
m∏
i=1

‖δPi|P ′i (λ)
∣∣
A2
π(P ′i )

K0,τ
‖ dλ

for sufficiently large k. By integrating first over ia∗G we may replace the integral over ia∗L by
an integral over i(aGL)∗. Recall that δPi|P ′i (λ) depends only on 〈λ, α∨i 〉. Let $1, . . . , $m be

the basis of (aGL)∗ dual to α∨1 , . . . , α
∨
m; thus, the coordinates of λ with respect to $1, . . . , $m

are 〈λ, α∨i 〉. Using these coordinates Proposition 1 reduces the statement to the convergence
of ∑

τ∈K̂∞

∑
π∈Πdisc(M(A))

dim(A2
π(P )K0,τ )(1 + λ2

π + λ2
τ )
−k

for k sufficiently large. This in turn follows from [Mül98, Corollary 0.3].
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5.2. Proof of Proposition 1. The operator MQ|P (λ) depends only on s = 〈λ, α∨〉. For
convenience we denote its restriction to A2

π(P ) by MQ|P (π, s). Since MQ|P (λ) is unitary
for λ ∈ ia∗M we may replace the left-hand side of (3) by∫

iR
‖MQ|P (π, s)−1M ′

Q|P (π, s)
∣∣
A2
π(P )K0,τ

‖(1 + |s|)−N ds.

We have a canonical isomorphism of G(Af )× (gC, K∞)-modules

jP : Hom(π, L2(AMM(F )\M(A)))⊗ Ind
G(A)
P (A)(π)→ A2

π(P ).

The operator MQ|P (π, s) admits a normalization by a global factor nα(π, s) which is a
meromorphic function in s. We write

MQ|P (π, s) ◦ jP = nα(π, s) · jQ ◦ (Id⊗NQ|P (π, s))

where NQ|P (π, s) = ⊗vNQ|P (πv, s) is the product of the locally defined normalized in-
tertwining operators and π = ⊗vπv ([Art82b, §6], cf. [Mül02, (2.17)]). Consequently we
have

MQ|P (π, s)−1M ′
Q|P (π, s) =

n′α(π, s)

nα(π, s)
Id + jP ◦ (Id⊗NQ|P (π, s)−1N ′Q|P (π, s)) ◦ j−1

P .

By [Mül02, Theorem 5.3] there exist C > 0, N , N1 ∈ N such that∫
iR

∣∣∣∣n′α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−N ds ≤ C(1 + Λ2
π)N1

for all π ∈ Πdisc(M(A)) with A2
π(P )K0 6= 0. Here, as in [ibid.],

Λπ = min
τ∈WP (π∞)

√
λ2
π + λ2

τ

whereWP (π∞) denotes the set of minimalK∞-types of the induced representation IndGP (π∞).
To deal with the term involving the normalized intertwining operator, we may assume,

by passing to a finite index subgroup if necessary, that K0 =
∏

v<∞Kv where Kv is an
open compact subgroup of G(Fv) and Kv is hyperspecial for almost all v. Let NQ|P (πv, s)Kv
denote the restriction of NQ|P (πv, s) to the subspace of Kv-invariant vectors, and for τ =

⊗v|∞τv ∈ K̂∞ let NQ|P (πv, s)τv be the restriction of NQ|P (πv, s) to the τv-isotypic subspace.
We recall from [Art89] that there exists a finite set S of places of F , which contains the
archimedean ones and depends only on K0, such that

NQ|P (πv, s)Kv = Id, v /∈ S.

ThusNQ|P (π, s)−1N ′Q|P (π, s) =
∑

v∈S NQ|P (πv, s)
−1N ′Q|P (πv, s) on Ind

G(A)
P (A)(π)K0 . Let Π(M(Fv))

be the set of equivalence classes of irreducible representations of the local group M(Fv).
Using the unitarity of NQ|P (πv, s) for s ∈ iR it remains to show the existence of C > 0 and
N1 ∈ N such that for all v ∈ S and π ∈ Π(M(Fv))

(6)

∫
iR
‖N ′Q|P (πv, s)Kv‖(1 + |s|)−N ds ≤ C
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if v is non-archimedean, and

(7)

∫
iR
‖N ′Q|P (πv, s)τv‖(1 + |s|)−N ds ≤ C(1 + ‖τv‖)N1

for all τv ∈ K̂v if v is archimedean.

Since ‖(aij)‖ ≤
(∑
|aij|2

) 1
2 ≤

∑
|aij|, the left-hand sides of (6) and (7) are bounded by∑

i,j

∫
iR

∣∣(N ′Q|P (πv, s)ei, ej)
∣∣ (1 + |s|)−N ds,

where ei is an orthonormal basis for Ind(πv)
Kv (in the p-adic case) or Ind(πv)

τ (in the
archimedean case). Note that dim Ind(πv)

Kv is bounded independently of πv in the p-adic
case and dim Ind(πv)

τv ≤ (deg τv)
2 for v|∞. Let ‖τv‖ be the norm of the highest weight of

τv. By Weyl’s dimension formula, deg τv is bounded polynomially in ‖τv‖.
We now appeal to the following Lemma.

Lemma 1. Let C be either the imaginary axis or the unit circle. Let f(z) be a scalar
valued rational function of degree ≤ m such that |f(z)| ≤ 1 for all z ∈ C. Then

(8)

∮
C

|f ′(z)| |dz| ≤ 8m

We are grateful to Benjamin Weiss for communicating to us the following simple proof.

Proof. Assume first that f takes real values on C. Then the left-hand side of (8) is the

total variation of f on C, i.e.
∑k

j=1 |f(zj)− f(zj−1)| where zj, j = 1, . . . , k are the extrema
of f on C and we set z0 = zk. Since k ≤ 2m, we get∮

|f ′(z)| |dz| ≤ 4m

in this case. The general case follows immediately. �

Remark 5. Let C be as in Lemma 1. Borwein and Erdélyi proved the following stronger
inequality ([BE96]). Let a1, . . . , am ∈ C and define

φ≷(z) =
∏

j:|aj |≷1

1− ājz
z − aj

if C is the unit circle and

φ≷(z) =
∏

j:Re aj≷0

z − āj
z + aj

if C is the imaginary axis. Then for any f such that |f(z)| ≤ 1 on C and
∏m

j=1(z−aj)f(z)
is a polynomial of degree ≤ m we have

|f ′(z)| ≤ max(|φ′>(z)| , |φ′<(z)|)
on C. Estimating the maximum by the sum and integrating over C we obtain Lemma 1
with 8 replaced by 2π which is best possible.
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Going back to the proof of Proposition 1 we recall that the operators NQ|P (πv, s)Kv are
unitary on the imaginary axis, and therefore their matrix coefficients are bounded by 1.
Using Lemma 1 and the discussion preceding it remains to show the following

Lemma 2. Let P |αQ ∈ P(M) and πv ∈ Π(M(Fv)).

(1) Suppose that v is p-adic and (IndGP πv)
Kv 6= 0. Then any matrix coefficient

(NQ|P (πv, s)ϕ1, ϕ2), ϕ1, ϕ2 ∈ (Ind πv)
Kv ,

is of the form f(qs) for some rational function f with deg f bounded in terms of
Kv only.

(2) Suppose that v is archimedean and let τ ∈ K̂v. Then any matrix coefficient

f(s) = (NQ|P (πv, s)ϕ1, ϕ2), ϕ1, ϕ2 ∈ (Indπv)
τ ,

is a rational function with deg f ≤ c(1 + ‖τ‖) where c depends only on G.

Proof. We argue as in [MS04]. The rationality of f in both cases follows from [Art89,
Theorem 2.1]. Suppose first that v is p-adic. In the following, the notation will be relative
to Fv. (In particular, M0 is a minimal Levi defined over Fv and so on.) We will also
consider the normalized intertwining operators NP2|P1(π, λ) for general P1, P2 ∈ P(M) and
λ ∈ a∗M . This differs a little from our previous notation since the operator NQ|P (π, s)
is now written as NQ|P (π, s$) where $ ∈ a∗M is such that 〈$,α∨〉 = 1. Note that P
and Q are not necessarily adjacent anymore since the split rank may grow under base
field extension. Write πv as a Langlands quotient JMP1

(σv, µ) where P1 ∈ FM(M0), σv
is a tempered representation of MP1 and µ is in the relative interior of a∗P1,+

⊂ (aM0 )∗.

Therefore, πv is a quotient of IndMP2
(δv, µ) where P2 ∈ FM(M0), P2 ⊂ Q, δv is a square-

integrable representation of MP2 and µ ∈ a∗P2,+
. Let P ′ = P2NP ∈ F(M0) and Q′ = P2NQ.

Then, as explained in [Art89, p. 30], we have a commutative diagram

IndP ′(δ, µ+ s$)
NQ′|P ′ (δ,µ+s$)
−−−−−−−−−→ IndQ′(δ, µ+ s$)y y

IndP (π, s$)
NQ|P (π,s$)
−−−−−−−→ IndQ(π, s$)

Therefore, any matrix coefficient of NQ|P (πv, s) is also a matrix coefficient of NQ′|P ′(δv, µ+
s). Hence, we are reduced to the case where π is square-integrable. However, up to a twist
by an unramified character there are only finitely many square-integrable representations
such that (Ind π)Kv 6= 0. The p-adic case follows.

In the archimedean case deg f is the number of poles of f since |f(s)| ≤ 1 on the
imaginary axis. By [MS04, Proposition A.2] this number is bounded by c(1 + ‖τ‖) where
c depends on G only. �

This completes the proof of Proposition 1, and therefore also of Theorem 3.

Remark 6. For applications of the trace formula, such as the problem of limit multiplicities,
it will be of interest to make the bounds of Lemma 2 effective in Kv in the p-adic case.
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5.3. Finally we show Corollary 1. Consider the spectral side of Arthur’s trace formula
whose fine expansion was obtained in [Art82b]. For a test function f ∈ C∞c (G(A)) it is
given by an absolutely convergent sum

(9)
∑
χ∈X

Jχ(f)

where χ ranges over the set X of all cuspidal data of G. To describe the distributions Jχ
we recall that the decomposition

L2(M(F )\M(A)1) =
⊕̂
χ∈X

L2(M(F )\M(A))χ

according to cuspidal data gives rise to a decomposition A2(P ) = ⊕A2
χ(P ).

Arthur’s expansion for Jχ is

(10) Jχ(h) =
∑

[P ],s∈W (MP )

ιs
|W (MP )|

∫
ia∗Ls

tr
(
MLs(P, λ)M(P, s)ρ(P, λ, h)

∣∣
Ā2
χ(P )

)
dλ

for any bi-K-finite h ∈ C∞c (G(A)), where P ranges over parabolic subgroups up to asso-
ciation and the integral is absolutely convergent with respect to the trace norm. Implicit
here is that the operator MLs(P, λ)ρ(P, λ, h) extends to a trace class operator on Ā2

χ(P ).

This expression is a slight reformulation of [Art82b, Theorems 8.1 and 8.2].3 To explain
this, suppose that t ∈ W0 and P ∈ P(M). The map t : A2(P ) → A2(tP ) given by
tφ(x) = φ(w−1

t x) is an isometry which intertwines ρ(P, λ) with ρ(tP, tλ) and satisfies
tA2

χ(P ) = A2
χ(tP ) for all χ ∈ X. We also have tMQ|P (λ) = MtQ|tP (tλ)t for any Q ∈ P(M).

For any s ∈ W (M) we have tst−1 ∈ W (tM), Ltst−1 = tLs and tM(P, s) = M(tP, tst−1)t
(cf. [Art82b, (1.4), (1.5)]). Hence,

(11) MLtst−1 (tP, tλ)M(tP, tst−1)ρ(tP, tλ, h)t = tMLs(P, λ)M(P, s)ρ(P, λ, h), λ ∈ ia∗L.

Also, for all Q ∈ P(L) and P ′ ∈ P(M) we have

MP |P ′(λ)MQ(P ′, λ,Λ) =MQ(P, λ,Λ)MP |P ′(λ+ Λ)

and therefore

(12) MP |P ′(λ)MLs(P
′, λ)M(P ′, s)ρ(P ′, λ, h) =MLs(P, λ)M(P, s)ρ(P, λ, h)MP |P ′(λ).

The equivalence between (10) and [Art82b, Theorems 8.1 and 8.2] now follows from (11),

(12) and the fact that the orbit of M under W0 is of size |W0|
|WM

0 |
|W (M)|−1.

Corollary 1 now follows from (9), (10) and Theorem 3. The passage from bi-K-finite
functions to compactly supported functions is explained in [Art82b, p. 1326] using [Art82a,
Proposition 2.3].

Remark 7. It is tempting to contemplate whether one can use our results to simplify the
argument of [Art82a, Art82b] for the derivation of the spectral side of the trace formula.
However, this will probably require a more flexible formula for the Maass-Selberg relations

3Cf. [Art05, p. 137] for the reason for the restriction to bi-K-finite functions.
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which is valid not only for singular parameters. Moreover, some control over the error
term in Arthur’s asymptotic inner formula for truncated Eisenstein series is also necessary.
Fortunately, for the upshot of the spectral expansion this is not essential.
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