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0. INTRODUCTION

Let F be a number field and let G be a connected reductive algebraic
group over E. Let A be the ring of adeles of F and let G(A) be the
group of points of G with values in A. Let G(A)' be the intersection
of the kernels of the maps =z — |£(z)|, z € G(A), where £ ranges
over the group X (G)g of characters of G defined over E. Then the
(noninvariant) trace formula of Arthur is an identity

D) =D K, feCE(GA)Y,

€O XEX
between distributions on G(A)'. The left hand side is the geometric
stde and the right hand side the spectral side of the trace formula.

In this paper we are concerned with the spectral side of the trace for-
mula. The distributions J, are initially defined in terms of truncated
Eisenstein series. They are parametrized by the set of cuspidal data X
which consists of the Weyl group orbits of pairs (Mg, rg), where Mg
is the Levi component of a standard parabolic subgroup and rp is an
irreducible cuspidal automorphic representation of Mg(A)!. In the fine
x-expansion of the spectral side the inner products of truncated Eisen-
stein series are replaced by terms containing generalized logarithmic
derivatives of intertwining operators. This leads to an integral-series
that is only known to be conditionally convergent. It is an open prob-
lem to prove that the fine y-expansion is absolutely convergent and the
main purpose of this paper is to settle this problem for the group GL,.

To explain our results in more detail, we need to introduce some nota-
tion. We fix a Levi component M, of a minimal parabolic subgroup P,
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2 ARTHUR TRACE FORMULA

of G. We assume that all parabolic subgroups considered in this pa-
per contain M,. Let P be a parabolic subgroup of GG, defined over F,
with unipotent radical Np. Let Mp be the unique Levi component of P
which contains My. We denote the split component of the center of Mp
by Ap and its Lie algebra by ap. For parabolic groups P C () there is
a natural surjective map ap — a¢ whose kernel we will denote by a®.
Let A?(P) be the space of automorphic forms on Np(A)Mp(E)\G(A)
which are square-integrable modulo Apg(R)?, where Apg is the split
component of the center of the group obtained from Mp by restrict-
ing scalars from F to Q. Let @) be another parabolic subgroup of G,
defined over F, with Levi component Mg, split component Ay and
corresponding Lie algebra ag. Let W(ap, ag) be the set of all linear
isomorphisms from ap to ap which are restrictions of elements of the
Weyl group W (Ap). The theory of Eisenstein series associates to each
s € W(ap,ag) an intertwining operator

Mgip(s, \) : A2(P) —» A%(Q), M€ apc

which for Re()) in a certain chamber, can be defined by an absolutely
convergent integral and admits an analytic continuation to a meromor-
phic function of A € apc. Set

Mqp(}) := Mgip(1, ).

Let II(Mp(A)') be the set of equivalence classes of irreducible unitary
representations of Mp(A)l. Let x € X and 7 € II(Mp(A)'). Then
(x, ) singles out a certain subspace A%  (P) of A*(P) [A3, p.1249).

Let Ilim(P) be the Hilbert space completion of A2 (P) with respect
to the canonical inner product. For each A € ap we have an induced

representation p, (P, \) of G(A) in .,Tlim(P).

For each Levi subgroup L let P(L) be the set of all parabolic subgroups
with Levi component L. If P is a parabolic subgroup, let Ap denote
the set of simple roots of (P, Ap). Let L be a Levi subgroup which
contains Mp. Set

M (P, \) =
. _1 Mgip(A+A)

lim vol(aS, /Z(AY,)) Mgip(A) ™' =2 ,
A0 ng;(L) Q Q | HaeAQl A(aY)

where A and A are constrained to lie in ia}, and for each @ € P(L),
@ is a group in P(Mp) which is contained in @;. Then 9, (P, \) is
an unbounded operator which acts on the Hilbert space jfm(P). In
the special case that L = M and dima¥ = 1, the operator M. (P, \)
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has a simple description. Let P be a parabolic subgroup with Levi
component M. Let a be the unique simple root of (P, Ap) and let @
be the element in (a$,)* such that ©(a¥) = 1. Let P be the opposite
parabolic group of P. Then

My (P, 25) = — vol(a%,/Za¥) My p(25) ™ - %Mﬁlp(zw).

Let f € C®(G(A)'). Then Arthur [A4, Theorem 8.2] proved that
Jy(f) equals the sum over Levi subgroups M containing My, over L
containing M, over m € II(M(A)'), and over s € WE(ap).eq, a certain
subset of the Weyl group, of the product of

W [[Wo| ™[ det(s — 1)or, |71 [P(M)[ !

a factor to which we need not pay too much attention , and of

(0.1) / S O (P,\) Mo (s, 0)pyn(P, A, £)) dA.

ia} /iag, PeP(M)

So far, it is only known that >° o [Jy(f)| < co and the goal is to
show that the integral-sum obtained by summing (0.1) over x € X and
7 € TI(M(A)") is absolutely convergent with respect to the trace norm.
For a given Levi subgroup M let £L(M) be the set of all Levi subgroups
L with M C L. Put M(P,s) = Mpp(s,0). Denote by || T ||; the
trace norm of a trace class operator T'. Let C*(G(A)!) be the space of
integrable rapidly decreasing functions on G(A)! (see [Mu4, §1.3] for
its definition). Then our main result is the following theorem.
Theorem 0.1. Let G = GL,,. Then the sum over all M € L(M),
LeL(M), xe X, mell(M(A)"), and s € W (an).eq of the product
of

W' [[Wo| " det(s — 1), |7
with

[ IO S IR AN P ) 1

PeP(M)
is convergent for all f € C'(G(A)").

By Theorem 0.1, the spectral side for GL,, can now be rewritten in the
following way. Denote by Ty (M(A)!) the set of all 7 € TI(M(A)?!)
which are equivalent to an irreducible subrepresentation of the regu-
lar representation of M(A)! in L2(M(E)\M(A)'). As in Section 7 of
[A3], we shall identify any representation of M(A)! with a represen-
tation of M(A) which is trivial on A q(R)?, where Ay is the split
component of the center of the group Resg,q GL, obtained from G
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by restricting scalars from E to Q. For any parabolic group P, let
A2(P) = @A (P) and for X € a},¢, let pr(P, \) be the induced rep-

resentation of G(A) in ji(P), the Hilbert space completion of A2 (P).
Given M € L, L € L(M), P € P(M), s € WE(a ). and a function
feCHGA)?), let

J]%/I,P(fa S)
= Z / i tr(9ML (P, A)Mpp(s,0)p-(P, A, f)) dA

€M gisc(M(A)1)

By Theorem 0.1 this integral-series is absolutely convergent with re-
spect to the trace norm. Furthermore for M € £ and s € W (ans)eg
set

an,s = [P(M)| 7 We"||Wo| [ det(s — 1)az, |7

Then for all functions f in C'(G(A)'), the spectral side of the Arthur
trace formula equals

Z Z Z Z aM,SJf/I,P(fa s).

MeL LeEL(M) PEP(M) seWL(ap)reg
Note that all sums in this expression are finite.

We shall now explain the main steps of the proof of Theorem 0.1. The
proof relies on Theorem 0.1 of [Mu4]. In this theorem the absolute
convergence of the spectral side of the trace formula has been reduced
to a problem about local components of automorphic representations.
So the main issue of the present paper is to verify that for GL,,, the
assumptions of Theorem 0.1 of [Mu4] are satisfied.

Let M = GL,, x--- x GL,, be a standard Levi subgroup and let
P,Q € P(M). We shall identify a%, with R". Given a place v of F
and an irreducible unitary representation m, = ®!_,m,; of M(E,), let
Joip(my,8), s € C', be the local intertwining operator between the
induced representations Ig(m,[s]) and I§(my[s]), where s = (s1, ..., 5,)
and 7,[s] = ®;(m,;| det |*). It follows from results of Shahidi [Sh5] that
there exist normalizing factors rg|p(my,s), which are defined in terms
of Rankin-Selberg L-functions, such that the normalized intertwining
operators
Rgp(my,8) = 1o p(y, s)_lJQ‘p(m,, s)

satisfy the properties of Theorem 2.1 of [A7]. If v < oo and K, is an
open compact subgroup of G(E,), denote by Rg p(7y,s)k, the restric-
tion of Rgp(my,s) to the subspace Hp(m,)* of K,-invariant vectors
in the Hilbert space Hp(m,) of the induced representation. If v|oco, let
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K, C G(E,) be the standard maximal compact subgroup. For every
o, € II(K,) we denote by || o, || the norm of the highest weight of
o,. Given m, € II(G(E,)) and o, € II(K,), let Rgp(m,,s),, be the
restriction of Rg|p(my,s) to the o,-isotypical subspace of Hp(7,). Fi-
nally for any place v, let Iy, (M(E,)) be the subspace of all 7, in
II(M(E,)) such that there exists an automorphic representation 7 in
the discrete spectrum of M(A) whose local component at v is equiva-
lent to m,. Then the main result that we need to prove Theorem 0.1 is
the following proposition.

Proposition 0.2. Let v be a place of E. For all M € L and P,Q €
P(M) the following holds.

1) If v < oo, then for every open compact subgroup K, of GL,(E,) and
every multi-index oo € N' there exists C > 0 such that

(0.2) | DaRgip(my, vk, [|[<C
for all w, € Ny (M(E,)) and u € R".

2) If v|oco, then for every multi-inder o € N there ezist C > 0 and
N € N such that

(0.3) | DR p (M, i0),, |< C(1+ | 0y [)Y
for allu e R", o, € II(K,) and m, € Uy (M(E,)).

The normalization used in [Mu4] differs slightly from the normalization
by L-functions. However, it is easy to compare the two normalizations
and it follows that Proposition 0.2 holds also with respect to the nor-
malization used in [Mu4]. Together with Theorem 0.1 of [Mu4], this
implies Theorem 0.1. Actually in [Mu4] we considered only reductive
algebraic groups G defined over Q. However, passing to the group
G' = Resg/ G which is obtained from G by restriction of scalars, it
follows immediately that the results of [Mu4] can also be applied to
reductive algebraic groups defined over a number field.

The main analytic ingredients in the proof of Proposition 0.2 are a
non-trivial uniform bound toward the Ramanujan hypothesis on the
Langlands parameters of local components of cuspidal automorphic
representations [LRS] and the determination of the residual spectrum
[MW]. Furthermore Corollary A.3 is important for the proof of (0.3).

Let us explain this in more detail. First note that any local component
7y of a cuspidal automorphic representation = of GL,,(A) is generic
[Sk]. This implies that 7, is equivalent to a fully induced representation
[JS3], i.e.,
~ 7G(Ey
Ty = IP((Ev))(Tl[tl]’ N Tr[tr]),
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where P is a standard parabolic subgroup of type (ni,...,n,), 7; are
tempered representations of GL,,(FE,) and the t;’s are real numbers
satisfying
th >t > > 1.

Here 7;[t;] is the representation g +— 7;(g)|det(g) For a unitary
generic representation , the parameters t; satisfy |¢;| < 1/2. In [LRS],
Luo, Rudnick and Sarnak proved that for an unramified 7, which is the
local component of a cuspidal automorphic representation of GL,,(A),
one has

5.

0.4 t L L

(0.4) m?X|z|<2 I

First we extend this result of Luo, Rudnick and Sarnak to all local
components of cuspidal automorphic representations of GL,,(A). Then
we use the description of the residual spectrum of GL,,(A), given by
Moeeglin and Waldspurger [MW], to prove similar bounds for the local
components of all automorphic representations in the residual spec-
trum of GL,,(A) (cf. Proposition 3.5 for the precise statement). As a
consequence, it follows that for every local component 7, of an auto-
morphic representation 7 in the discrete spectrum of M (A)! the nor-
malized intertwining operator Rg p(7,,s) is holomorphic in the domain
Re(s; — sj) > 2/(n*+1),1 < i< j <r. This is the key result which
is needed to prove Proposition 0.2. Combined with Corollary A.3 it
immediately implies (0.3). For a finite place v we use that by Theorem
2.1 of [A7] any matrix coefficient of Rgp(m,,s) is a rational function

of ¢'~", i < j. Together with the above result, this implies (0.2).

In an earlier version of this paper, the first two authors were only able
to establish (0.3) for a fixed K,-type, so that Theorem 0.1 could only
be proved for K-finite functions f € C'(G(A)'). With the help of
the appendix which was kindly provided by E. Lapid, the K-finiteness
assumption could be lifted.

To extend the results of this paper to other reductive groups G one
would need, in particular, the existence of non-trivial uniform bounds
on the local components of cuspidal automorphic representations of
G(A). For a discussion of this problem we refer to [Sa]. Also note that
[CL] is a step in this direction.

The paper is organized as follows. In section 2 we compare the two
different normalizations of intertwining operators and we prove some
estimate for conductors. In section 3 we estimate the (continuous)
Langlands parameters of local components of cuspidal automorphic
representations of GL,, which generalizes results of Luo, Rudnick and
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Sarnak [LRS] to the case of ramified representations. Then we use
the description of the residual spectrum of GL,, by Moeglin and Wald-
spurger [MW] to obtain estimations for the Langlands parameters of all
local components of automorphic representations in the discrete spec-
trum of GL,,. We use these results in section 4 to prove Proposition
0.2 and Theorem 0.1. In the appendix, the normalized intertwining
operators for real Lie groups are studied. The main results is Corol-
lary A.3 which proves estimations for derivatives of matrix coeflicients
of intertwining operators along the imaginary axis, under the assump-
tion that the intertwining operators are holomorphic in a fixed strip
containing the imaginary axis.

Acknowledgment. The first two authors thank E. Lapid for many
comments and suggestions which helped to improve the paper con-
siderably and for providing the appendix by which the K-finiteness
assumption in an earlier version of the paper could be lifted.

1. PRELIMINARIES

1.1. Let E be a number field and let A denote the ring of adeles of
E. Fix a positive integer n and let G’ be the group GL,, considered as
algebraic group over E. By a parabolic subgroup of G we will always
mean a parabolic subgroup which is defined over E. Let Py be the
subgroup of upper triangular matrices of G. The Levi subgroup M,
of P, is the group of diagonal matrices in GG. A parabolic subgroup P
of G is called standard, if P D F,. By a Levi subgroup we will mean
a subgroup of G which contains M, and is the Levi component of a
parabolic subgroup of G. If M C L are Levi subgroups, we denote the
set of Levi subgroups of L which contain M by L£*(M). Furthermore,
let F“(M) denote the set of parabolic subgroups of L defined over
E which contain M, and let P*(M) be the set of groups in F*(M)
for which M is a Levi component. If L = G, we shall denote these
sets by L(M), F(M) and P(M). Write £ = L(M,). Suppose that
P € FY(M). Then
P = NpMp,

where Np is the unipotent radical of P and Mp is the unique Levi
component of P which contains M.

Suppose that M C M; C L are Levi subgroups of G. If Q € P*(M,)
and R € PM1 (M), there is a unique group Q(R) € PY(M) which is
contained in () and whose intersection with M; is R.
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Let M € £ and denote by A the split component of the center of M.
Then A is defined over E. Let X(M)g be the group of characters of
M defined over E and set

ay = Hom(X (M)g, R).
Then aj; is a real vector space whose dimension equals that of A. Its

dual space is
ay=XM)r®R

For any M € L there exists a partition (n,...,n,) of n such that
M =GLy, x -+ x GL, .

Then aj, can be canonically identified with (R")* and the Weyl group
W (ayp) coincides with the group S, of permutations of the set {1, ...,7}.

1.2. Let H be a reductive algebraic group defined over Q, let F' be a
local field of characteristic 0 and let K be an open compact subgroup
of H(F). We shall denote by II(H(A)) (resp. II(H(F)), II(K), etc.)
the set of equivalence classes of irreducible unitary representations of
H(A) (resp. H(F), K, etc.).

1.3. Let F' be a local field of characteristic zero. If 7 is an admissi-
ble representation of GL,,(F'), we shall denote by 7 the contragredient
representation to w. Let m;, ¢ = 1,...,r, be irreducible admissible rep-
resentations of the group GL,,(F). Then 7 = m ® --- @ 7, is an
irreducible admissible representation of

M(F) = GL,,(F) x --- x GL,, (F).
For s € C" let m;[s;] be the representation of GL,, (F') which is defined
by
milsil(g) = | det(g)[*mi(g), g € GLn,(F).
Let
If(r,5) = Ind ) (m[s1] © - @ 7 [51])

be the induced representation and denote by Hp(7) the Hilbert space
of the representation I§(7,s). Sometimes we will denote I§(m,s) by

I§ (mi[s1], -, 7r[50])-
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2. NORMALIZING FACTORS FOR LOCAL INTERTWINING OPERATORS

Let F be a local field of characteristic 0. If F' is non-Archimedean, let
O be the ring of integers of F' and let P be the unique maximal ideal
of O. Let g be the number of elements of the residue field O/B. Let
K = GL,(0O). If F is Archimedean, let K be the standard maximal
compact subgroup of GL,,(F), i.e., K = O(n), if F = R, and K = U(n),
if F=C.

Let M = GL,, x --- x GL,, be a standard Levi subgroup. We identify
ay with R™. Let Py, P, € P(M). Given w € II(M(F)), let

JP2\P1 (71', S), S € Cr’

be the intertwining operator which intertwines the induced representa-
tions I (m,s) and Ig (m,s). The intertwining operator Jp, p, (7,s) is
defined by an integral over Np, (F)) N Np, (F') which converges for Re(s)
in a certain chamber of a%,. It follows from [A7] and [CLL, §15] that
the intertwining operators can be normalized in a suitable way. This
means that there exist scalar valued meromorphic functions 7p,p, (7, s)
of s € € such that the normalized intertwining operators

RP2|P1 (ﬂ—a S) = TP~ (ﬂ-’ S)71JPZ|Pl (ﬂ-’ S)

satisfy the properties of Theorem 2.1 of [A7]. The method used in [A7]
works for every reductive group G. For GL,, however, it follows from
results of Shahidi [Sh1], [Sh5] that local intertwining operators can be
normalized by L-functions.

The normalizing factors defined by the Rankin-Selberg L-functions can
be described as follows. Fix a nontrivial continuous character ¢ of the
additive group F'* of F' and equip F with the Haar measure which is
selfdual with respect to 1. First assume that P is a standard maxi-
mal parabolic subgroup with Levi component M = GL,,, x GL,,. Let
m; € (GL,,,(F)), ¢ = 1,2. If F is non-Archimedean, let L(s,m X m2)
and €(s,m X my, 1) be the Rankin-Selberg L-function and the e-factor,
respectively, as defined in [JPS]. If F' is Archimedean, let the L-function
and the e-factor be defined by using the Langlands parametrization (cf.
[A7], [Sh2]). Then the normalizing factor can be regarded as a function
rpip(T1 ® T2, 5) of one complex variable which is given by

L(s,m X 79)
L(1+ s,m X To)e(s,m X T, )

(2.1) Tﬁ|P(7T1®’/T2,S) =

For arbitrary rank, the normalizing factors are products of normalizing
factors associated to rank one groups in M. Let e;, 7 =1,...,r, denote
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the standard basis of (R")*. Then there exist 01,09 € S, such that the
set of roots of (P, Aps) and (P, Apr), respectively, are given by
(22) Epk :{ei—ej ‘ 1<, <, O'k(i) <O'k(j)}, k=1,2.
Put

I(o1,00) = {(2,7) | 1 < 4,5 <, 01(2) <01()), 02(2) > 02(4) }-
Then

Yp NEp, ={ei—e; | (i,) € o1,02)}

Let 1 = m @ --- @ m, where m; € II(GL,,,(F)), i = 1,...,7. Fors =
(s1,--y8r) € C set

TPy Py (7T7 S) =

(2.3) H L(s; — s, m X 7))

L(14s; —sj,m X 7;)e(s; — s5,m X %jﬂ/’)'

(i,j)eI(Ul 102)

Since the Rankin-Selberg L-factors are meromorphic functions, it fol-
lows that 7p, p, (7, s) are meromorphic functions of s € C" and as ex-
plained in [A7, §4] and [AC, p.87], they satisfy all properties that are
requested for normalizing factors.

In order to be able to apply the results of [Mu4| we have to compare the
normalizing factors rg p(m,s) with those used in [Mu4] which we denote
by g p(m,s). If F is Archimedean, the normalizing factors 7 p(7,s)
are defined as the Artin L-factors and therefore, coincide with the
rqp(m,s). Assume that F' is non-Archimedean. By the construction
of the normalizing factors it suffices to consider the case where P is
maximal, Q = P and 7 is square integrable. Let P be a standard
maximal parabolic subgroup of GL,, with Levi component

M = GLyn, X GLy, .

Then the normalizing factor may be regarded as a function 75 p(, s)
of one complex variable s. We recall the construction of 75 p(, s) for
square integrable representations 7 [CLL]. It follows from [Sil], [Si2]
that for every m € IIo(M(F')) there exists a rational function Up(7, 2)
such that the Plancherel measure p(7, s) is given by

wu(m,s) = Up(m,q%).
The rational function Up(m, 2) is of the form

=g ! (l—aiz)(l—ai’lz)
vr(m?) E(l—@z)(l—@lz)’
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where |o;| <1, |8i| <1,i=1,...,7, and a € C is a constant such that

H% > 0.
Let b € C be such that .
Q;
‘b|2 = =a
1135
and set

(1= o42)
24 =0l ——-
. Ve = =5
Then the normalizing factor 75 p(m, s) is defined by

p(m,s) = Ve(r,q™") 7

By definition we have

pp(m,5) = (7 plm, —5)ipip(m,s))

which is one of the main conditions that the normalizing factors have
to satisty.

Let 7 and 79 be tempered representations of GL,,, (F') and GL,,,(F),

respectively. By Corollary 6.1.2 of [Sh1] the Plancherel measure is given

by

yL(1+ s, m X @2) L(1 — 5,1 X )
L(s,m X ) L(—s,m X m)

f(@m1xma

w(my @ ma, s) = q

where f (7 X 7o) € Z is the conductor of 7; X me. Using the description
of the Rankin-Selberg L-functions for tempered representations [JPS]
(see also section 3), it follows that

mi1 m2

(25) L 8 T X 7T2 HH ]- _a'zjq 17

=1 j=1

with complex numbers q;; satisfying |a;;| < 1. Furthermore by [JPS],
the e-factor €(s,m X 79, 1) has the following form

(2.6) €(s,m1 X o, ) = ¢(my X o, 1h)q (M ¥m2)s

with ¢(m X m2,1) € C — {0} and f(m X ma, %) € Z. Let
c(v) = max{r | P~ C ker ¢}

Then

(2.7) f(m X o, 1) = ningc(y) + f(m X ma),
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with f(m X me) € Z independent of 1. For simplicity assume that
c(¢) = 0. By Lemma 6.1 of [Sh1] we have

(2.8) le(m1 X mo)| = g/ Frxm)/2,
Thus the e-factor can be written as
€(s,m1 X o, 1h) = W (my X my)qt/2=8)f(mxm)

where the root number W (m; X ) satisfies |W (m; X m3)| = 1. Finally,
observe that f(m X Ty) = f(m X me). Using (2.5), (2.6) and (2.8) it
follows that the constant b in (2.4) can be chosen to be €(0, 7 X Ta, 1))
and

L(s,m X T9)
L(l + s,m X 7?2)6(0, T X ’/'NTQ, 1/}) .

(29) ?ﬁ‘P(ﬂ-l ®7T2,S) =

Comparing (2.1) and (2.9), it follows that

6(0’71-1 X 7/\1:2,”(/)),\/
6(3, T X T, w)TP\P(ﬂ-l & o, s).

(2.10) 5 (M1 ® T2, 8) =

This can be extended to parabolic groups of arbitrary rank in the usual
way. Let M be a standard Levi subgroup of GL, of type (ny,...,n,)
and let Py, P, € P(M). Using the product formula for 7p, p, (7, s) [AT7,
p-29] and the corresponding product formula (2.3) for rp, p (7,s), we
extend (2.10) to all tempered representations m of M (F). Finally, if 7
is any irreducible unitary representation of M (F’), it can be written as
a Langlands quotient m = J} (7, 1), where R is a parabolic subgroup
of M, 7 is a tempered representation of Mg (F') and p is a point in the
chamber of a},/a}, attached to R. Then

TPy Py (T,8) = Tpy(R)| P (R) (T, S + 1)
and a similar formula holds for 7p, p, (7,s) [A7, (2.3)]. Let 01,09 € S,
be attached to Pi, P, such that Xp, is given by (2.2). Then we get

Lemma 2.1. For all irreducible unitary representation m = ®[_,m; of
M(F) we have

€(0,7m; X 75, - .
TPy P (T, 8) = H ( i ¥) Ty p (7m,8), seC.

¢ — . ‘XN-
(i,§)€1(01,02) e(si — 85, ™ X 75, )

Since we will be concerned with logarithmic derivatives of normalizing
factors, we need estimates for f(m; x ms). Let f(m;) be the conductor of
i, © = 1,2. Then by Theorem 1 of [BH] and Corollary (6.5) of [BHK]
we have

(2.11) 0 < f(m X m) < nyf(my) + nof(me) — inf{f(m), f(ma)}
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for all admissible smooth representations m; of GL,,(F), i = 1, 2. Fur-
thermore, by Corollary (6.5) of [BHK], we have f(m; x m) = 0 if and
only if there exists a quasicharacter x of F* such that both m; ® yodet
and m ® x~! o det are unramified principal series representations.

By (2.11) it suffices to estimate the conductors f(m;), i = 1,2.
Given an open compact subgroup K C GL,,(F'), let
(GLn (F); K) = {r € (GL(F)) | ¥ # {0}}.

Lemma 2.2. For every open compact subgroup K of GLy,(F) there
exists C > 0 such that f(m) < C for all m € TI(GL,,(F); K).

Proof. In the first step we reduce the proof to the case of square-
integrable representations. Let m € II(GL,,(F)). Then there exist
a parabolic subgroup P of GL,, of type (m1, ..., m,), tempered repre-
sentations 7; of GLy,;(F') and real numbers #; with ¢; > --- > ¢, such
that 7 is isomorphic to the Langlands quotient Ja-™ (1i[t1], ..., To[t]).
By Theorem 3.4 of [J] it follows that

f(m) = f (Ip(nlt], ..., w[t]) = Zf(n’)-

Furthermore a tempered representation 7 of GL4(F) is full induced:
T = ISLd (01, ...,01), where @ is a parabolic subgroup of GL4 of type
(d,...,d;) and o; is a square-integrable representation of GLg4, (F), i =
1,...,I. Then by (3.2.3) of [J] we get

£ =3 (o))

Next we relate the K-invariant subspaces. We may assume that K C
GL,,(Or) is a congruence subgroup. Suppose that 7 is a subquotient
of an induced representation /5™ (), where P is a parabolic subgroup
of GL,, of type (my,...,mp), 0 = ®;p; and p; is an admissible represen-
tation of GLyy, (F). If 7% # {0}, then I5"" (o)X # {0}. Furthermore

we have
K
- GL (O
ISL (U)K = (IGLm(((’)lf))ﬂP(o-)>

— @ III((OP(U)K

GLy(0Op)/K

= @ o

GLm(0F)/K
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Now observe that

h
KnP=]]K,
=1

where K; C GL,,,(Op) are congruence subgroups. Then

i

KNP ~ oh Ki
o = Q=1 -

Thus if 7% # {0}, then p/¢ # {0} for all 4, 1 < i < h. Combined
with the above relations of the conductors, we reduce to the case of
square-integrable representations.

Let 1 denote the trivial representation of K. By [HC2, Theorem 10] the
set IIo(GL,,(F), K) of square-integrable representations 7 of GL,,(F)
with [r|g : 1] > 1 is a compact subset of the space IIo(GL,(F)) of
square-integrable representations of GL,,(F'). By the definition of the
topology in Ily(GL,,(F)) [HC2, §2], the set IIo(GL,(F), K) decom-
poses into a finite number of orbits under the canonical action of iR
on IIy(GL,,(F)) given by 7 +— =[it]. Since the conductor remains un-
changed under twists by unramified characters, the lemma follows. [J

3. ESTIMATION OF THE LANGLANDS PARAMETERS

For the unramified places, the Langlands parameters of local compo-
nents of cuspidal automorphic representations of GL,,(A) have been es-
timated by Luo, Rudnick and Sarnak [LRS]. The main purpose of this
section is to extend the estimations of [LRS]| first to ramified places
and then to local components of automorphic representations in the
discrete spectrum of GL,(A) in general. To deal with cuspidal au-
tomorphic representations we follow the method of [LRS] which uses
properties of the Rankin-Selberg L-functions. First note that any local
component of a cuspidal automorphic representation of GL,, is generic
[Sk]. Let F be a local field. By [JS3], any irreducible generic represen-
tation 7 of GL,(F') is equivalent to a fully induced representation

7 =15(0,s),

where P is a standard parabolic subgroup of type (ni,...,n.), s =
(81, ..., 8;) € R satisfies s; > s9 > --- > s, and 0 is a square integrable
representation of Mp(F). We shall refer to s as the (continuous) Lang-
lands parameters of 7. We also note that an irreducible induced repre-
sentation I§(o,s), o square-integrable and s € R", is unitary, only if it
is equivalent to its hermitian dual representation (o, —s). By [KZ,
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Theorem 7] this implies that there exists a w € W (ay) of order 2 so
that
(01[51] Q- 'Ur[Sr])w = 01[—81] X Q& ar[—s,«].

Hence we have

(31) {O'j[Sj]} = {O’k[—Sk]}.

Moreover by the classification of the unitary dual of GL, (F) it follows
that

|Re(s;)| <1/2, i=1,..,r

The key result that we need about the local Rankin-Selberg L-functions
is the following lemma.

Lemma 3.1. Let m be an irreducible unitary generic representation of
GL,(F), and let (s1,...,8,) € R be the Langlands parameters of .
Then L(s,m X ) has a pole at the point

S0 = QmJax\sj\.

Proof. For the proof we need to describe the L-factors in more detail.
Let m = IS(0,s) be a fully induced representation with o = ®;0; for
discrete series representations o; of GL,,(F") and Langlands parameters
s = (s, ..., ;) satisfying the above conditions. Then by the multiplica-
tivity of the local L-factors [Sh6]| we get

(3.2) L(s,m x &) = [[ L(s + si — 55,01 x ;).

3,j=1
If F' is non-Archimedean, then this is Proposition 9.4 of [JPS]|. If F/
is Archimedean, (3.2) follows from the Langlands classification (see §2
of [Sh6]). This reduces the description of the L-factors to the case of

square-integrable representations. We distinguish three cases according
to the type of the field F.

1. F=R

The Rankin-Selberg local L-factors are defined in terms of L-factors at-
tached to semisimple representations of the Weil group Wx by means
of the Langlands correspondence [L3]. If 7 is a semisimple representa-
tion of Wg of degree n and 7 (7) is the associated irreducible admissible
representation of GL,(R), then

L(s,n(1)) = L(s, 7).
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Furthermore, if
- @
1<j<m

is the decomposition into irreducible representations of Wg, then

L(s,7) = H L(s, ;).

If 7' is another semisimple representation of W of degree n' and 7 (7”)
is the associated irreducible admissible representation of GL,,(R), then
the Rankin-Selberg local L-factor is given by

L(s,n(t) x w(7")) = L(s, 7 ® 7).

This reduces the computation of the L-factors to the case of irreducible
representations of the Weil group.

The irreducible representations of the Weil group Wx of R are either 1
or 2 dimensional. The associated representations of GL,,(R), m = 1,2,
are square-integrable and all square-integrable representations are ob-
tained in this way. Note that GL,,(R) does not have square-integrable
representations if m > 3. To describe the L-factors, we define Gamma
factors by

Tr(s) = 7 *2I'(s/2), Tc(s)=2(2r)°T'(s).

Suppose that 7 is a two-dimensional irreducible representation of Wg.
Then

T = innge,
where 6 is a (not necessarily unitary) character of W = C*. Thus
there exist t € C and k € Z such that

0(z) = |2|(z/2)*?, zeC.
Then the L-factor is defined as
L(s,7) =Tc(s+t+ |k|/2).
The one-dimensional irreducible representations of Wx are of the form
ey t (2,0) € Wi — sign®(o)|z|'

where ¢ = 0,1 and ”sign” is the sign character of the Galois group.
The L-factor of 9, is given by

L(s,¢et) =Tr(s +t+e).

Next we have to consider the tensor products of irreducible represen-
tations.
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Ifr= indgﬂ‘ﬁ and 7' = inngG’ are two-dimensional representations of
Wr, then we have

@7 = indi* (A @ indi e |¢)
= indF(@®0)@indi* (007,

where o is the nontrivial element of the Galois group. Suppose that
0'(z) = |z|" (2/Z)*¥ /2. Then we get

L(s,7® 1)
= Ic(s+t+t'+|k+k/2)Tc(s+t+t + |k —K'|/2).
Similarly, if 1 = 9. is a one-dimensional representation, then we have
T ® 1) = indF (0 ®
and therefore, we get
L(s,7®@vY)=Tc(s+t+1t +|k|/2).

Finally, if 1y = 1.+ and %oy are two one-dimensional representations
of Wg, then

(C*),

L(s,p @ ') =Tr(s+t+1t +F¢),
where 0 < €< 1 and € = €+ € mod 2.

For k € Z let Dy, be the k-th discrete series representation of GLy(R)
with the same infinitesimal character as the k-dimensional represen-
tation. Then D, is associated with the two-dimensional representa-
tion 7, = indgk(ﬂk) of Wr where the character 8, of C* is defined by
0x(2) = (2/Z)*/2. For € € {0, 1} let 9, the character of R*, defined by
Ye(r) = (r/|r])c. It corresponds to the character 1 of Wg. Using the
above description of the L-factors, we get

L(S,Dkl X Dk2) = F((j(S + |k1 — ]€2|/2) . Fc(S + ‘kl + kg‘/Q)
L(SaDk X we) = L(S:we X Dk) = F(C(S + |k|/2)
L(s, ¢61 X djez) = FR(S + 61,2)5

where 0 < €, < 1 with €; 2 = €;4+€2 mod 2. Up to twists by unramified
characters this exhausts all possibilities for the L-factors in the square-
integrable case.

2. F=C

As in the real case, the local L-factors are defined in terms of the L-
factors attached to representations of the Weil group W¢ by means of
the Langlands correspondence. The Weil group W¢ is equal to C*.
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Furthermore we note that GL,,(C) has square-integrable representa-
tions only if m = 1. For r € Z let x, be the character of C* defined by
Xr(2) = (2/2)", z € C*. Then it follows that

L(8; Xry X Xry) = Tc(s + |71 +72[/2).

Again up to twists by unramified characters, these are all possibilities
for the L-factors in the square-integrable case.

3. I non-Archimedean.

Let 7 be a square-integrable representation of GL,,(F"). By [BZ] there
is a divisor d|m, a standard parabolic subgroup P of GL,,(F") of type
(d,...,d), and an irreducible supercuspidal representation p of GL4(F)
so that 7 is the unique quasi-square-integrable component of the in-
duced representation I§(p1,...,p,), where r = m/d and p; = p®
|det [7=0HD/2) 5 = 1,...,r. We will write 7 = A(r, p). The represen-
tation 7 is unitary (or equivalently square-integrable) if only if p is
unitary. Moreover the contragredient of A(r, p) is given by A(r, p) =
A(r,p). Let o1 = A(r1, p1) and o9 = A(rg, pa) be square integrable rep-
resentation of GL,,, (F') and GL,,,(F), respectively. Then by Theorem
8.2 of [JPS| we have
min(mq,ms2)
L(S,O’l ><52) = H L(s+(m1+m2)/2—],p1 Xﬁg).
j=1
Thus the description of the Rankin-Selberg L-functions is reduced to
the case of two supercuspidal representations. Let p;, i+ = 1,2, be su-
percuspidal representations of GLy, (F'). By Proposition (8.1) of [JPS]
we have L(s, p; X pa) = 1if ky > ky. Since L(s, p1 X p2) = L(s, p2 X p1),
the same holds for k; < ky. Let k; = ko. Then by Proposition (8.1) of
[JPS], L(s,p1 X p2) = 1, unless p; and p, are in the same twist class,
i.e., there exists t € C such that p, = p;[t]. In this case we have
Lis,pr x pilt]) = L(s +t,p0 x 1) = (1 —q0*) "

where alk; is the order of the cyclic group of unramified characters
X = | det [* such that p; @ x = p;. Let 0 = A(r, p). Then we get

L(s,o0 x &) =[] L(s+7—4,p % p)

j=1

- ﬁ (1- q—a(s+r—j))‘1 ,
7j=1
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where a is the order of the cyclic group of unramified characters x so
that p ® x is isomorphic to p.

From the above description of the local L-factors we conclude that
they have the following two properties. Let 7 be a square-integrable
representation of GL,,(F'). Then L(s,7 x 7) has a pole at s = 0. Fur-
thermore, if 7 and 7y are square-integrable representations of GL,, (F)
and GL,,, (F), respectively, then L(s, 7 X m3) has no zeros.

Now we are ready to prove the lemma. Let s = (si,...,s,) be the
Langlands parameters of 7. Let 1 < ¢ < r. Then it follows from (3.1)
and (3.2) that L(s, 7 x 7) contains the factor L(s — 2s;,0; X 7;). Using
the above properties of the L-factors in the square-integrable case, it
follows that L(s,m x 7) has a pole at 2s;. By (3.1), —s; occurs also in
s. Hence L(s,m x ) has a pole at 2|s;|. In particular, L(s,m x 7) has
a pole at 2 max; |s;|. O

Next we recall some facts about ray class characters. Let E be a
number field. Let q be a nonzero integral ideal of E and denote by
C(q) the wide ray class group of £ modulo q. We note that the term
”wide” means that no positivity condition has been imposed at the
real places of E. Then a character of C'(q) is unramified at all infinite
places. Now recall that any character x of C'(q) can be identified with
a character of the idele class group Cg = Ig/E* which is trivial on the
congruence subgroup C}, = ILE*/E* [Neu]. Then x = ®,x, where
X» is a character of E)¢ which is unramified at all places v|oco and all
finite places p { q. Furthermore for a finite place p { q, the character x,
is given by

(3.3) Xo(@) = x(p)*, a€E),
where v, 1 E* — Z is the p-adic valuation.

Let S be any finite set of finite places of E. For an integral ideal q of
E let X, denote the set of all wide ray class characters of conductor q
such that x(p) = 1 for all p € S. Therefore we have (p,q) = 1 for all
p € S. By (3.3) it follows that

(3.4) Xo =1 forallveSUS.

Let X7 be the subset of X, consisting of all primitive characters. Set
X = UgXq and X* = Uy X7. For x € X7 and a cuspidal automor-
phic representation 7 of GL, (A), the partial Rankin-Selberg L-function
Ls(s, (m ® x) x 7) is defined to be

Ls(s,(r®@x) x 7) = [ [ L(s, (m ® X0) X 7).
vgS
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We shall use the following result of Luo, Rudnick and Sarnak which is
the main result of [LRS].

Theorem 3.2. Given n,n,S as the above and any B >1—2/(n*+1),
there are infinitely many x € X* such that

Ls(B, (r ® x) x 7) # 0.

Now we can establish our extension of Theorem 2 of [LRS].

Proposition 3.3. Suppose that m = Q,m, is a cuspidal automorphic
representation of GLn(A) . Let s, = (S14,---,5k0) € R* be the Lang-
lands parameters of the representation m,. Then we have

1 1
max|sjol <5~ m T
Proof. We follow the proof of Theorem 2 in [LRS]. Let v be a place
of E and set S = {v}. Let x € X*, where X* is the set of ray class
characters with respect to S which we defined above. The Rankin-
Selberg L-function

L(s,(m®x) x7) = L(s, (my @ Xo) X Ty)Ls(s, (1 & x) X 7).

is holomorphic in the whole complex plane except for simple poles
at s = land s = 0if r® x 2 w. This follows from the work of
Jacquet, Piateski-Shapiro, Shalika, Shahidi, Mceglin and Waldspurger
[JPS], [JS1], [JS2], [MW], [Sh2]. Choosing the conductor of x suffi-
ciently large, we have m ® x 2 m. Thus by Theorem 3.2 we may choose
X € X* such that L(s, (m ® x) X 7) is an entire function and by (3.4)
we have x, = 1. Suppose that s; > 0 is a pole of

L(s,my X Ty) = L(s, (my @ Xo) X Ty)-

Then sy must be a zero of Lg(s,(m ® x) x m). Assume that sy >
1 — 2(1 + n?)~t. Then by Theorem 3.2 there exists y € X* with
Ls(s0, (m® x) x ) # 0, xp, =1, and L(s, (7 ® x) x 7) entire. Hence
it follows that sy < 1 — 2(1 + n?)~'. Together with Lemma 3.1 the
proposition follows. O

We shall now establish a similar result for the local components of resid-
ual automorphic representations of GL,(A). First we recall some facts
about representations of GL,, over a local field F'. Any irreducible uni-
tary representation m of GL, (F') is equivalent to a Langlands quotient
J§ (7, ). This is the unique irreducible quotient of an induced repre-
sentation 1§ (7, 1) where 7 is a tempered representation of Mz(F) and
(4 is a point in the positive chamber attached to R. A slight variant of
this description is as follows. Recall that a tempered representation 7 of



ARTHUR TRACE FORMULA 21

GL,,(F) can be described as follows. There exist a standard parabolic
subgroup @ of type (my,...,m,) and square-integrable representations
d; of GLyy, (F') so that 7 is isomorphic to the full induced representation
ISL"‘ (01, ...,0,). Hence by induction in stages, there exist a standard
parabolic subgroup P of G of type (n4, ..., n,), discrete series represen-
tations ¢; of GL,,,(F) and real numbers s; > s9 > --- > s, such that
7 is equivalent to the unique irreducible quotient

JS(61[51] ® - -- @ 8,[s,]),

of the induced representation I$(01[s1] ® -« ® d,[s,]) [MW, L1.2]. We
call s1, ..., s, the (continuous) Langlands parameters of 7.

The residual spectrum for GL,(A) has been determined by Maoeglin
and Waldspurger [MW]. Let 7 = ®,m, be an irreducible automorphic
representation in the residual spectrum of GL,(A). By [MW], there is
a divisor k|n, a standard parabolic subgroup P of type (d, ...,d), and
a cuspidal automorphic representation & of GLy4(A), d = n/k, so that
the representation 7 is a quotient of the induced representation

189 €k - 1)/2 @ -~ ® [~ (k — 1)/2]).

Lemma 3.4. Let m and & be as above. Let v be a place of E and let
§1 > +++ > 8., be the Langlands parameters of &,. Then the Langlands
parameters of m, are given by

k-1 k-1 k—1 k-1
T+81""’T+$Ta"'a_T+Sla"',_T+Sr .

Proof. Since &, is a local component of a cuspidal automorphic rep-
resentation £ of GL4(A), it is generic. Using induction in stages, it
follows that there exist a standard parabolic subgroup R of GL4 of
type (n4,...,n,), discrete series representations d;, of GL,,(E,) and
real numbers (s, ..., ;) satisfying

(3.5) §1 >8> >80 s <1/2, j=1,...,1
such that &, is isomorphic to the full induced representation

5’0 = I}(z;Ld (51,1}[81] Q- ® 61",11[37"])-

Let ) = MgNg be the standard parabolic subgroup of GL,, whose Levi
component Mg is a product of k copies of Mg and let

511:(51,v®"'®5r,v)®"'®(51,U®"'®5r,v):
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where (d1, ® - -+ ® d,,) occurs k times. Define

k—1 k—1 k—3 k—1

M(k,S): (T—*_Sla'-'a?+87‘3T+815"'a_T+57‘>'

By induction in stages we have

Ilcj(gv[(k - 1)/2] ---® 51)[_(k - 1)/2]) = Ig((sv: :u(ka S))

Furthermore, by (3.5) the coordinates of u(k,s) are decreasing. Thus
the induced representation I§ (6, u(k,s)) has a unique irreducible quo-
tient which must be isomorphic to 7. U

Next we recall a different method to parametrize irreducible unitary
representations of GL, (F'). Let d|n and k = n/d. Let P be the stan-
dard parabolic subgroup of type (d,...,d). Let ¢ be a discrete series
representation of GL4(F') and let a,b € R be such that b —a € N,
Then the induced representation

IS0 @b —1]® - ® é[a])
has a unique irreducible quotient which we denote by J(4, a,b). Espe-
cially, if a = —(k — 1)/2 and b = (k — 1)/2, then we put
(3.6) J(0,k) :== J(0,a,b).
By Theorem D of [Ta] and [Vo], for every irreducible unitary repre-
sentation of GL,(F') there exist a standard parabolic subgroup P of
type (n1,...,n,), ki|n;, discrete series representations d; of GLg4, (F),

d; = n;/k;, and real numbers s1, ..., s, with |s;| < 1/2,1=1,...,r, such
that 7 is isomorphic to the fully induced representation:

(3.7) 72 IS(T(0, k) [s1] @ - - @ T (6, kr)[s4)-

Using this parametrization, we get the following analogue to Propo-
sition 3.3 for local components of automorphic representations in the
residual spectrum of GL,,(A).

Proposition 3.5. Let w, be a local component of an automorphic rep-
resentation in the residual spectrum of GL,(A). There exist kin, a
parabolic subgroup P of type (kni, ..., kn,), discrete series representa-
tions 0;, of GLy,(Ey) and real numbers si, ..., s, satisfying

512822"'251"7 |8i|<1/2_(1+n2)_17 izl,...,T,
such that
Ty Z IS (J (01,0, k)[51] @ -+ @ J(Or0, k) [50])-
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Proof. By the proof of Lemma 3.4, 7, is equivalent to a Langlands
quotient of the form

oy 2 JG (8, p(k, 5)),
where the parameters s satisfy (3.5). Set

k—1 k—1 .
bi:T+Sia a’i:_T—'_sia ’L:].,...,T.

Suppose there exist 1 < i < j < r such that the triples (;,, a;, b;) and
(0, aj, b;) are linked in the sense of 1.6.3 or 1.7 in [MW]. Suppose that
s; > s;. Then it follows from (2) and (3)(i) on p.622 or from (1) and
(2) on p.624 of [MW] that a; > a; + 1 and b; > b; + 1. This implies
1 < |s; — s;| which contradicts (3.5). Hence the triples (;,, a;, b;) are
pairwise not linked. Now observe that
J(di,va a;, bz) = J(di,vi k)[sl]
Let P be the standard parabolic subgroup with Levi component

GLgp, X -+ + X GLgy, -
Let ;5:, = ®j_10i, and set
T (b, k) := @1 T (85, k)
Then it follows from Proposition 1.9 of [MW] that the induced repre-
sentation
IE(J (3, k),8) := IE(J (B1.0, k)[51] @ - - - ® J (87, K)[51])

is irreducible. By Lemma 1.8, (ii), of [MW], IS (J(4,, k), ) is a quotient
of the induced representation I§(d,, p(k,s)). Since If(J(dy,k),s) is
irreducible, this quotient must be the Langlands quotient. Thus

Ty = Jg((Sw u(k,s)) = Ig(‘](él,v: E)si]®---® J((Sr,v: k)[sr])-

By construction, the s;’s are the Langlands parameters of a local com-
ponent of a cuspidal automorphic representation. Therefore it follows
from Proposition 3.3 that they satisfy
1 1
il < —————, 1=1,..,7m.
il 2 n2+1
O

This result has an important consequence for the location of the poles
of normalized intertwining operators (see Proposition 4.2).
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4. PROOF OF THE MAIN RESULTS

In this section we prove Proposition 0.2 and Theorem 0.1. To this end
we need some preparation.

Let M be a standard Levi subgroup of type (n1,...,n,) and let P, P' €
P(M). Given a place v of E, let Iy (M(F,)) denote the set of all
7y € II(M(FE,)) which are local components of some automorphic rep-
resentation 7 in the discrete spectrum of M(A). Without loss of gen-
erality, we may assume that P is a standard parabolic subgroup. Let
Ty € Hyise(M(Ey)). Then m, = ®;m, with m, € Ily(GLy,(Ey)),
1 = 1,...,7. By Proposition 3.5 there exist a standard parabolic sub-
group R; of GL,, with

Mp, = GLy, X -+ x GL

Mim,
kij|n, discrete series representations &;; of GLg,; (Ey), dij = nij/kij,
and s;; € R satisfying
(4.1) Si1 > > Simg,  |Sij] < L #,

' 2 n?+41
such that

T (J (S, kir)[501] @ -+ - © T (Simgs Ky ) [Sims]) -

1%

T

Set R = [[, Ri. Then R is a standard parabolic subgroup of M. Put
m=my+---+m,. Weidentify {(s,7) |i=1,....,7, j =1,...,m;} with
{1,...,m} by

k<i
For 1 <1 <mlet (i,7) be the pair that corresponds to /. Put

0y = 0ij, ki =kij, s1= 54
Set
(42) J‘/rv = ®;11J(61, kz), Sx, = (81, ceey Sm).

Combing the above equivalences, we get

Ty = I?{I(JM,SM).

Let P(R) and P'(R) be the parabolic subgroups of GL,, with P(R) C
P, P'(R) C P', P(R)NM = R and P'(R)NM = R. Then by induction
in stages, the induced representation IS(r,,s) is unitarily equivalent
to the induced representation Ig( R)(JM, S + Sz, ). The unitary map p
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which provides this equivalence, is given by the evaluation map as in
[KS, p.31]. Here we identify s € C" with an element in C™ by

(815 ey S1) F> (815 00y 81, 825 2oy 82, oey Spy eey Si)
where s; is repeated m; times. [KS, p.31].

Lemma 4.1. Let u be the unitary equivalence of the induced represen-
tations as above. Then we have

(4.3) o Rpip(my,8) = Rp(r)p(r)(Jrys S + Sr,) © 1.

Proof. First consider the unnormalized intertwining operators. Re-
call that the unnormalized intertwining operators are defined by in-
tegrals which are absolutely convergent in a certain shifted chamber
[KS, Theorem 6.6], [Sh2]. If we compare these integrals in their range
of convergence as in [KS, p.31], it follows immediately that (4.3) holds
for the unnormalized intertwining operators. So it remains to con-
sider the normalizing factors. If we apply Lemma 3.4 to each com-
ponent ;, of m,, it follows that 7, is equivalent to a Langlands quo-
tient of the form J5'(d,, p(k,sr,)), where 6, = ®7,6; and p(k,s,,) =
(u(k1,8n1,), - t(kr, s, ). Hence by (2.3) in [AT] we get

7p1p(Ty,8) = T Q) P@) (0v, 8 + 1(kK, Sx,)).
Let S; be the standard parabolic subgroup of Mg, with Levi component
(GLg;y X - -+ X GLgy) X =+ % (GLg,, X+ x GLg,, ),

where each factor GLg,; occurs k; times. Let S =[], S;. Then Mg and
Mg are conjugate. Let w € Sy, be the element which conjugates Mg
into Mg. Referring again to (2.3) in [A7], we get

7P/(R)P(R) (Jrys S + Sr,) = TPi(R(s)) P(R(S)) (W)y, 8 + wp(k, Sg,))-
By (1.6) of [A8, p.172] it follows that

rpR)|P(R) (Jr,» S + 8x,) = TP(R(SY)P(R(S)w) (00, 8 + K, S, ),

where R(S)” = w ' R(S)w. Finally note that P(Q), P'(Q), P(R(S)v)
and P'(R(S)") have the same Levi component and the reduced roots
satisfy

Y mEey V ZPRS)) = YEgy [ P@)-

Using the product formula (r.1) in [A8, p.171], it follows that
rpi(a(sye) P(r(S)?) (O, 8 + (K, 8x,)) = T1(@) (@) (00: 8 + 1K, Sr, ))-
Combining the above equations, we get
7p|p (v, 8) = Tp1(r) P(R) (Jry> S + Sr,),

and this finishes the proof of the lemma. O
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We say that Rgp(my,s) has a pole at s, € C, if Rgp(m,,s) has a
matrix coefficient with a pole at so. Otherwise, Rgp(7y,s) is called
holomorphic in sg.

Proposition 4.2. Let M = GL,,, X ---x GL,,, be a standard Levi sub-
group of GL,, and let P, P' € P(M). For every place v of E and for all
Ty € agie(M(Ey)), the normalized intertwining operator Rp: p(my,s)
18 holomorphic in the domain

{s € C | Re(si —s5) > —2/(1+n%), 1 <1<j<r}

Proof. Using Lemma 4.1 we immediately reduce to the consideration
of the corresponding problem for Rp/(g) p(r)(Jr,,s + Sr), regarded as
function of s € C". By Proposition 1.10 of [MW], the intertwining
operator Rp:(gyp(r)(Jr,,s) is holomorphic in the domain of all s € C™
satisfying Re(s; — s;) > —1, 1 <4 < j < m. Furthermore by (4.1) the
absolute value of all components of s, is bounded by 1/2 — (1 +n?)~%.
Combining these observations the claimed result follows.

0

Proof of Proposition 0.2:

Let M be a standard Levi subgroup of type (ny,...,n,) and let P,Q €
P(M). We distinguish between the Archimedean and non-Archimedean
case.

Case 1: v|o0.

Let K, be the standard maximal compact subgroup of GL,(E,). Given
m, € I(M(E,)) and o, € II(K,), denote by Rgp(my,s)s the re-
striction of Rgp(m,,s) to the o,-isotypical subspace Hp(7,),, of the
Hilbert space Hp(m,) of the induced representation. If m, belongs to
Haise(M(Ey)), then by Proposition 4.2, Rgp(7y,S)s, has no poles in
the domain of all s € C" satisfying |Re(s;)| < (1 +n?) " i=1,..,7.
Using the factorization of normalized intertwining operators and Corol-
lary A.3 it follows that there exist constants C' > 0 and k& € N such
that
I DuRgip(mysiw)y [|< C (14 || o [)*
for all m, € II(M(E,)), 0, € II(K,) and u € R". This proves (0.3).

Case 2: v < o0.

Using the properties of the normalized intertwining operators [A7, The-
orem2.1], one can factorize Rpr p(,,s) in a product of normalized in-
tertwining operators associated to maximal parabolic subgroups. Thus
we immediately reduce to the case where P is maximal and P' = P.
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Consider a matrix coefficient (Rp p(my, $)v1, v2), where || vy [|=[| vs [|=
1. By Theorem 2.1 of [A7], there is a rational function f(z) of one
complex variable z such that

(44) f(q_s) = (RF\P(WW S)Uh UQ)a seC

We shall now investigate the properties of the rational function f. By
Proposition 1.10 of [MW] we know that (Rp|p(my, s)v1,v2) is holomor-
phic in the half-plane Re(s) > 0. Hence f(z) is holomorphic in the
punctured disc 0 < |z[ < 1. Moreover by unitarity of Rp p(m,,1t),
t € R, we have |(Rpp(my, it)v1,v2)| < 1,1 € R, and hence |f(z)] < 1
for |z| = 1. To determine the behaviour of f at z = 0 we observe that
the unnormalized intertwining operator J5 (7, s) is defined by an in-
tegral which is absolutely and uniformly convergent in some half-plane
Re(s) > c. Especially, Jpp(my, s) is uniformly bounded for Re(s) > 0.
The normalizing factor 75 p(my, s) is given by (2.1). It follows from
the expressions (2.5) and (2.6) for the L-factors and the epsilon factor,
that there exist polynomials P(z) and Q(z) with P(0) = Q(0) =1, a
constant @ € C and m € Z such that

P(g)
Q(g™?)’

The integer m is given by (2.7) and it follows from (2.11) that there
exists ¢ > 0, which depends on the choice of a nontrivial continuous
character of E;f, such that —¢ < m for all w, € TI(M(E,)). Thus by

v
the maximum principle it follows that for 0 < |z| < 1 we have

seC

T?|P(7Tv, s) =aq™

1 :m>0
[z|™ : m <0.

(4.5) [f(2)] < {
Now assume that 7, € Iy (M (E,)). Then by Proposition 4.2, f(z) is
actually holomorphic for |z| < ¢2/(+7). Set

d = min{2, q2/(1+"2)}.

Note that 6 > 1. Let pi,..., p, be the poles of f, where each pole is
counted with its multiplicity. Let —[ be the order of f at infinity. Set

Since |p;| > 6, j = 1,...,r, the rational function g(z) is holomorphic
for |z| > 1, bounded for |z| > 1 and satisfies |g(z)| = |f(2)| < 1 for



28 ARTHUR TRACE FORMULA

|z| = 1. Thus |g(z)| < 1 for |z| > 1 and hence,

T 1—7p,2 |z 1/p;
I < || =" |5—7] =1
]1:[1 — pj }:[1 1—2z/p;
. . . l T
For 1 < |z| < (1+6)/2 the right hand side is bounded by (2" (55)".

Together with (4.5) it follows that there exists C' > 0, which is inde-
pendent of 7, such that in the annulus 2/(1+6) < |z| < (1 +4)/2 we

have |f(z)|§0<1;6>l<6z1>r_

Using Cauchy’s formula we obtain a similar bound for any derivative of
f. By (4.4) this leads to a bound for any derivative of (Rp p(my, $)v1, v2)
in a strip | Re(s)| < ¢ for some € > 0. To complete the proof we need
to verify that for a given open compact subgroup K, of GL,(E,), the

numbers r and [ are bounded independently of =, if r oM (Ey) # 0.

First consider . By Theorem 2.2.2 of [Sh2, p.323] there exists a poly-
nomial p(z) with p(0) = 1 such that p(q~*)Jp p(my, s) is holomorphic
on C. Moreover the degree of p is bounded independently of 7,. Using
the definition of the normalizing factors (2.1), it follows immediately
that there exists a polynomial p(z) whose degree is bounded indepen-
dently of m, such that p(¢—*)Rp p(my, s) is holomorphic on C. This
proves that r is bounded independently of .

To estimate [, we fix an open compact subgroup K, of GL,(E,). Our
goal is now to estimate the order at oo of any matrix coefficient of
Rp p(my, 8) K, regarded as a function of z = ¢~°. Write 7, as Langlands
quotient m, = J& (8,, 1) where R is a parabolic subgroup of M, 6, a
square-integrable representation of Mg(FE,) and p € (aj/a%,)c with
Re(p) in the chamber attached to R.Then

Rﬁ|p(7Tv, s) = RF(R)\P(R)((SM s+ 1)

with respect to the identifications described in [A7, p.30]. Here s is
identified with a point in (a%/af;)c with repsect to the canonical embed-
ding a3, C aj. Using again the factorization of normalized intertwining
operators we reduce to the case of a square-integrable representation.
Let 1 denote the trivial representation of K,. By the same reasoning
as in the proof of Lemma 2.2 we get

75 (0, 8) |k, * 1] < #(GLa(O0)/Ky)[dul ke, (e, = 1.

By [HC2, Theorem 10] the set II,(M(E,), K,) of square-integrable rep-
resentations of M(E,) with [0|x,nm(E,) : 1] > 1 is a compact subset
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of the space (M (E,)) of square-integrable representations of M (E,).
Under the canonical action of ia},, the set IIy(M(FE,), K,) decomposes
into a finite number of orbits. In this way our problem is finally reduced
to the consideration of the matrix coefficients of Rpp(y, 8)r, for a fi-
nite number of representations m,. This implies the claimed bound for
L. O

Proof of Theorem 0.1:

Recall from §2 that at finite places the normalization of the local in-
tertwining operators differs from the normalization used in [Mu4]. Let
M =GL,, x---x GL,,, Q,P € P(M) and v a finite place of E. Let
7 p(my,8), s € C7, be the normalizing factor used in [Mu4] and let

R p(my,8) = Toup(my, 8) L Jgip(my, S)

be the corresponding local normalized intertwining operator. Then it
follows from Lemma 2.1 together with (2.11) and Lemma 2.2 that for
every multi-index o € Njj there exists C' > 0 such that

| D2Rgip(mo, Wk, < C > || DERgp(my,u), ||
181<|al
for all u € R" and al]~7r1, € g (M (E,)). Hence Proposition 0.2 holds

also with respect to Rg p(my,s). Together with Theorem 0.1 of [Mu4]
we obtain Theorem 0.1 of the present paper. O

Remark. As the proof of Proposition 0.2 shows, the estimations
(0.2) and (0.3) hold for all generic representations m, of M(E,) whose
Langlands parameters si, ..., s, satisfy a non-trivial bound of the form
|si| < 1/2 — &, where € > 0 is independent of 7,. We note that this
assumption is really necessary and can not be removed in general. Es-
pecially, as the following example shows, the estimations can not be
expected to be uniform in all m, € II(M(E,)).

Example.

Let G = GL4(R) and P the standard parabolic subgroup with Mp =
GLy x GL,. Consider the representation I§(o x 0,s) where o is the
spherical principal series representation induced from the character y =
(, —p), p real and 0 < p < 1/2 of the Borel subgroup of GLy(R). We
may assume that s = (s, —s) with s real. Then

I§(0 X 0,8) = I5(1+ 5, —p + 5,11 — 5, 11— 5).
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For fixed 0 < p < 1/2 this representation is irreducible for 0 < |s| <
1/2 — p and reducible for |s| = 1/2 — p [Sp]. The intertwining operator
Rp p(0 x0,s) is therefore well defined on the interval 0 < [s| < 1/2—p
and has a pole for —s =1/2 — p. O

The example shows that the poles of the normalized intertwining op-
erator can be arbitrary close to the imaginary axis. Thus, we can not
expect to have uniform bounds of the derivatives of the normalized
intertwining operators along the imaginary axis for all unitary .

APPENDIX A
by Erez M. Lapid

Let GG be the real points of a connected reductive group defined over R.
Let K be a maximal compact subgroup of G and let P = MpNp
be a parabolic subgroup of G with its Levi decomposition. Write
M = Mp = °M A, in the usual way. Let o be an irreducible uni-
tary representation of M acting on a Hilbert space H, and let H2®
be its smooth part. We denote by I3 the space of smooth functions
f: K — H such that f(mk) = o(m)f(k) forany m € Kyy = M NK
and k£ € K with the inner product

<f1,f2> :/K(fl(k)afz(k))fla dk

We denote the Lie algebra of Ay, by ap;. Let P’ be another parabolic
subgroup of G containing M as its Levi part. For any v € aj, ¢, let
Jprp(v) be the usual intertwining operator on 13° ([Wal2, Chapter 10])
and let Rp/ p(0,v) = rpp(0,v)~ " Jpp(v) be the normalized intertwin-
ing operator (cf. [A7]). Finally, for any irreducible representation 7
of K we denote by I¢(y) = I,(v) the y-isotypic part of I®. We also
denote by ||v|| the norm of the highest weight of ~.

The purpose of this appendix is to give a bound for the matrix coeffi-
cients of the operator Rp/p(0, ) on any K-type near the unitary axis.
By factoring Rp/p(o,v) it is enough to consider the “basic” case where
P, P’ are adjacent — say along the root «. In this case the operator
Jprp(0,v) depends only on (v,«) and will be written as Jpp(s) for
(v, ) = 4s(pp, ). Similarly for Rpip(0, s).

It follows from [Wal2, Lemma 10.1.11, Theorem 10.1.6, 10.1.13] that
the poles of Jp/p(s) (counted with multiplicities) are contained in
ngl(pi — N) for some complex numbers py,...,p,. By the nature of
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the normalization factors we may enlarge the set {p;} to assume that
the same holds for Rp/|p(o,s) as well. Let

M} = max{0,Rep: pis a pole of Rp|p(0,s)}
and for any v € K set
M, = max{0, — Re(p) : p is a pole of Rp/p(0,s |1 (7)}

Finally, let
1
d= min{i, |Re(p)| : p is a pole of Rpi p(o,s)}.

Lemma A.1. For any vy € K and any unit vectors p1, s € I,(7y) and
any € > 0 we have

|(Rpr1p(0,8) 1, 02)| < (M) + M, +1)/e]
in the strip |Re(s)| < 0 — €.

Proof. Let f(s) = (Rpp(0,5)p1,92). It is a rational function of s
([AT7]). We also have |f(s)| <1 for s € iR since Rp: p(0, s) is unitary
there. Define
P Reptha)
She VOV et
i=1 j=[Repi+J] ’

Then ¢g(s) is holomorphic (and rational) for Re(s) < 0 and |[g(s)| =
|f(s)] <1 oniR. Thus |g(s)] <1 for Re(s) < 0. It follows that in this
region

R i—I—MaT,
r [Rep ~) 8+pz—]

_pz+]

‘ r |Repi+Mg |

J<IT T1I <II 1I

=1 ]:[Repﬁ—(ﬂ =1 Jj= |—Re,01+(5-|
Then for 0 > Res > —d + € each factor is bounded by

Re(s + i — j)
Re(s—pi+7)|

LRe’)iJr]V[c;”J—Res—Repi—i-j Res—Rep;+7j+1
H Res—Rep;+j <H Res—Rep; +j
j=[Re pi+] ’ ’
- M[,‘ﬁ+1.
€
Similarly, one shows that for 0 < Res < § — ¢
Mf+1]"
o< [He
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The following Proposition will be proved below.

Proposition A.2. There exists a constant ¢ depending only on G such
that

(1.1) M <ec r<c M, <c(l+])
for all unitary o.

By Cauchy’s formula, Lemma A.1 and Proposition A.2 will imply the
following.

Corollary A.3. For any differential operator D(s) with constants co-
efficients there exist constants ¢, k' (depending only on G) such that

1 K
(1.2) ||D(s)RP,|P(o, 3)10(7)” <c (#)

for all v € K and s € iR.

Remark A.4. The example in §4 emphasizes that the dependence on
0 s essential if o is not tempered. This is already important in order
to lift the K-finiteness assumption in the absolute convergence of the
contribution of an individual cuspidal datum. This point was overlooked
in [Ad] (cf., p. 1329]). More precisely, the property [A5, (7.6)] holds
only for tempered representations. We mention that it follows from
[KS, Theorem 16.2] that for all o tempered we have § > 0y where 6y > 0
depends only on G.

We will now prove Proposition A.2. We first deal with the first part of
(1.1). More precisely, we have

Lemma A.5. There exists sg € R, depending only on G, such that
Jpp(0,8) converges and rpp(0,s) is holomorphic and non-zero for
all Re(s) > so. In particular, M} < sq.

Proof. Let (Q,7,\) be Langlands data for o, i.e., ) is a parabolic
subgroup of M with Levi subgroup L, 7 is a tempered representation
of L and A is a real parameter in the positive Weyl chamber of af, and o
is the irreducible quotient of the standard module defined by ) and .
By [Wall, 5.5.2, 5.5.3], or [BW, Ch. XI, Theorem 3.3] ||A|| is bounded in
terms of G only. Moreover identifying I>° with a quotient of I2°, we may
identify Jp/p(0, s) with Jon,,jonp (7,5 4+ A) on the quotient space (cf.
[A7, p. 30] or §4). Moreover, we have 7pp(0, s) = ron,, jone (T, S+ ).
By factoring Jon,,jonp (7,8 + A) and 7oy, jgnp (7,5 + A) the Lemma
easily reduces to the tempered case. Similarly, we reduce to the square-
integrable case. For o square-integrable we can take so = 0 ([A7]). O
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The same argument reduces the second statement of (1.1) to the square-
integrable case. This case follows from [KS, Theorem 16.2] and the
compatibility of the normalization factors with Artin’s factors ([A7]).

To continue the proof of Proposition A.2 we suppress for the moment
the assumption that P, P’ are adjacent and set X(P'|P) = S(P)NL(P')
where P’ is the parabolic opposite to P’ and X(P) = X(P, Aj) be the
set of reduced roots of A,; in P.

The main assertion is the following.
Lemma A.6. There ezists a constant d (depending only on G) such

that for any v € K Jprp(v) is holomorphic and injective on I,(7) in
the domain

{v € ayc : Re(v,a) > d(1 +||v]]) for all o € B(P'|P)}.

The last inequality of (1.1) then follows from Lemma A.5, Lemma A.6
and the relation
Rp‘p/(O', —S)Rp/‘p(a, 8) =id.

It remains to prove Lemma A.6. Clearly we may assume, by passing
to the derived group, that G is semisimple. We first need some more
notation. Let Py = °MyAyN, be a minimal parabolic subgroup of G,
contained in P, so that °M; is compact. Let t be a maximal abelian
subalgebra of “m and let h = t @ ay (a direct sum with respect to the
Killing form). Then ¢ is a Cartan subalgebra of gc and the real vector
space hr spanned by the co-roots is it + ay ([Wall, 2.2.5]). The Weyl
group W = W(gc, hc) acts on hr as well as on h&. We identify the
characters of the center of the universal enveloping algebra of gc as W-
orbits of h¢ via the Harish-Chandra isomorphism. A similar discussion
applies to M. We denote by Y, the infinitesimal character of o.

For any (finite dimensional) irreducible representation o’ of °M; and
p € a5 we denote by myr ), = Wg, ., the corresponding principal series
representation on G. Its infinitesimal character is (the W-orbit) of
Xor + p where x,. € it* (the infinitesimal character of ¢') is the translate
of the highest weight of ¢’ by the half-sum of positive roots in my.
Lemma A.7. There exists a constant ¢ depending only on G such that
any unitary representation o of M can be embedded (infinitesimally) as
a subrepresentation of a (non-unitary) wl/ , and ||[Re p|| < c(1 + [1v]])
whenever Homg ,, (7, 0) # 0.

Proof. Suppose first that o is square-integrable. Using the Casselman
subrepresentation Theorem (e.g. [Wall, Ch. 4] or [Kn, Theorem 8.37))
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M

51 4~ By comparing infini-

we may embed o in some principal series 7
tesimal characters we infer that p € aj and

1o 1 = llll* + lxer II* > Nl

On the other hand by [Wa2, p.398], (cf. [Wal2, p. 258|) the square of
the norm of any K-type of ¢ is bounded below, up to a fixed additive
constant, by ||x,||?>. The lemma follows in this case.

To treat the general case we use the Langlands classification Theorem
to imbed o in S(7,A) where @ is a parabolic subgroup with Levi sub-
group L, 7 is a square- integrable representation of L, X is in the closed
negative Weyl chamber of aj, and S(, A) is the corresponding induced
representation. As in the proof of Lemma A.5 we have ||A|| < C in-
dependently of 0. All K-types of S(7,A) (and hence, of o) contain a
K -type of 7 in their restriction to K. Hence, by induction in stages,
the Lemma reduces to the square integrable case. O

We will now reduce Lemma A.6 to the case where P is a minimal
parabolic of G.

Imbed o in Wﬁf’u as in the Lemma and suppose that Re(u + v, 3) >

0 for all 8 € X,](PONPI\PONP). Then Jpip(7s ,, v) can be identified
with Jpyn,, pynp (07, 1+ v) and it is given by an absolutely convergent
integral. Its restriction to 13° is Jp/p(o,v). Thus, in that region the
injectivity of Jp/ p(o, v) on I,(7y) follows from that of Jp n,, pyn, (07, p-
v). We note that the restriction to A, defines a bijection a +» o
between X(PyNp/|PyNp) and X(P'|P), and we have (v,a) = (v,d).
The reduction follows.

By factoring Jpi\p as a product of “basic” intertwining operators we
may also assume that P’ is adjacent to P. Let Q = LV be the parabolic
subgroup generated by P and P’. Then L has rank one and it follows
from the argument of [Wal2, 10.4.5] that Jps p (0, 7) is injective on I, (7)
if and only if J5,; pry (0, ¥7) is injective on I7(7') forall o' € K, which
occur in the restriction of y. We observe that ||| < ||v|| for such +".
Hence, we reduce to the case where G is of rank one, P is minimal and
P' = P. Once again we can assume that G is semisimple as well. From
now on we assume that this is the case.

For Re(s) > 0 the representation 7, s, is of finite length and its Lang-
lands quotient is given by the image of Jp/ p(0, sa). Thus, Jprp(0, s)
is not injective on I,(7y) if and only if v occurs in one of the subquo-
tients of 7, s, other than the Langlands quotient. Assume that this is
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the case and let 7' be any such subquotient. Then by [Wall, Corol-
lary 5.5.3] the Langlands parameter of 7’ is smaller than that of .
Thus, either 7’ is square-integrable or 7' can be imbedded in 7, ¢ with
0 < Re(s’) < Re(s). In the first case, the infinitesimal character of 7’
is in b%, i.e., s € R, and by ([Wa2, p. 398])

C+ " = I l® = lIxoll” + s*llell* > s*leel|”

for a certain constant C. It follows that s is bounded by a constant
multiple of ||y]|. In the second case, we have

(1.3) Xo' + 8'a=w(x, + sa)

for some w € W. Write wa =&a+f withé e Rand feit*. If 5 =0
then & = +1, w stabilizes it* and we obtain s = +s' — a contradiction.
Thus, § # 0. Projecting (1.3) onto it* we obtain

Xo' = (WXo )it + P

On the other hand, since y occurs 7, 4, 0 Occurs in the restriction of
v to °M = Kj; and hence ||o|| < ||v||. Similarly, ||o’|| < ||7||. Once
again, it follows that |s| is bounded by a constant multiple of 1 + ||7/|.
This concludes the proof of Lemma A.6.
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