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Abstract. In this paper we define a regularized version of the analytic torsion for arith-
metic quotients of the symmetric space SL(n,R)/ SO(n). The definition is based on the
study of the renormalized trace of the corresponding heat operators, which is defined as
the geometric side of the Arthur trace formula applied to the heat operator.

Contents

1. Introduction 1

2. Preliminaries 8

3. Arithmetic manifolds 10

4. Truncation and the geometric side of the trace formula 12

5. The non-invariant trace formula 15

6. The unipotent contribution to the trace formula 18

7. The weight function 23

8. Examples for weight functions in low rank 32

9. Bochner Laplace operators 33

10. Heat kernel estimates 36

11. Regularized traces 38

12. The asymptotic expansion of the regularized trace for GL(n) and SL(n) 41

13. The analytic torsion 47

14. The case G = GL(3) 56

15. Example: Classes of finite order for GL(2) and GL(3) 60

References 64

Date: September 15, 2017.
1991 Mathematics Subject Classification. Primary: 58J52, Secondary: 11M36.
Key words and phrases. analytic torsion, locally symmetric spaces.

1



2 JASMIN MATZ AND WERNER MÜLLER

1. Introduction

In various papers [BV], [MaM], [MP4] the Ray-Singer analytic torsion [RS] has been used
to study the growth of torsion in the cohomology of cocompact arithmetic groups. Since
many important arithmetic groups are not cocompact, it is very desirable to extend these
results to the noncompact case. There exist some results for hyperbolic 3-manifolds. In
[PR], Pfaff and Raimbault obtained upper and lower bounds for the growth of torsion in
the cohomology of congruence subgroups of Bianchi groups if the local system varies. In
[Ra1], [Ra2], J. Raimbault has studied the case of sequences (Γi) of congruence subgroups
of Bianchi groups such that vol(Γi\H3) → ∞ as i→ ∞.

The approach in the cocompact case relies on the equality of analytic torsion and Rei-
demeister torsion of the corresponding locally symmetric manifolds. We briefly recall the
definition of the Ray-Singer analytic torsion. Let X be a compact Riemannian manifold of
dimension n and ρ : π1(X) → GL(V ) a finite dimensional representation of its fundamen-
tal group. Let Eρ → X be the flat vector bundle associated with ρ. Choose a Hermitian
fiber metric in Eρ. Let ∆p(ρ) be the Laplace operator on Eρ-valued p-forms with respect
to the metrics on X and in Eρ. It is an elliptic differential operator, which is formally
self-adjoint and non-negative. Let hp(ρ) := dimker∆p(ρ). Using the trace of the heat
operator e−t∆p(ρ), the zeta function ζp(s; ρ) of ∆p(ρ) can be defined by

(1.1) ζp(s; ρ) :=
1

Γ(s)

∫ ∞

0

(
Tr
(
e−t∆p(ρ)

)
− hp(ρ)

)
ts−1 dt.

The integral converges for Re(s) > n/2 and admits a meromorphic extension to the whole
complex plane, which is holomorphic at s = 0. Then the Ray-Singer analytic torsion
TX(ρ) ∈ R+ is defined by

(1.2) log TX(ρ) =
1

2

d∑

p=1

(−1)pp
d

ds
ζp(s; ρ)

∣∣
s=0

.

The analytic torsion has a topological counterpart. This is the Reidemeister torsion τX(ρ),
which is defined in terms of a smooth triangulation of X [RS], [Mu5]. It is known that for
unimodular representations ρ (meaning that | det ρ(γ)| = 1 for all γ ∈ π1(X)) one has the
equality TX(ρ) = τX(ρ) [Ch], [Mu4], [Mu5]. In the general case of a non-unimodular rep-
resentation the equality does not hold, but the defect can be described [BZ]. This equality
has the following interesting consequence. Assume that the space of the representation ρ
contains a lattice which is invariant under π1(X). Let M be the associated local system
of free Z-modules. Let Hp(X,M)tors be the torsion subgroup of Hp(X,M). Then

(1.3) TX(ρ) = R ·
d∏

p=0

|Hp(X,M)tors|(−1)p+1

,

where R is the so called “regulator”, defined in terms of the free part of the cohomology
Hp(X,M) (see [BV], [MP4]). In particular, if ρ is acyclic, i.e., H∗(X,Eρ) = 0, then R = 1.
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The equality (1.3) is the starting point for the application of the analytic torsion to the
study of the torsion in the cohomology of cocompact arithmetic groups.

The definition of the analytic torsion (1.2) obviously depends on the compactness of the
underlying manifold. Without this assumption, the heat operator e−t∆p(ρ) is, in general, not
a trace class operator. If one attempts to generalize the above method to non-cocompact
arithmetic groups, the first problem is to define an appropriate regularized trace of the
heat operators. For hyperbolic manifolds of finite volume one can proceed as in Melrose
[Me] to define the regularized trace by means of the renormalized trace of the heat kernel.
This method has been used in [CV], [PR], [MP1], [MP3], [MP4]. One uses an appropriate
height function to truncate the hyperbolic manifold X at height T > 0. This amounts to
cut off the cusps at sufficiently high level T > T0. Then one integrates the point wise trace
of the heat kernel over the truncated manifold X(T ). This integral has an asymptotic
expansion in log T . The constant term is defined to be the renormalized trace of the heat
operator.

The purpose of the present paper is to start the investigation of the case of finite vol-
ume locally symmetric spaces of any rank by defining a regularized analytic torsion for
arithmetic quotients associated to split forms of type An over Q. In the higher rank case
we proceed in the same way as in the case of hyperbolic manifolds. The first problem is
to define the truncation in the right way. For this we can build on Arthur’s work. The
definition of the truncation operator is an important issue in Arthur’s trace formula [Ar1],
which we will use for our purpose. To this end we need to switch to the adelic framework.

Now we will describe the approach in more detail. For simplicity assume that G is a
connected semisimple algebraic group defined over Q. Assume that G(R) is not compact.

Let K∞ be a maximal compact subgroup of G(R). Put X̃ = G(R)/K∞. Let A be the
ring of adeles of Q and Af the ring of finite adeles. Let Kf ⊂ G(Af) be an open compact
subgroup. We consider the adelic quotient

(1.4) X(Kf) = G(Q)\(X̃ ×G(Af))/Kf .

This is the adelic version of a locally symmetric space. In fact, X(Kf) is the disjoint union

of finitely many locally symmetric spaces Γi\X̃ , i = 1, . . . , l, (see section 3). If G is simply
connected, then by strong approximation we

X(Kf) = Γ\X̃,
where Γ = (G(R)×Kf)∩G(Q). We will assume that Kf is neat, that is, the eigenvalues of
any element in Γ generate a torsion free subgroup in C×, so that X(Kf) is a manifold. Let
ν : K∞ → GL(Vν) be a finite dimensional unitary representation. It induces a homogeneous

Hermitian vector bundle Ẽν over X̃, which is equipped with the canonical connection ∇ν .

Being homogeneous, Ẽν can be pushed down to a locally homogeneous Hermitian vector

bundle over each component Γi\X̃ of X(Kf). Their disjoint union is a Hermitian vector

bundle Eν over X(Kf). Let ∆̃ν (resp. ∆ν) be the associated Bochner-Laplace operator

acting in the space of smooth section of Ẽν (resp. Eν). Let e−t∆̃ν (resp. e−t∆ν ), t > 0,
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be the heat semigroup generated by ∆̃ν (resp. ∆ν). Since ∆̃ν commutes with the action

of G(R), it follows that e−t∆̃ν is a convolution operator with kernel given by a smooth
map Hν

t : G(R) → End(Vν). Let hνt (g) = trHν
t (g), g ∈ G(R). In fact, hνt belongs to

Harish-Chandra’s Schwartz space C(G(R)). Let χKf
be the characteristic function of Kf

in G(Af). We define the function φν
t ∈ C∞(G(A)) by

φν
t (g∞gf) = hνt (g∞)χKf

(gf), g∞ ∈ G(R), gf ∈ G(Af ).

In fact, φν
t belongs to C(G(A);Kf), the adelic version of the Schwartz space (see section 4

for its definition). If X(Kf) is compact, then one has

(1.5) Tr
(
e−t∆ν

)
=

∫

G(Q)\G(A)

∑

γ∈G(Q)

φν
t (x

−1γx) dx.

This is our starting point for defining the renormalized trace in the noncompact case. We
fix a minimal Levi subgroup M0 of G. If M ⊆ G is a Levi subgroup containing M0, let AM

be the split component of the center of M . Let a0 := aM0 be the Lie algebra of AM0(R).
Let Jgeo be the geometric side of the Arthur trace formula introduced in [Ar1]; see also
[Ar10] for an introduction to the trace formula. For f ∈ C∞

c (G(A)), Arthur defines Jgeo(f)
as the value at a point T0 ∈ a0, specified in [Ar3, Lemma 1.1], of a polynomial JT (f) on a0.
In fact, by [FL1, Theorem 7.1], JT (f) is defined for all f ∈ C(G(A);Kf). Furthermore, we
use an appropriate height function to truncate G(A). For T ∈ a0 let G(A)≤T be obtained
by truncating G(A) at level T (see (4.34)). This is a compact subset of G(A). By [FL1,
Theorem 7.1] it follows that for sufficiently regular T ∈ a0 we have

(1.6)

∫

G(Q)\G(A)≤T

∑

γ∈G(Q)

φν
t (x

−1γx) dx = JT (φν
t ) +O

(
e−c‖T‖

)
.

Since JT (φν
t ) is a polynomial in T , we get an asymptotic expansion in T of the truncated

integral. Under additional assumption on G, which are satisfied for GL(n) and SL(n), the
point T0 ∈ a0, determined by [Ar1, Lemma 1.1], is equal to 0. Thus in this case Jgeo(φ

ν
t ) is

the constant term of the polynomial JT (φν
t ). This leads to our definition of the regularized

trace

(1.7) Trreg
(
e−t∆ν

)
:= Jgeo(φ

ν
t ).

In general, Jgeo(φ
ν
t ) is not the constant term of the polynomial JT (φν

t ). Nevertheless, we
prefer this definition, because of its independence on the choice of the minimal parabolic
subgroup P0.

The next goal is to determine the asymptotic behavior of Trreg
(
e−t∆ν

)
as t → 0 and

t → ∞, respectively. To this end we use the Arthur trace formula. Currently we are only
able to deal with these problems for the groups G = GL(n) or G = SL(n). For N ∈ N
let K(N) ⊂ G(Af) be the principal congruence subgroup of level N . Recall that K(N) is
neat for N ≥ 3. Our first main result is the following proposition.

Theorem 1.1. Let G = GL(n) or SL(n). Let Kf ⊂ G(Af) be an open compact subgroup.
Assume that Kf is contained in K(N) for some N ≥ 3. Let ν be finite dimensional
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unitary representation of K∞ and let ∆ν be the associated Bochner-Laplace operator. Let
d = dimX(Kf). As t→ +0, there is an asymptotic expansion

(1.8) Trreg
(
e−t∆ν

)
∼ t−d/2

∞∑

j=0

aj(ν)t
j + t−(d−1)/2

∞∑

j=0

rj∑

i=0

bij(ν)t
j/2(log t)i.

Moreover rj ≤ n− 1 for all j ∈ N0.

For hyperbolic manifolds a similar result was proved in [Mu6].

To study the large time behavior we restrict attention to twisted Laplace operators,
which are relevant for studying the analytic torsion with coefficients in local systems. Let

τ : G(R) → GL(Vτ ) be a finite dimensional complex representation. Let Γi\X̃ , i = 1, . . . , l,
be the components ofX(Kf). The restriction of τ to Γi induces a flat vector bundle Eτ,i over

Γi\X̃ . The disjoint union is a flat vector bundle Eτ over X(Kf). By [MM] it is isomorphic
to the locally homogeneous vector bundle associated to τ |K∞ . It can be equipped with a
fiber metric induced from the homogeneous bundle. Let ∆p(τ) be the corresponding twisted
Laplace operator on p-forms with values in Eτ . Let Adp : K∞ → GL(p) be the adjoint
representation of K∞ on p, where p = k⊥, and νp(τ) = ΛpAd∗

p ⊗τ . Up to a vector bundle

endomorphism, ∆p(τ) equals the Bochner-Laplace operator ∆νp(τ). So Trreg
(
e−t∆p(τ)

)
is

well defined. Let θ be the Cartan involution of G(R) with respect to K∞. Put τθ := τ ◦ θ.
The large time behavior of the regularized trace is described by the following proposition.

Theorem 1.2. Let G = GL(n) or SL(n). Let Kf ⊂ G(Af) be an open compact subgroup
which is contained in K(N) for some N ≥ 3. Let τ be finite dimensional representation of
G(R). Assume that τ 6∼= τθ. Then we have

(1.9) Trreg
(
e−t∆p(τ)

)
= O(e−ct)

as t→ ∞ for all p = 0, . . . , d.

The proof is an immediate consequence of Proposition 13.3 together with the trace for-
mula. Without the assumption τ 6∼= τθ the behavior of Trreg

(
e−t∆p(τ)

)
as t → ∞ is more

complicated and it is definitely not exponentially decreasing. This condition is also relevant
in [BV]. It implies that the representation τ is strongly acyclic [BV, Lemma 4.1], which is
a necessary condition to establish the main results of [BV]. It is a very challenging problem
to eliminate this condition. We also note that the condition τ 6∼= τθ implies the vanishing
theorem of Borel-Wallach for the cohomology of a cocompact lattice in a semisimple Lie
group [BW, Theorem 6.7, Ch. VII].

By Theorems 1.1 and 1.2 we can define the zeta function of ∆p(τ) as in (13.35), using the
regularized trace of e−t∆p(τ) in place of the usual trace. The corresponding Mellin transform
converges absolutely and uniformly on compact subsets of the half-plane Re(s) > d/2 and
admits a meromorphic extension to the whole complex plane. Because of the presence of
the log-terms in the expansion (1.8), the zeta function may have a pole at s = 0. Let
f(s) be a meromorphic function on C. For s0 ∈ C let f(s) =

∑
k≥k0

ak(s − s0)
k be the
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Laurent expansion of f at s0. Put FPs=s0 f(s) := a0. Now we define the analytic torsion
TX(Kf )(τ) ∈ C \ {0} by

(1.10) log TX(Kf )(τ) =
1

2

d∑

p=0

(−1)pp

(
FPs=0

ζp(s; τ)

s

)
.

In the case of G = GL(3) we are able to determine the coefficients of the log-terms. This
shows that the zeta functions definitely have a pole at s = 0. However, the combination∑5

p=1(−1)ppζp(s; τ) turns out to be holomorphic at s = 0 and we can define the logarithm
of the analytic torsion by

log TX(Kf )(τ) =
d

ds

(
1

2

5∑

p=1

(−1)ppζp(s; τ)

)∣∣∣∣
s=0

.

Let {Kf (N)}N∈N be the family of principal congruence subgroups of GL(n,Af), and
X(N) := X(Kf(N)), N ∈ N. The next problem is to study the limiting behavior of
log TX(N)(τ)/ vol(X(N)) as N → ∞ which we do in subsequent work. In consideration
of the results for the cocompact case in [BV], one can expect a different behavior of
log TX(N)(τ)/ vol(X(N)) in the limit N → ∞ for different n. More precisely, the fun-
damental rank rankG(R)− rankK∞ determined in [BV] whether the limit vanishes, which
it does unless if the rank equals 1. In our case of SLn(R), the fundamental rank is 1
precisely when n = 3 or n = 4.

An even more difficult problem is the question if there is a combinatorial counterpart of
TX(Kf )(τ) as there is in the compact case.

Now we briefly explain our method to prove Theorems 1.1 and 1.2. To determine the
asymptotic behavior of the regularized trace as t→ +0, we use the geometric side of trace
formula. The first step is to show that φν

t can be replaced by a compactly supported

function φ̃ν
t ∈ C∞

c (G(A)) without changing the asymptotic behavior. Next we use the
coarse geometric expansion of the geometric side, which expresses Jgeo(f), f ∈ C∞

c (G(A)),
as a sum of distributions Jo(f) associated to semisimple conjugacy classes of G(Q). Let

Junip(f) be the distribution associated to the class of 1. If the support of φ̃ν
t is a sufficiently

small neighborhood of 1, it follows that

(1.11) Trreg
(
e−t∆ν

)
:= Junip(φ̃

ν
t ) +O

(
e−c/t

)

as t→ +0. To analyze Junip(φ̃
ν
t ), we use the fine geometric expansion [Ar4] which expresses

Junip(φ̃
ν
t ) in terms of weighted orbital integrals. If the real rank of G(R) is one, the weighted

orbital integrals are rather simple and the weight factors are explicitly known (see [Wa]).
In order to deal with the weighted orbital integrals in the higher rank case, we need to
restrict to the groups GL(n) or SL(n). In this case all unipotent orbits are Richardson,
which simplifies the analysis considerably. We are only interested in the situation over
the field R. Let M be a Levi subgroup of G. Let UM be the unipotent variety in M and
V ∈ (UM ) a conjugacy class. Let U be an M(R) conjugacy class in V(R). There exists
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a standard parabolic subgroup Q = LN ∈ F and a constant c > 0 such that for every
O(n)-conjugation invariant function f ∈ C∞

c (G(R)) the weighted orbital integral JM(U, f)
is given by

(1.12) JM(U, f) = c

∫

N(R)

f(n)wM,V(n) dn,

where wM,V(n) is a certain weight function. The main problem is now to determine the
structure of the weight function. For G(R) = SO0(n, 1) the weighted orbital integral is
of the same form with weight function w(n) = log ‖ logn‖, where the inner log is the
isomorphism log : N → n. This fact has been exploited in [Mu6] in order to establish the
asymptotic expansion of the regularized trace in the case of hyperbolic manifolds of finite
volume. It turns out that wM,V has a similar behavior with respect to scaling. Note that
the map x 7→ X = x− id defines a bijection between the variety of unipotent elements in
G(R) and the nilpotent cone in the Lie algebra g(R). For s ∈ R let xs := id+s(x− id). Let
x ∈ VG(R) such that wM,V(x) is defined. Then by Proposition 7.1, wM,V(xs) is well-defined
for every s > 0 and s 7→ wM,V(xs) is a polynomial in log s of degree at most dim aGM .
Inserting a standard parametrix for the heat kernel into (1.12) and using the structure of
wM,V , we obtain Theorem 1.1. To eliminate the assumption that Kf is contained in some
K(N) with N ≥ 3, we would have to consider orbital integrals associated to classes of
finite order. For GL(2) and GL(3) we discuss this issue in section 15.

To prove Theorem 1.2, we use the spectral side of the trace formula. Let φτ,p
t be the

function in C(G(A);Kf), which is defined in the same way as φν
t in terms of the kernel of

the heat operator on the universal covering. Then by the trace formula

Trreg
(
e−t∆p(τ)

)
= Jspec(φ

τ,p
t ).

The key input to deal with the spectral side is the refinement of the spectral expansion of
the Arthur trace formula established in [FLM1] (see Theorem 5.1). For f ∈ C(G(A)) we
have

Jspec(f) =
∑

[M ]

Jspec,M(f),

where [M ] runs over the conjugacy classes of Levi subgroups of G and Jspec,M(f) is a
distribution associated to M . The distribution associated to G is TrRdis(f), where Rdis

denotes the restriction of the regular representation of G(A) in L2(G(Q)\G(A)) to the
discrete subspace. For a proper Levi subgroupM of G, Jspec,M(f) is an integral whose main
ingredient are logarithmic derivatives of intertwining operators. Using our assumption that
τ 6= τθ, we obtain dim ker∆p(τ) = 0. Then it follows as in the compact case that there
exists c > 0 such that

TrRdis(φ
τ,p
t ) = O(e−ct), as t→ ∞.

For a proper Levi subgroupM , the determination of the asymptotic behavior of Jspec,M(φτ,p
t )

as t → ∞ relies on two conjectural properties, one global and one local, of the intertwin-
ing operators. The global property is a uniform estimate on the winding number of the
normalizing factors of the intertwining operators in the co-rank one case. For GL(n) and
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SL(n), this property follows from known, but delicate, properties of the Rankin-Selberg
L-functions [FLM2]. The local property is concerned with the estimation of logarithmic
derivatives of normalized local intertwining operators, which are uniform in π. For GL(n)
the pertinent estimates have been established in [MS, Proposition 0.2]. They are a conse-
quence of a weak version of the Ramanujan conjecture. The case of SL(n) can be reduced
to GL(n) in the same way as in the proof of [FLM2, Lemma 5.14]. Let θ : G → G be the
Cartan involution and let τθ := τ ◦θ. Using these estimations, it follows that for G = GL(n)
or G = SL(n), a proper Levi subgroup M of G and a finite dimensional representation τ
of G(R) such that τ 6∼= τθ, one has Jspec,M(φτ,p

t ) = O(e−ct) as t → ∞. Putting everything
together, we obtain Theorem 1.2.

We end this introduction with some remarks on the possible extension of the our results
to other groups G. First of all, Theorem 1.2 depends on the estimations of logarithmic
derivatives of global normalizing factors and normalized local intertwining operators. Using
functoriality, T. Finis and E. Lapid [FL2] have recently established similar estimates of the
logarithmic derivatives of global normalizing factors associated to intertwining operators
for the following reductive groups over number fields: inner forms of GL(n), quasi-split
classical groups and their similitude groups, and the exceptional groups G2. One can
expect that the estimates of the logarithmic derivatives of the normalized local intertwining
operators can be established by the same methods. This would lead to an extension of
Theorem 1.2 to these groups. It remains to deal with the unipotent orbital integrals for
the groups above.

The paper is organized as follows. In section 2 we fix notations and recall some basic
facts. In section 3 we introduce the locally symmetric manifolds as adelic quotients. In
section 4 we compare two different methods of truncation. One of them is based on the
truncation of kernels of integral operators which leads to the geometric side of the trace
formula. The other one consists in the truncation of the underlying manifold, which is the
basis for the renormalization of the trace of the heat operator. In section 5 we recall the
spectral side of the Arthur trace formula. In section 6 we are assuming that G = GL(n)
or G = SL(n). We discuss the unipotent contribution to the trace formula and derive a
simplified formula for the weighted orbital integral. Section 7 is devoted to the study of
the weight functions for the groups GL(n) and SL(n). The main result is Proposition 7.1,
which is the key result that enables us to determine the asymptotic behavior as t→ +0 of
the corresponding orbital integrals. Examples of low rank are discussed in section 8. These
are cases where the weight function is given explicitly. In section 9 we collect some basic
facts concerning Bochner-Laplace operators. The regularized trace of the corresponding
heat operators is introduced in section 11. The definition is based on section 4, which
deals with truncation. In section 10 we establish some estimates of the heat kernel for
Bochner-Laplace operators on the symmetric space X̃ . Combined with the analysis of the
weight functions in section (7), the estimations are used in section (12) to prove Theorem
1.1. In section (13) we first use the spectral side of the Arthur trace formula to establish
Theorem 1.2, which concerns the large time asymptotic behavior of the regularized trace
of the heat operators. This finally enables us to define the regularized analytic torsion.
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In section 14 we assume that G = GL(3). Using the explicit form of the weight functions
described in section 8, we determine the coefficients of the possible poles at s = 0 of the
zeta functions. It turns out that the combination of the zeta functions, which is used to
define the analytic torsion, is holomorphic at s = 0. In the final section 15 we consider
for G = GL(2) or G = GL(3) an arbitrary subgroup Kf of G(Ẑ) and study the additional
weighted orbital integrals that arise in this case.

Acknowledgment. The authors would like to thank the referees for the careful reading
of the manuscript and for their very helpful suggestions and comments.

2. Preliminaries

Let G be a reductive algebraic group defined over Q. We fix a minimal parabolic subgroup
P0 of G defined over Q and a Levi decomposition P0 =M0 ·N0, both defined over Q. Let
F be the set of parabolic subgroups of G which contain M0 and are defined over Q. Let L
be the set of subgroups of G which contain M0 and are Levi components of groups in F .
For any P ∈ F we write

P =MPNP ,

where NP is the unipotent radical of P and MP belongs to L.
Let M ∈ L. Denote by AM the Q-split component of the center of M . Put AP = AMP

.
Let L ∈ L and assume that L containsM . Then L is a reductive group defined over Q and
M is a Levi subgroup of L. We shall denote the set of Levi subgroups of L which contain
M by LL(M). We also write FL(M) for the set of parabolic subgroups of L, defined over
Q, which contain M , and PL(M) for the set of groups in FL(M) for which M is a Levi
component. Each of these three sets is finite. If L = G, we shall usually denote these sets
by L(M), F(M) and P(M).

Let X(M)Q be the group of characters of M which are defined over Q. Put

(2.13) aM := Hom(X(M)Q,R).

This is a real vector space whose dimension equals that of AM . Its dual space is

a∗M = X(M)Q ⊗ R.

We shall write,

(2.14) aP = aMP
, A0 = AM0 and a0 = aM0.

For M ∈ L let AM(R)0 be the connected component of the identity of the group AM(R).
Let W0 = NG(Q)(A0)/M0 be the Weyl group of (G,A0), where NG(Q)(H) is the normalizer
of H in G(Q). For any s ∈ W0 we choose a representative ws ∈ G(Q). Note that W0 acts
on L by sM = wsMw−1

s . For M ∈ L let W (M) = NG(Q)(M)/M , which can be identified
with a subgroup of W0.

For any L ∈ L(M) we identify a∗L with a subspace of a∗M . We denote by aLM the annihilator
of a∗L in aM . We set

L1(M) = {L ∈ L(M) : dim aLM = 1}
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and

(2.15) F1(M) =
⋃

L∈L1(M)

P(L).

We shall denote the simple roots of (P,AP ) by ∆P . They are elements of X(AP )Q and
are canonically embedded in a∗P . Let ΣP ⊂ a∗P be the set of reduced roots of AP on the
Lie algebra of G. The set ∆0 = ∆P0 is a base for a root system. In particular, for every
α ∈ ∆P we have a co-root α∨ ∈ aP0.

Let P1 and P2 be parabolic subgroups with P1 ⊂ P2. Then a∗P2
is embedded into a∗P1

,
while aP2 is a natural quotient vector space of aP1. The group MP2 ∩ P1 is a parabolic
subgroup of MP2 . Let ∆

P2
P1

denote the set of simple roots of (MP2 ∩ P1, AP1). It is a subset

of ∆P1 . For a parabolic subgroup P with P0 ⊂ P we write ∆P
0 := ∆P

P0
.

Let A (resp. Af) be the ring of adeles (resp. finite adeles) of Q. We fix a maximal
compact subgroup K =

∏
vKv = K∞ ·Kf of G(A) = G(R) · G(Af). We assume that the

maximal compact subgroup K ⊂ G(A) is admissible with respect to M0 [Ar5, §1]. Let
HM :M(A) → aM be the homomorphism given by

(2.16) e〈χ,HM(m)〉 = |χ(m)|A =
∏

v

|χ(mv)|v

for any χ ∈ X(M) and denote by M(A)1 ⊂ M(A) the kernel of HM . Then M(A) is the
direct product of M(A)1 and AM(R)0, the component of 1 in AM(R). By the conditions
on K, we have G(A) = P (A)K. Hence any x ∈ G(A) can be written as

nmak, n ∈ N(A), m ∈M(A)1, a ∈ AM (R)0, k ∈ K.

Define HP : G(A) → aP by

(2.17) HP (x) := HM(a),

where x = nmak as above. Let g and k denote the Lie algebras of G(R) and K∞, respec-
tively. Let θ be the Cartan involution of G(R) with respect to K∞. It induces a Cartan
decomposition g = p ⊕ k. We fix an invariant bi-linear form B on g which is positive
definite on p and negative definite on k. This choice defines a Casimir operator Ω on G(R).
Let Π(G(R)) denote the set of equivalence classes of irreducible unitary representations
of G(R). We denote the Casimir eigenvalue of any π ∈ Π(G(R)) by λπ. Similarly, we
obtain a Casimir operator ΩK∞ on K∞ and write λτ for the Casimir eigenvalue of a rep-
resentation τ ∈ Π(K∞) (cf. [BG, §2.3]). The form B induces a Euclidean scalar product
(X, Y ) = −B(X, θ(Y )) on g and all its subspaces. For τ ∈ Π(K∞) we define ‖τ‖ as in [CD,
§2.2]. Note that the restriction of the scalar product (·, ·) on g to a0 gives a0 the structure
of a Euclidean space. In particular, this fixes Haar measures on the spaces aLM and their
duals (aLM)∗. We follow Arthur in the corresponding normalization of Haar measures on
the groups M(A) ([Ar1, §1]).
Let L2

disc(AM(R)0M(Q)\M(A)) be the discrete part of L2(AM (R)0M(Q)\M(A)), i.e.,
the closure of the sum of all irreducible subrepresentations of the regular representation of
M(A). We denote by Πdisc(M(A)) the countable set of equivalence classes of irreducible
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unitary representations ofM(A) which occur in the decomposition of the discrete subspace
L2
disc(AM(R)0M(Q)\M(A)) into irreducible representations.

3. Arithmetic manifolds

Let G be a reductive algebraic group over Q. Let Kf ⊂ G(Af) be an open compact
subgroup. The double coset space AG(R)

0G(Q)\G(A)/G(R)Kf is known to be finite (see
[Bo1, §5]). Let x1 = 1, x2, . . . , xl be a set of representatives in G(Af) of the double cosets.
Then the groups

Γi :=
(
G(R)× xiKfx

−1
i

)
∩G(Q), 1 ≤ i ≤ l,

are arithmetic subgroups of G(R) and the action of G(R) on the space of double cosets
AG(R)

0G(Q)\G(A)/Kf induces the following decomposition into G(R)-orbits:

(3.18) AG(R)
0G(Q)\G(A)/Kf

∼=
l⊔

i=1

(
Γi\G(R)1

)
,

where G(R)1 = G(R)/AG(R)
0. Thus we get an isomorphism of G(R)-modules

(3.19) L2(AG(R)
0G(Q)\G(A))Kf ∼=

l⊕

i=1

L2(Γi\G(R)1).

We note that, in general, l > 1. However, if G is semisimple, simply connected, and
without any Q-simple factors H for which H(R) is compact, then by strong approximation
we have

G(Q)\G(A)/Kf
∼= Γ\G(R),

where Γ = (G(R) × Kf) ∩ G(Q). In particular this is the case for G = SL(n). Let
K∞ ⊂ G(R) be a maximal compact subgroup. Let

(3.20) X̃ := G(R)1/K∞

be the associated global Riemannian symmetric space. Given an open compact subgroup
Kf ⊂ G(Af), we define the arithmetic manifold X(Kf) by

(3.21) X(Kf) := G(Q)\(X̃ ×G(Af ))/Kf .

By (3.18) we have

(3.22) X(Kf) =

l⊔

i=1

(
Γi\X̃

)
,

where each component Γi\X̃ is a locally symmetric space. We will assume that Kf is neat.
Then X(Kf) is a locally symmetric manifold of finite volume.

Now consider G = GL(n) as algebraic group over Q. Then AG(R)
0 is the group of scalar

matrices with a positive real scalar and K∞ = O(n). Let N =
∏

p p
rp, rp ≥ 0. Put

Kp(N) := {k ∈ G(Zp) : k ≡ 1 mod prpZp}
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and
K(N) :=

∏

p<∞

Kp(N).

Then K(N) is an open compact subgroup of G(Af) and

(3.23) AG(R)
0G(Q)\G(A)/K(N) ∼=

ϕ(N)⊔

i=1

Γ(N)\SL(n,R)

where ϕ(N) = #[(Z/NZ)∗] (see [Ar6]). Hence we have

(3.24) L2(AG(R)
0G(Q)\G(A))K(N) ∼=

ϕ(N)⊕

i=1

L2(Γ(N)\ SL(n,R))

as SL(n,R)-modules. We have

X̃ = SL(n,R)/ SO(n).

Let

(3.25) X(N) := G(Q)\(X̃ ×G(Af ))/K(N).

Let ν : K∞ → GL(Vν) be a finite dimensional unitary representation of K∞. Let Ẽν be

the associated homogeneous Hermitian vector bundle over X̃. Over each component of
X(Kf), Ẽ induces a locally homogeneous Hermitian vector bundle Ei,ν → Γi\X̃ . Let

(3.26) Eν :=
l⊔

i=1

Ei,ν .

Then Eν is a vector bundle over X(Kf), which is locally homogeneous.

4. Truncation and the geometric side of the trace formula

The Arthur trace formula is obtained by truncating the kernels of integral operators
associated to functions in C∞

c (G(A)1). On the other hand, the regularization of the trace
of heat operators is based on the truncation of the underlying locally symmetric space. In
this section we compare the two methods. Let P0 be the fixed minimal parabolic subgroup
of G.

For f ∈ C∞
c (G(A)1) let

Kf(x, y) =
∑

γ∈G(Q)

f(x−1γy).

This is the kernel of an integral operator. In general, Kf (x, x) is not integrable over
G(Q)\G(A)1 and needs to be truncated to get an integrable function. To define the trun-
cated kernel we need to introduce some notations.

Let P = MPNP be a standard parabolic subgroup and let Q be a parabolic subgroup
containing P . Let ∆Q

P be the set of simple roots of (MQ∩P,AP ). Similarly, we have the set
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of coroots ∆∨
0 and, more generally and, the set (∆Q

P )
∨ which forms a basis of aQP := aP ∩a

Q
0 .

We denote the basis of (aQP )
∗ (resp. a

Q
P ) dual to (∆Q

P )
∨ (resp. ∆Q

P ) by ∆̂Q
P (resp. (∆̂Q

P )
∨.

Let τQP and τ̂QP denote the characteristic functions of the set

{X ∈ a0 : 〈α,X〉 > 0 for all α ∈ ∆Q
P }

and

{X ∈ a0 : 〈̟,X〉 > 0 for all ̟ ∈ ∆̂Q
P},

respectively. If Q = G, we will suppress the superscript. Moreover we put τ0 := τG0 and
τ̂0 := τ̂G0 . Now we can define the truncated kernel. Put

KP
f (x, y) :=

∫

NP (Q)\NP (A)

∑

γ∈P (Q)

f(x−1γny) dn.

Let HP : G(A) → aP be the map defined by (2.17). For any T ∈ a+0 define

(4.27) kT (x, f) :=
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP
f (δx, δx)τ̂P (HP (δx)− TP ),

where TP denotes the projection of T on aP . Note that the term in (4.27) which corresponds
to P = G is Kf(x, x). If G(Q)\G(A)1 is compact, there are no proper parabolic subgroups
of G over Q. Thus, in this case we have kT (x, f) = Kf(x, x), and the truncation operation
is trivial. By [Ar4, Theorem 6.1] the integral

(4.28) JT (f) :=

∫

G(Q)\G(A)1
kT (x, f) dx

converges absolutely. This is the first step toward the trace formula. As shown by Hoffmann
[Ho], JT (f) is defined for a larger class of functions f and JT (f) is a polynomial in T ∈ a0
of degree at most d0 = dim aGP0

. There is a distinguished point T0 ∈ a0 specified by [Ar3,
Lemma 1.1], and Arthur defines the distribution J on G(A)1 by

(4.29) J(f) := JT0(f), f ∈ C∞
c (G(A)1).

This is the geometric side of the trace formula. To distinguish it from the spectral side,
we will denote it by Jgeo.

In [Ar1] Arthur has introduced the coarse geometric expansion of JT (f). To define it, one
has to introduce an equivalence relation in G(Q). Define two elements γ and γ′ in G(Q)
to be equivalent, if the semisimple components γs and γ′s of their Jordan decompositions
are G(Q)-conjugate. Let O be the set of equivalence classes. Note that the set O is in
obvious bijection with the semisimple conjugacy classes in G(Q). Furthermore, in case
G = GL(n), the Jordan decomposition is given by the Jordan normal form. For o ∈ O and
f ∈ C∞

c (G(A)1) let

KP
o (x, y) :=

∫

NP (Q)\NP (A)

∑

γ∈P (Q)∩o

f(x−1γny) dn.
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Given T ∈ a0 and x ∈ G(A)1, let

(4.30) kTo (x, f) :=
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP
o (δx, δx)τ̂P (HP (δx)− TP ) .

Let

(4.31) JT
o (f) :=

∫

G(Q)\G(A)1
kTo (x, f) dx.

The integral converges absolutely and one obtains an absolutely convergent expansion

(4.32) JT (f) =
∑

o∈O

JT
o (f), f ∈ C∞

c (G(A)1).

This is the coarse geometric expansion, introduced in [Ar1]. In [FL1], Finis and Lapid have
shown that the coarse geometric expansion (4.32) extends continuously to the space of
Schwartz functions C(G(A)1) which is defined as follows. For any compact open subgroup
Kf of G(Af ) the space G(A)1/Kf is the countable disjoint union of copies of G(R)1 =
G(R) ∩ G(A)1 and therefore, it is a differentiable manifold. Any element X ∈ U(g1∞) of
the universal enveloping algebra of the Lie algebra g1∞ of G(R)1 defines a left invariant
differential operator f 7→ f ∗X on G(A)1/Kf . Let C(G(A)1;Kf) be the space of smooth
right Kf -invariant functions on G(A)

1 which belong, together with all their derivatives, to
L1(G(A)1). The space C(G(A)1;Kf) becomes a Fréchet space under the seminorms

‖f ∗X‖L1(G(A)1), X ∈ U(g1∞).

Denote by C(G(A)1) the union of the spaces C(G(A)1;Kf) as Kf varies over the compact
open subgroups of G(Af) and endow C(G(A)1) with the inductive limit topology. For f ∈
C(G(A)1;Kf) and o ∈ O let JT (f) and JT

o (f) be defined by (4.28) and (4.31), respectively.
By [FL1, Theorem 7.1], the integrals defining JT (f) and JT

o (F ) are absolutely convergent
and we have

(4.33) JT (f) =
∑

o∈O

JT
o (f), f ∈ C(G(A)1;Kf).

We shall now discuss how JT (f) is related the integral of the kernel over the truncated
manifold, where the truncated manifold is defined by a certain height function. For T ∈ a0
let

(4.34) G(A)1≤T = {g ∈ G(A)1 : τ̂0(T −H0(γg)) = 1, for all γ ∈ G(Q)}.
Note that by definition, G(A)1≤T is G(Q)-invariant. Furthermore, for T1 ∈ a0 let

ST1 = {x ∈ G(A) : τ0(H0(x)− T1) = 1}
and more generally

SP
T1

= {x ∈ G(A) : τP0 (H0(x)− T1) = 1}
for any P ⊃ P0. Note that these sets are left P0(A)

1-invariant. By reduction theory, there
exists T1 ∈ a0 such that

P (Q)SP
T1

= G(A)
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for all P ⊃ P0, in particular for P = G. We fix such T1. Let

(4.35) d(T ) = min
α∈∆0

〈α, T 〉.

There exists d0 > 0, which depends only on G, P0 and K, such that for all T ∈ a0 with
d(T ) > d0 one has

G(A)1≤T ∩ST1 = {g ∈ G(A)1 : τ0(H0(g)− T1)τ̂0(T −H0(g)) = 1}.

For f ∈ C(G(A)1) recall that

(4.36) Kf (x, y) =
∑

γ∈G(Q)

f(x−1γy)

The series converges absolutely and uniformly on compact subsets. Then the following
theorem, which is an immediate consequence of [FL1, Theorem 7.1], establishes the relation
between JT (f) and naive truncation.

Theorem 4.1. For every open compact subgroup Kf of G(Af) there exists r ≥ 0 and a
continuous seminorm µ on C(G(A)1;Kf) such that

∣∣∣∣∣

∫

G(Q)\G(A)1
≤T

Kf(x, x) dx− JT (f)

∣∣∣∣∣ ≤ µ(f)(1 + ‖T‖)re−d(T )

for all f ∈ C(G(A)1;Kf) and T ∈ a0 such that d(T ) > d0.

Proof. For o ∈ O let

Ko(x, y) :=
∑

γ∈o

f(x−1γy).

We have

(4.37) Kf(x, y) =
∑

o∈O

Ko(x, y),

where the series converges absolutely. Using (4.33), we get

∣∣∣∣∣

∫

G(Q)\G(A)1
≤T

Kf(x, x) dx− JT (f)

∣∣∣∣∣ ≤
∑

o∈O

∣∣∣∣∣

∫

G(Q)\G(A)1
≤T

Ko(x, x) dx− JT
o (f)

∣∣∣∣∣ .

and the theorem follows from [FL1, Theorem 7.1]. We note that for the case of compactly
supported functions f this is due to Arthur (see [Ar1, §7]). �
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5. The non-invariant trace formula

Arthur’s (non-invariant) trace formula is the equality

(5.1) Jgeo(f) = Jspec(f), f ∈ C∞
c (G(A)1),

of the geometric side Jgeo(f) and the spectral side Jspec(f) of the trace formula. The geome-
tric side has been described in the previous section. In this section we recall the definition
of the spectral side, and in particular the refinement of the spectral expansion obtained
in [FLM1]. Combining [FLM1] and [FL1], it follows that (5.1) extends continuously to
f ∈ C(G(A)1).
The main ingredient of the spectral side are logarithmic derivatives of intertwining oper-

ators. We briefly recall the structure of the intertwining operators.

Let P ∈ P(M). Let UP be the unipotent radical of P . Recall that we denote by ΣP ⊂ a∗P
the set of reduced roots of AM of the Lie algebra uP of UP . Let ∆P be the subset of simple
roots of P , which is a basis for (aGP )

∗. Write a∗P,+ for the closure of the Weyl chamber of
P , i.e.

a∗P,+ = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ΣP} = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ∆P}.
Denote by δP the modulus function of P (A). Let Ā2(P ) be the Hilbert space completion
of

{φ ∈ C∞(M(Q)UP (A)\G(A)) : δ−
1
2

P φ(·x) ∈ L2
disc(AM(R)0M(Q)\M(A)), ∀x ∈ G(A)}

with respect to the inner product

(φ1, φ2) =

∫

AM (R)0M(Q)UP (A)\G(A)

φ1(g)φ2(g) dg.

Let α ∈ ΣM . We say that two parabolic subgroups P,Q ∈ P(M) are adjacent along α, and
write P |αQ, if ΣP ∩ −ΣQ = {α}. Alternatively, P and Q are adjacent if the group 〈P,Q〉
generated by P and Q belongs to F1(M) (see (2.15) for its definition). Any R ∈ F1(M) is
of the form 〈P,Q〉, where P,Q are the elements of P(M) contained in R. We have P |αQ
with α∨ ∈ Σ∨

P ∩ aRM . Interchanging P and Q changes α to −α.
For any P ∈ P(M) let HP : G(A) → aP be the extension of HM to a left UP (A)-and right

K-invariant map. Denote by A2(P ) the dense subspace of Ā2(P ) consisting of its K- and
z-finite vectors, where z is the center of the universal enveloping algebra of g ⊗ C. That

is, A2(P ) is the space of automorphic forms φ on UP (A)M(Q)\G(A) such that δ
− 1

2
P φ(·k) is

a square-integrable automorphic form on AM(R)0M(Q)\M(A) for all k ∈ K. Let ρ(P, λ),
λ ∈ a∗M,C, be the induced representation of G(A) on Ā2(P ) given by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)−HP (x)〉.

It is isomorphic to the induced representation

Ind
G(A)
P (A)

(
L2
disc(AM(R)0M(Q)\M(A)) ⊗ e〈λ,HM (·)〉

)
.
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For alternative descriptions see [Ar8, §1], [MW, I.2.17, I.2.18].

For P,Q ∈ P(M) let

MQ|P (λ) : A2(P ) → A2(Q), λ ∈ a∗M,C,

be the standard intertwining operator [Ar9, §1], which is the meromorphic continuation in
λ of the integral

[MQ|P (λ)φ](x) =

∫

UQ(A)∩UP (A)\UQ(A)

φ(nx)e〈λ,HP (nx)−HQ(x)〉 dn, φ ∈ A2(P ), x ∈ G(A).

Given π ∈ Πdis(M(A)), let A2
π(P ) be the space of all φ ∈ A2(P ) for which the func-

tion M(A) ∋ x 7→ δ
− 1

2
P φ(xg), g ∈ G(A), belongs to the π-isotypic subspace of the

space L2(AM(R)0M(Q)\M(A)). For any P ∈ P(M) we have a canonical isomorphism
of G(Af)× (gC, K∞)-modules

jP : Hom(π, L2(AM(R)0M(Q)\M(A)))⊗ Ind
G(A)
P (A)(π) → A2

π(P ).

If we fix a unitary structure on π and endow Hom(π, L2(AM(R)0M(Q)\M(A))) with the
inner product (A,B) = B∗A (which is a scalar operator on the space of π), the isomorphism
jP becomes an isometry.

Suppose that P |αQ. The operator MQ|P (π, s) :=MQ|P (s̟)|A2
π(P ), where ̟ ∈ a∗M is such

that 〈̟,α∨〉 = 1, admits a normalization by a global factor nα(π, s) which is a meromorphic
function in s. We may write

(5.2) MQ|P (π, s) ◦ jP = nα(π, s) · jQ ◦ (Id⊗RQ|P (π, s))

where RQ|P (π, s) = ⊗vRQ|P (πv, s) is the product of the locally defined normalized in-
tertwining operators and π = ⊗vπv [Ar9, §6], (cf. [Mu2, (2.17)]). In many cases, the
normalizing factors can be expressed in terms automorphic L-functions [Sha1], [Sha2].
For example, let G = GL(n). Then the global normalizing factors nα can be expressed
in terms of Rankin-Selberg L-functions. The known properties of these functions are col-
lected and analyzed in [Mu1, §§4,5]. WriteM ≃∏r

i=1GL(ni), where the root α is trivial on∏
i≥3GL(ni), and let π ≃ ⊗πi with representations πi ∈ Πdisc(GL(ni,A)). Let L(s, π1× π̃2)

be the completed Rankin-Selberg L-function associated to π1 and π2. It satisfies the func-
tional equation

(5.3) L(s, π1 × π̃2) = ǫ(
1

2
, π1 × π̃2)N(π1 × π̃2)

1
2
−sL(1− s, π̃1 × π2)

where |ǫ(1
2
, π1 × π̃2)| = 1 and N(π1 × π̃2) ∈ N is the conductor. Then we have

(5.4) nα(π, s) =
L(s, π1 × π̃2)

ǫ(1
2
, π1 × π̃2)N(π1 × π̃2)

1
2
−sL(s + 1, π1 × π̃2)

.

We now turn to the spectral side. Let L ⊃ M be Levi subgroups in L, P ∈ P(M),
and let m = dim aGL be the co-rank of L in G. Denote by BP,L the set of m-tuples
β = (β∨

1 , . . . , β
∨
m) of elements of Σ∨

P whose projections to aL form a basis for aGL . For any
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β = (β∨
1 , . . . , β

∨
m) ∈ BP,L let vol(β) be the co-volume in aGL of the lattice spanned by β and

let

ΞL(β) = {(Q1, . . . , Qm) ∈ F1(M)m : β∨
i ∈ a

Qi

M , i = 1, . . . , m}
= {〈P1, P

′
1〉, . . . , 〈Pm, P

′
m〉) : Pi|βiP ′

i , i = 1, . . . , m}.

For any smooth function f on a∗M and µ ∈ a∗M denote by Dµf the directional derivative
of f along µ ∈ a∗M . For a pair P1|αP2 of adjacent parabolic subgroups in P(M) write

(5.5) δP1|P2(λ) =MP2|P1(λ)D̟MP1|P2(λ) : A2(P2) → A2(P2),

where ̟ ∈ a∗M is such that 〈̟,α∨〉 = 1. 1 Equivalently, writing MP1|P2
(λ) = Φ(〈λ, α∨〉)

for a meromorphic function Φ of a single complex variable, we have

δP1|P2(λ) = Φ(〈λ, α∨〉)−1Φ′(〈λ, α∨〉).
For any m-tuple X = (Q1, . . . , Qm) ∈ ΞL(β) with Qi = 〈Pi, P

′
i 〉, Pi|βiP ′

i , denote by
∆X (P, λ) the expression
(5.6)

vol(β)

m!
MP ′

1|P
(λ)−1δP1|P ′

1
(λ)MP ′

1|P
′
2
(λ) · · · δPm−1|P ′

m−1
(λ)MP ′

m−1|P
′
m
(λ)δPm|P ′

m
(λ)MP ′

m|P (λ).

In [FLM1, pp. 179-180] the authors defined a (purely combinatorial) map XL : BP,L →
F1(M)m with the property that XL(β) ∈ ΞL(β) for all β ∈ BP,L.

2

For any s ∈ WM let Ls be the smallest Levi subgroup in L(M) containing ws. We recall
that aLs = {H ∈ aM | sH = H}. Set

ιs = |det(s− 1)
a
Ls
M
|−1.

For P ∈ F(M0) and s ∈ W (MP ) let M(P, s) : A2(P ) → A2(P ) be as in [Ar3, p. 1309].
M(P, s) is a unitary operator which commutes with the operators ρ(P, λ, h) for λ ∈ ia∗Ls

.
Finally, we can state the refined spectral expansion.

Theorem 5.1 ([FLM1]). For any h ∈ C∞
c (G(A)1) the spectral side of Arthur’s trace

formula is given by

(5.7) Jspec(h) =
∑

[M ]

Jspec,M(h),

M ranging over the conjugacy classes of Levi subgroups of G (represented by members of
L), where

(5.8) Jspec,M(h) =
1

|W (M)|
∑

s∈W (M)

ιs
∑

β∈BP,Ls

∫

i(aGLs
)∗
tr(∆XLs (β)

(P, λ)M(P, s)ρ(P, λ, h)) dλ

1Note that this definition differs slightly from the definition of δP1|P2
in [FLM1].

2The map XL depends in fact on the additional choice of a vector µ ∈ (a∗
M
)m which does not lie in an

explicit finite set of hyperplanes. For our purposes, the precise definition of XL is immaterial.
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with P ∈ P(M) arbitrary. The operators are of trace class and the integrals are absolutely
convergent with respect to the trace norm and define distributions on C(G(A)1).

Note that the term corresponding to M = G is Jspec,G(h) = trRdisc(h).

6. The unipotent contribution to the trace formula

In this section we assume that G = GL(n) or G = SL(n) as algebraic groups over Q,
and we specialize to one of these groups at some points. The purpose is to analyze the
unipotent contribution to the geometric side of the trace formula. The point of departure
is the coarse geometric expansion of Jgeo as a sum of distributions

(6.1) Jgeo(f) =
∑

o∈O

Jo(f), f ∈ C∞
c (G(A)1),

parametrized by the set O of semisimple conjugacy classes of G(Q). The distribution Jo(f)
is the value at T = 0 of the polynomial JT

o (f) defined in [Ar1]. In particular, following
Arthur, we write Junip(f) for the contribution corresponding to the class of {1}. Let K(N)
be a principal congruence subgroup of level N ≥ 3. By [LM, Corollary 5.2] there exists a
bi-K∞-invariant compact neighborhood ω of K(N) in G(A)1 such that

(6.2) Jgeo(f) = Junip(f).

for all f ∈ C∞
c (G(A)1) supported in ω. ([LM, Corollary 5.2] was only stated for GL(n), but

its proof holds also for SL(n) without modification.) For our applications we can choose
f such that (6.2) holds if we restrict to Kf with Kf ⊆ K(N) for some N ≥ 3. See § 15
for computations for n = 2, 3 regarding orbits of finite order which appear in the case
Kf = G(Ẑ).

To analyze Junip(f) we use Arthur’s fundamental result ([Ar4, Corollaries 8.3 and 8.5]) to
express Junip(f) in terms of weighted orbital integrals. To state the result we recall some
facts about weighted orbital integrals. Let S be a finite set of places of Q containing ∞.
Set

QS =
∏

v∈S

Qv, and G(QS) =
∏

v∈S

G(Qv).

Let

G(QS)
1 = G(QS) ∩G(A)1

and write C∞
c (G(QS)

1) for the space of functions on G(QS)
1 obtained by restriction of

functions in C∞
c (G(QS)) to G(QS)

1. Further, let AS =
∏

v 6∈S Qv be the restricted product

over all places outside of S, and define G(AS) similarly as above.
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6.1. The fine geometric expansion. LetM ∈ L and γ ∈M(QS). The general weighted
orbital integrals JM(γ, f) defined in ([Ar5]) are distributions on G(QS). Denote by Hγ the
centralizer of γ in a subgroup H of G. If γ is such that Mγ = Gγ then JM(γ, f) is given
by an integral of the form

(6.3) JM(γ, f) =
∣∣D(γ)

∣∣1/2
∫

Gγ(QS)\G(QS)

f(x−1γx)vM(x) dx,

where D(γ) is defined in [Ar5, p. 231] and vM (x) is the weight function associated to the
(G,M)-family {vP (λ, x) : P ∈ P(M)} defined in [Ar5, p.230]. It is a left M(A)-invariant
and right K-invariant function on G(A). In particular, in the case M = G (in which
vM ≡ 1) we obtain the usual (invariant) orbital integral. Of course, implicit in JM(γ, f) is
a choice of a Haar measure on Gγ(QS). When the condition Gγ ⊂ M is not satisfied (for
example, if γ is unipotent and M 6= G), the definition of JM(γ, f) is more complicated. It
is obtained as a limit of a linear combination of integrals as above. For more details we
refer to [Ar5], see also the description below. If γ belongs to the intersection of M(QS)
with G(QS)

1, one can obviously define the corresponding weighted orbital integral as a
linear form on C∞

c (G(QS)
1). Note that JM(γ, f) depends only on the M(QS)-conjugacy

class of γ.

To state the fine expansion of Junip(f), we need to introduce a certain equivalence relation
as defined in [Ar4, Ar7]. Let UM denote the variety of unipotent elements inM and UM(A)
its A-points for any Z-algebra A. We say that u1, u2 ∈ UM(Q) are (M,S)-equivalent if they
are conjugate by some element in M(QS), cf. [Ar4, §7]. We denote by (UM(Q))M,S the set

of (M,S)-equivalence classes in UM(Q). We note that (UM (Q))M,S is finite for any S but
may get larger as S grows. We get an injective map

(UM(Q))M,S −→ (UM(QS))M(QS)

where (UM(QS))M(QS)
denotes the set of M(QS)-conjugacy classes in UM (QS). Note that

this last set is evidently the same as the direct product
∏

v∈S (UM (Qv))M(Qv)
over the

M(Qv)-conjugacy classes in UM(Qv), v ∈ S. In particular, we can identify an equivalence
class U ∈ (UM (Q))M,S with its image under the above map, that is, with a tuple (Uv)v∈S
of M(Qv)-conjugacy classes in UM (Qv).

By [Ar4, Theorem 8.1] we have

(6.4) Junip(f ⊗ 1KS) = vol(G(Q)\G(A)1)f(1) +
∑

(M,U)

aM(S, U)JM(U, f),

where (M,U) runs over all pairs of Levi subgroups M ∈ L and U ∈ (UM (Q))M,S with

(M,U) 6= (G, 1). Here f ∈ C∞
c (G(QS)

1), 1KS is the characteristic function of the standard
maximal compact of G(AS), and aM(S, U) are certain constants which depend on the nor-
malization of measures (but are usually not known explicitly). The distributions JM(U, f)
can be written as weighted orbital integrals [Ar5, p. 256]. In our case the integrals simplify
as we are going to see later.
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6.2. Unipotent conjugacy classes. Let (UM ) denote the set of geometric (that is, over
an algebraic closure Q̄ of Q) M-conjugacy classes in UM . Then (UM) is a finite set. Each
V ∈ (UM ) is defined over Q and the set of Q-points V(Q) is non-empty. More precisely,
each V ∈ (UM) corresponds to a partition of n, and V(Q) contains the matrix with Jordan
normal form corresponding to that partition. For any V ∈ (UM) the set V(Q) is closed
under the (M,S)-equivalence relation and we write (V(Q))M,S for the finite set of (M,S)-

equivalence classes in V(Q).

Remark 6.1. If G = SL(n), there might be infinitely many M(Q)-conjugacy classes in
V(Q) depending on the type of V(Q). This is in contrast to the case of GL(n), where the
(finite) set of geometric unipotent conjugacy classes is in bijection with the set of rational
unipotent conjugacy classes.

Each class V ∈ (UM) is a Richardson class, that is, there exists a standard parabolic
subgroup Q = LV ∈ L(M) such that V is induced from the trivial orbit in L to M , see
[Hu, §5.5 Proposition]. Equivalently, the intersection of V with V is an open and dense
subset of V . Note that every (M,S)-equivalence class U ⊆ V(Q) has a representative in
V (Q).

Now let V ∈ (UM) and U = (Uv)v∈S ∈ (V(QS))M(QS)
. Here we write (V(QS))M(QS)

=∏
v∈S (V(Qv))M(Qv)

for the set ofM(QS)-conjugacy classes in V(QS). To understand the S-

adic integral JM(U, f), we decompose it into a sum of products of integrals at ∞ and at the
finite places Sfin = S\{∞}. More precisely, for every pair of Levi subgroups L1, L2 ∈ L(M)
there exists a coefficient dGM(L1, L2) ∈ C such that

(6.5) JM(U, f) =
∑

L1,L2∈L(M)

dGM(L1, L2)J
L1
M (U∞, f∞,Q1)J

L2
M (Ufin, ffin,Q2)

(see [Ar3]) where Ufin = (Uv)v∈Sfin ∈
(
V(QSfin)

)
M(QSfin

)
, and Q1 = L1V1 ∈ P(L1)), Q2 =

L2V2 ∈ P(L2) are certain parabolic subgroups the exact choice of which does not matter
to us. Moreover,

f∞,Q1(m) = δQ1(m)1/2
∫

K∞

∫

V1(R)

f(k−1mvk) dk dv, m ∈ L1(R),

with ffin,Q2 being defined analogously, and the coefficients dGM(L1, L2) are independent of S

and they vanish unless the natural map aL1
M ⊕ aL2

M −→ aGM is an isomorphism. In case the

coefficient does not vanish, it depends on the chosen measures on aL1
M , aL2

M and aGM . The
distributions JL

M(U, F ), for L ∈ L(M), any finite set S ′ of places of Q, F ∈ C∞(L(QS′)),
and a unipotent conjugacy class U ⊆ L(QS′), are defined similarly as the weighted orbital
integrals JG

M = JM but with L in place of G.

Our test function at the places in v ∈ Sfin is fixed once and for all so that the integrals at
those places can be viewed as constant for our purposes. Hence we need to understand the
integral at the Archimedean place. We therefore need to better understand the unipotent
conjugacy classes over R. If G = GL(n), the unipotent orbits in GLn(R) and all its
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Levi subgroups in L are easy to describe as they are in one-to-one correspondence with
the geometric unipotent conjugacy classes and therefore classified by partitions of n. We
assume for the moment that G = SL(n). Note that SLn(R) is normalized by GLn(R).
Moreover, each M ∈ L is of the form M = M̄ ∩ SL(n) for a unique Levi subgroup
M̄ ∈ LGL(n). Then K̄M

∞ := O(n) ∩ M̄(R) is a maximal compact subgroup in M̄ , K̄M
∞ ∩

M(R) = KM
∞ , and M̄(R) normalizes M(R). In particular, it makes sense to speak of

K̄M
∞ -conjugation invariant functions on M(R).

Lemma 6.2. Let V ∈ (UM). For any two equivalence classes U1, U2 ∈ (V(R))M(R) there ex-

ists k ∈ K̄M
∞ with k−1U1k = U2 and (V(R))M(R) consists of at most two equivalence classes.

More precisely, if U1, U2 ∈ (V(R))M(R) are the two distinct classes, we have k−1U1k = U2

with k = diag(−1, 1, . . . , 1) ∈ K̄M
∞ .

Proof. Let u1 ∈ U1 and u2 ∈ U2. In M̄(R), u1 and u2 are conjugate, that is, there
exists some g ∈ M̄(R) with g−1u1g = u2. Without loss of generality we can assume that
| det g| = 1. If det g = 1, then g ∈ M̄(R) ∩ SLn(R) = M(R) and U1 = U2. If det g = −1,
let k = diag(−1, 1, . . . , 1) ∈ K̄M

∞ and g1 = gk−1. Then g1 ∈ M̄(R) ∩ SLn(R) = M(R), and
U2 = g−1U1g = k−1g−1

1 U1g1k = k−1U1k as asserted. �

6.3. Measures on conjugacy classes.

Corollary 6.3. If V ∈ (UM) and f∞ ∈ Cc(G(R)) is conjugation invariant under K̄∞, then
we have JM(U1, f∞) = JM(U2, f∞) for all U1, U2 ∈ (V(R))M(R).

Proof. By the previous lemma, there are at most two distinct classes in (V(R))M(R). If there

is only one class in (V(R))M(R), there is nothing to show. If there are two distinct classes

U1, U2, they are conjugate to each other via the element k = diag(−1, 1, . . . , 1) ∈ K̄M
∞ . Let

u1 ∈ U1 and u2 = k−1u1k ∈ U2. Then the centralizers of u1 and u2 in G(R) are the same,
since they are the same in GLn(R) and k normalizes G(R) = SLn(R) in GLn(R). Hence
the invariant measures on the G(R)-conjugacy classes of u1 and u2 coincide, in particular,
JG(U1, f∞) = JG(U2, f∞) for every K̄∞-conjugation invariant f∞ ∈ Cc(G(R)).

The non-invariant measure defining JM(Ui, ·) can be written as the product of some
weight function times the invariant measure. We shall see in the next section (see (7.9)
and (7.12)) that the weight function is invariant under the action of k = diag(−1, 1, . . . , 1)
so that the claim of the lemma follows for the weighted orbital integrals as well. �

The following corollary now is valid for G = SL(n) as well as G = GL(n). However, we
shall only prove it for SL(n). For G = GL(n) the proof in fact is easier and was already
given in [LM, Lemma 5.3] (see also [Ho, Proposition 5]).

Corollary 6.4. For every V ∈ (UG) there exists a standard parabolic subgroup P = LV
and a constant c > 0 such that for every O(n)-conjugation invariant function f∞ and every
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U ∈ (V(R))G(R) the invariant orbital integral JG(U, f∞) can be written as

JG(U, f∞) = c

∫

V (R)

f∞(v) dv,

where dv denotes the Haar measure on V (R) normalized such that it coincides with the
measure obtained from the Lebesgue measure on RdimV when V (R) is identified with RdimV

via its matrix coordinates.

Proof. Let P = LV ∈ P be a Richardson parabolic subgroup for V so that V(R)∩ V (R) is
dense in V (R). We have V(R) = ⋃U∈(V(R))G(R)

U and this union is disjoint. Then

(6.6) V(R) ∩ V (R) =
⋃

U∈(V(R))G(R)

U ∩ V (R)

is also a disjoint union which is dense in V (R). For each U ∈ (V(R))G(R) we can pick a

representative u ∈ V (R). Then the orbit of u under P (R) equals U ∩ V (R). Since f∞ is
O(n)-conjugation invariant, we have, using Iwasawa decomposition for G(R), that

JG(U, f∞) =

∫

Pu(R)\P (R)

δP (p)
−1f∞(p−1up) dp.

It follows as in the proof of [LM, Lemma 5.3] that

C∞
c (V (R)) ∋ h −→

∫

Pu(R)\P (R)

δP (p)
−1h(p−1up) dp

is absolutely continuous with respect to the Haar measure on V (R). Hence

(6.7) C∞
c (V (R)) ∋ h −→

∑

u

∫

Pu(R)\P (R)

δP (p)
−1h(p−1up) dp

is also absolutely continuous with respect to the Haar measure on V (R). Here u ∈ V (R)
runs over a set of representatives for the classes U ∈ (V(R))G(R). Since the right hand side

of (6.6) is a disjoint union and dense in V (R), the measure defined by the right hand side
of (6.7) must be proportional to the Haar measure on V (R). Hence there exists a constant
C > 0 such that for every f∞ ∈ C∞

c (G(R)) we have

∑

U∈(V(R))G(R)

JG(U, f∞) = C

∫

V (R)

f∞(v) dv.

By Corollary 6.3 and our assumption on f∞ we have JG(U1, f∞) = JG(U2, f∞) for all
U1, U2 ∈ (V(R))G(R). Hence

JG(U, f∞) =
C

N

∫

V (R)

f∞(v) dv

where N is the number of classes in (V(R))G(R). �
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The weighted integral JM(U, f∞) from [Ar5, p. 256] can be written as an integral over
IndG

M U against the invariant measure on IndG
M U weighted by a certain function. Hence

using the corollary above it follows that the real orbital integral JM(U, f∞) simplifies for
every O(n)-conjugation invariant f∞ to

(6.8) JM(U, f∞) =

∫

N(R)

f(x)wM,U(x) dx

where Q = LN ∈ P is a Richardson parabolic for IndG
M U , the unipotent orbit induced

fromM to G, and the weight function wM,U(x) is described in [Ar5, Lemma 5.4]. (See also
[LM, §5].) It is a finite linear combination of functions of the form

∏r
i=1 log ‖pi(x)‖ where

pi are polynomials on NQ(R) into an affine space, i = 1, . . . , r (not necessarily distinct)
and

‖(y1, . . . , ym)‖v = |y1|2v + · · ·+ |ym|2v
(The fact that the product is over r terms is implicit in [Ar5] but follows from the proof.)
For our purpose we need to describe the weight function in more detail which we shall do
in the next section.

7. The weight function

In this section, again G = GL(n) or G = SL(n). We are only interested in the situation
over the field R, but most of this section holds over Qp, p < ∞, as well. As before, UM

denotes the unipotent variety in M and V ∈ (UM ) a geometric conjugacy class. We write

KG =

{
SO(n) if G = SL(n),

O(n) if G = GL(n),

and we write K for KG if G is clear from the context.

We first recall the definition of the local weight functions from [Ar5]. Let V ∈ (UM ) and
U ∈ (V(R))M(R). We denote by VG the conjugacy class in (UG) induced from V along some

parabolic subgroup in P(M) (they yield all the same induced class). Let UG ∈
(
VG(R)

)
G(R)

be such that UG∩M(R) = U . (As explained above there are at most two different elements
in
(
VG(R)

)
G(R)

which are conjugate by diag(−1, 1, . . . , 1).)

Arthur [Ar5] defines a weight function wM,U on a dense open subset of VG(R) such that
the local weighted orbital integral JM(U, f) = JG

M(U, f) can be defined as

(7.1) JG
M(U, f) =

∫

UG

f(x)wM,U(x) dx

for any f ∈ C∞(G(R)) of almost compact support with dx denoting the invariant measure
on UG, cf. [Rao]. Let Q = LN ∈ P be a Richardson parabolic subgroup for VG. By the
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results of the previous section, if f is conjugation invariant under the group O(n), we can
write the above as

(7.2) JG
M(U, f) = c

∫

N(R)

f(n)wM,U(n) dn

for some constant c > 0. The function wM,U actually only depends on V and not on the
specific U ∈ (V(F ))M(R) so that we can also write wM,V for this function. Note that the

map x 7→ X = x− id defines a bijection between the variety UG(R) and the nilpotent cone
in the Lie algebra g(R). Moreover, if x ∈ UG, then for any s ∈ R, s 6= 0, the element

(7.3) xs := id+s(x− id)

is an element in VG(R) (but not necessarily in UG).

The goal is to show the following in this section:

Proposition 7.1. Let P =MV ∈ F(M). Let x ∈ VG(R) be such that wM,V(x) is defined.
Then wM,V(xs) is also well-defined for every s > 0, and as a function of s, it is a polynomial
in log s of degree at most dim aGM . Moreover, there are k ∈ N, homogeneous polynomials
P1, . . . , Pt : N(R) −→ Rk, and coefficients αI ∈ R for each subset I ⊆ {1, . . . , t} such that
wM,V(id+X) =

∑
I⊆{1,...,t} αI

∏
i∈I log ‖Pi(X)‖ for X in a dense subset of N(R). Here ‖ · ‖

denotes the vector norm on Rk.

To prove this proposition, we follow along the lines of Arthur’s construction of the weight
functions. Let Φ(AM , G) be the set of roots of (AM , G), and let β ∈ Φ(AM , G). Note
that every root in Φ(AM , G) is reduced in Φ(AM , G), that is, if γ ∈ Φ(AM , G), then
mγ 6∈ Φ(AM , G) for any integer m 6= ±1. Let Mβ ⊆ G be a Levi subgroup containing
M such that aMβ

= {X ∈ aM | β(X) = 0}. Let Pβ ∈ PMβ(M) be the unique parabolic
subgroup of Mβ such that the unique root of AM on the unipotent radical of Pβ equals β.
Suppose that P , P1 ∈ P(M), P1 = MN1, are such that P ∩Mβ = Pβ and P1 ∩Mβ = Pβ

(the opposite parabolic), and write Pβ = LβNβ for the Levi decomposition of Pβ with
M ⊆ Lβ.

Suppose that π = uν ∈ UM (R)Nβ(R). Then for any a ∈ AM,reg there is a unique
nβ ∈ Nβ(R) such that

(7.4) aπ = n−1
β aunβ.

Note that nβ is independent of the AMβ
-part of a, that is, it only depends on aβ . Let

Wt(aM) ⊆ X(AM) be the sublattice of all ̟ which are extremal weights for some finite
dimensional representation of G(R). Let ̟ ∈ Wt(aM) ⊆ a∗M be such that ̟(β∨) > 0.
Consider

vP (̟, nβ) := e−̟(HP (nβ)) = e−̟(HPβ
(nβ)) = vPβ

(̟, nβ)

as a function of a ∈ AM/AMβ
≃ A

Mβ

M , and π as above.
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Write ν = id+X and nβ = id+Yβ with X, Yβ ∈ nβ(R). Note that a−1nβa = id+aβYβ.
Further note that Y 2

β = 0 since 2β 6∈ Φ(AM , G). Hence

π = u+ uX = a−1n−1
β aunβ = (id+aβYβ)

−1u(id+Yβ)

= u+ (1− aβ)Yβu+ [u, Yβ]− aβYβ[u, Yβ]

where [u, Yβ] = uYβ − Yβu is again nilpotent and contained in the Lie algebra of Nβ(R).
Again, this implies that the term Yβ[u, Yβ] vanishes since 2β is not a root of (AM , G).
Hence

u+ uX = u+ (1− aβ)Yβu+ [u, Yβ].

Let Q0 = M0V0 be a semistandard minimal parabolic subgroup containing N1, so in par-
ticular it contains Nβ as well. Conjugating u by some element in KM := K ∩M(R) if
necessary, we can assume that u ∈ V0(R) ∩M(R). In particular, we can write u = id+X0

with X0 a nilpotent matrix in the Lie algebra of V0(R) ∩M(R). Then [u, Yβ] = [X0, Yβ].
Hence the above equality becomes

(7.5) uX = X +X0X = (1− aβ)Yβ(id+X0) + [X0, Yβ] = (1− aβ)Yβ +X0Yβ − aβYβX0.

Q0 determines a choice of positive reduced roots Φ+
Q0

:= Φ(A0, Q0). Then there exists

β ′ ∈ Φ+
Q0

with β ′
|AM

= −β, and we denote by Ψβ ⊆ Φ+
Q0

the subset of all such β ′. Let

ΦM,+
Q0

⊆ Φ+
Q0

denote the subset of positive roots on M . Then Ψβ ∩ ΦM,+
Q0

= ∅.
We have a partial order ≺β on Ψβ: If α1, α2 ∈ Ψβ, then α1 ≺β α2 if and only if there

exists γ ∈ Φ+
Q0

with α2 = α1 + γ. Note that then γ ∈ ΦM,+
Q0

. We define subsets of Ψβ

according to how much the elements fail to be minimal with respect to ≺β: Let Ψ
(0)
β be

the set of all α ∈ Ψβ which are minimal with respect to ≺β . If k ≥ 0 is a non-negative

integer, let Ψ
(k+1)
β be the set of all α ∈ Ψβ\Ψ(k)

β which can be written as α = α1 + γ with

α1 ∈ Ψ
(k)
β and γ ∈ ΦM,+

Q0
. Note that Ψ

(k)
β 6= ∅ for only finitely many k. Moreover, α1 ∈ Ψ

(l)
β

implies that α2 ≺β α1 for any α2 ∈ Ψ
(k)
β with k < l.

To recover the matrix entries of Yβ from (7.5) we now proceed inductively over l by

considering the matrix entries correspond to roots in Ψ
(l)
β . In the following we write

Z := X +X0X.

Note that

π = id+X0 + Z, so that πs = id+sX0 + sZ.

If Y ∈ g(R) is a matrix in the Lie algebra, and α ∈ Φ(A0, G) we denote by Y (α) ∈ R the
matrix entry of Y corresponding to α.

Lemma 7.2. Let l ≥ 0, and α ∈ Ψ
(l)
β . There are rational polynomials Pα,i, 0 ≤ i ≤ l in

the variables X
(γ)
0 (γ ∈ ΦM,+

Q0
), Z(γ) (γ ∈ Ψβ), and a

β such that for a 6= 1 the following
holds
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• as a polynomial of Z and X0, Pα,i(Z,X0, a
β) is homogeneous of degree (i+1) in the

matrix entries of Z+X0, so in particular, for every s ∈ R we have Pα,i(sZ, sX0, a
β) =

si+1Pα,i(Z,X0, a
β),

• and

Y
(α)
β =

l∑

i=0

Pα,i(Z,X0, a
β)

(1− aβ)i+1
.

Proof. We prove the lemma by induction on l. If l = 0, then for any α ∈ Ψ
(0)
β we obtain

from (7.5) that

Y
(α)
β =

Z(α)

(1− aβ)

so the assertion of the lemma is true for l = 0.

Now suppose that for some non-negative integer l ≥ 0 we know that for every 0 ≤ k ≤ l

and every α ∈ Ψ
(k)
β we have

(7.6) Y
(α)
β =

k∑

i=0

Pα,i(Z,X0, a
β)

(1− aβ)i+1

with Pα,i polynomials satisfying the assertions of the lemma. Then for α ∈ Ψ
(k+1)
β the

equation (7.5) gives

Z(α) = (1− aβ)Y
(α)
β + (X0Yβ)

(α) − aβ(YβX0)
(α).

By definition of Ψ
(k+1)
β we have

(X0Yβ)
(α) − aβ(YβX0)

(α) =
∑

γ∈Ψ
(k)
β , δ∈ΦM,+

Q0
:

γ+δ=α

eγ,δα Y
(γ)
β X

(δ)
0

with

eγ,δα =

{
1 if [Eδ, Eγ] = Eδ+γ ,

−aβ if [Eδ, Eγ] = −Eδ+γ

where Eγ , Eδ denote the elements of the standard Chevalley basis attached to our root

system Φ+
Q0
. By the inductive assumption we can insert (7.6) for Y

(γ)
β for every γ occurring

in the sum. Dividing both sides of the so obtained equality by (1 − aβ) then yields the
assertion of the lemma. �
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7.1. Weight functions. We now consider the function vPβ
(̟, nβ) = e−̟(HP (nβ)) for ̟ ∈

Wt(aM). Note that HP is invariant under left and right multiplication with elements of
KM . There is an irreducible representation Λ̟ of G on a finite dimensional vector space
V̟, defined over R, together with an extremal vector φ̟ ∈ V̟(R) of weight ̟ and a norm
‖ · ‖ on V̟(R) such that ‖φ̟‖ = 1 and

vPβ
(̟, n) = ‖Λ̟(n

−1)φ̟‖.
We can identify V̟(R) with Rm̟ for m̟ = dimV̟ and we can assume that the norm is
of the form

‖(x1, . . . , xm̟)‖ =
(
x21 + . . .+ x2m̟

)1/2

for (x1, . . . , xm̟) ∈ Rm̟ . Recall that Λ̟ is an algebraic representation. Thus Λ̟ : G →
GL(V̟) is a morphism of algebraic varieties. Hence as a function of nβ ∈ Nβ(R) the
function vPβ

(̟, nβ) is the vector norm applied to a polynomial function from nβ(R) to
Rm̟ . Using the above lemma (and the notation therein), we therefore get that

(7.7) vPβ
(̟, nβ)

2 =
∑

κ∈R

fκ(Z,X0, a
β)

(aβ − 1)κ

where κ runs over a finite set of integers R ⊆ Z, and fκ is the norm of some rational
function that is homogeneous of degree κ in the matrix entries of X0 and Z, and has a
finite value at a = 1 so that we may write fκ(Z,X0, 1). Here nβ, Z, X0, and a are related
as in (7.4). The function fκ(Z,X0, a

β) in general depends on ̟ and if we want to make
this dependence explicit we write fκ,̟(Z,X0, a

β).

Now let u ∈ U , U ⊆ M(R), and UG ⊆ G(R) be as before, and write u = id+X0 with
X0 nilpotent. Let κ0(β,X0) ∈ R be the largest κ ∈ R such that fκ(·, ·, aβ) does not vanish
identically on nβ(R)×N , where N ⊆ m(R) is the nilpotent orbit defined by U = id+N .
Let ρ(β,X0) be the product of 1/(2̟(β∨)) with κ0(β,X0). It follows from [Ar5, p. 238]
that κ0(β,X0) ≥ 0 and ρ(β,X0) ≥ 0. The ρ(β,X0) is independent of ̟ as explained
in [Ar5, p. 238] but κ0(β,X0) in general depends on ̟. If we want to emphasize this
dependence, we write κ0(β,X0) = κ0(̟, β,X0).

Recall the definition of the weight function wP (λ, a, π) from [Ar5, (3.6)]: Fix a parabolic
subgroup P1 ∈ P(M). Then for any other P ∈ P(M) and any P -dominant ̟ ∈ Wt(aM)
Arthur defines for π = uν ∈ UN1(R) the function

(7.8) wP (̟, a, π) =


 ∏

β∈ΦP∩ΦP1

rβ(̟, u, a)


 vP (̟, n)

where ΦP = Φ(AM , P ) and ΦP1
= Φ(AM , P1). Here u, ν, a, and n ∈ N1(R) are related by

aπ = n−1aun. The function rβ is given by (see [Ar5, (3.4)])

rβ(̟, u, a) = |aβ − a−β|ρ(β,X0)̟(β∨).
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It follows from this definition that

(7.9) wP (̟, a, k
−1πk) = wP (̟, a, π)

for k = diag(−1, 1, . . . , 1) ∈ K̄M
∞ .

If ̟1, . . . , ̟r ∈ Wt(aM) is a basis of a∗M consisting of P -dominant weights, and λ =
λ1̟1 + . . .+ λr̟r ∈ a∗M,C with λ1, . . . , λr ∈ C, then

(7.10) wP (λ, a, π) =
r∏

i=1

wP (̟i, a, π)
λi

By [Ar5, Lemma 4.1] the limit

wP (λ, π) := lim
a→1

wP (λ, a, π)

exists and is non-zero for all π in an open and dense subset of UN1(R).

7.2. The adjacent case. For a unipotent element π recall the definition of πs from (7.3).
If P and P1 are adjacent, the function wP (λ, π) has the following behavior when π is
replaced by πs:

Lemma 7.3. Suppose P and P1 are adjacent via β ∈ Φ(AM , P ). Then for all π in an
open dense subset of UN1(R) we have

wP (λ, πs) = sρ(β,X0)λ(β∨) · wP (λ, π)

for all s > 0.

Proof. Note that wP (λ, a, π) = wP (λ, a, k
−1πk) for any k ∈ KM = K ∩M(R) so that we

can assume π to be of the form id+X0+Z with X0 ∈ N ∩v0(R), and Z ∈ n1(R) as before.
Here v0, resp. n1, denotes the Lie algebra of V0 (the unipotent radical of Q0), resp. N1 (the
unipotent radical of P1). Since P and P1 are assumed to be adjacent along β, we have
ΦP ∩ΦP̄1

= {β}. Hence it follows from (7.8) that wP (λ, a, π) = rβ(λ,X0, a)vP (λ, n) where

rβ(λ,X0, a) = |aβ − a−β |ρ(β,X0)λ(β∨)

. for a with aβ 6= 1. We can write n ∈ N1 as n = nβñ with nβ in the unipotent radical of
Pβ and ñ in the unipotent radical of P1 ∩ P . Then vP (λ, n) = vPβ

(λ, nβ) so that

wP (λ, a, π) = rβ(λ,X0, a)vPβ
(λ, nβ).
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Hence, using (7.7) and (7.10),

wP (λ, π)
2 = lim

a→1

r∏

i=1

(
|aβ − a−β|2ρ(β,X0)̟i(β

∨)
∑

κ∈R

fκ,̟i
(Z,X0, a

β)

(aβ − 1)κ

)λi

= lim
a→1

r∏

i=1

(
|aβ − a−β|κ0(̟i,β,X0)

∑

κ∈R

fκ,̟i
(Z,X0, a

β)

(aβ − 1)κ

)λi

=

r∏

i=1

2λifκ0(̟i,β,X0),̟i
(Z,X0, 1)

λi.

Now fκ0(̟i,β,X0),̟i
(Z,X0, 1) is non-zero for generic X0, Z, and satisfies

fκ0(̟i,β,X0),̟i
(sZ, sX0, 1) = sκ0(̟i,β,X0)fκ0(̟i,β,X0),̟i

(Z,X0, 1).

Hence

wP (λ, πs)
2 =

r∏

i=1

sλiκ0(̟i,β,X0)

r∏

i=1

2λifκ0(̟i,β,X0),̟i
(Z,X0, 1)

λi = s2ρ(β,X0)λ(β∨)wP (λ, π)
2

since
∑r

i=1 λiκ0(̟i, β,X0) = 2ρ(β,X0)
∑r

i=1 λi̟i(β
∨) = 2ρ(β,X0)λ(β

∨). Since wP (λ, πs)
is a real-valued function and continuous in s with wP (λ, π1) = wP (λ, π), we can take the
square-root on both sides of the equation and obtain the assertion of the lemma. �

7.3. The general case. If Q,Q′ ∈ P(M) are adjacent along some root β ∈ Φ(AM , Q), we
write Q|βQ′.

Corollary 7.4. Suppose that P and P1 are not necessarily adjacent. Choose a minimal
chain P = Q0|β1Q1|β2 . . . |βtQt = P1 of adjacent parabolic subgroups Q1, . . . , Qt ∈ P(M)
from P to P1. Then there exist rational numbers ρ1, . . . , ρt such that for all π in an open
dense subset of UN1(R) we have

wP (λ, πs) = sρ1λ(β
∨
1 )+...+ρtλ(β∨

t ) · wP (λ, π)

for all s > 0.

Proof. This follows by induction on t together with Lemma 7.3 and the proof of [Ar5,
Lemma 4.1].

The case t = 1 is covered in the last lemma. Let P ′
1 := Q1 = MN ′

1, and assume that
the corollary is true for P replaced by P ′

1. Let π = uν ∈ UN1(R), and a ∈ AM,reg. Let
n ∈ N1(R) be the unique element with π = a−1n−1aun. Write n = m′n′k′ with m′ ∈M(R),
n′ ∈ N ′

1(R), and k′ ∈ K, and put u′ = (m′)−1um′. Let π′ = a−1(n′)−1au′n′ ∈ UN ′
1(R).

Then by the proof of [Ar5, Lemma 4.1, p. 241], we have

wP (λ, a, π) = wP (λ, a, π
′)wP ′

1
(λ, a, π).

Suppose that π = id+Y . Then π′ = id+k′Y k′−1 so that that the map π 7→ π′ also maps
πs to π

′
s for any s. We are further allowed to take the value at a = 1 on both sides because
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of [Ar5, Lemma 4.1]. The assertion of the corollary therefore follows from Lemma 7.3 and
the induction hypothesis. �

Arthur defines polynomials WP (̟, a, π) ∈ V̟ for a P -dominant weight ̟ ∈ Wt(aM) and
(a, π) ∈ AM,reg × UN1(R) by

WP (̟, a, π) =


 ∏

β∈ΦP∩ΦP1

rβ(̟, u, a)


Λ̟(n

−1)φ̟

so that wP (̟, a, π) = ‖WP (̟, a, π)‖ and

(7.11) wP (λ, a, π) =
r∏

i=1

‖WP (̟i, a, π)‖λi.

Here π, u, a, and n are related as explained after (7.8)

Corollary 7.5. If ̟ ∈ Wt(aM) is a P -dominant weight, the polynomial WP (̟, a, π) is
defined on all of AM × UN1 and does not vanish at a = 1. Moreover, there is a constant
r̟ depending only on P and ̟ such that for all π ∈ UN1(R) and all s > 0 we have

‖WP (̟, 1, πs)‖ = sr̟‖WP (̟, 1, π)‖.

Proof. All assertions except the homogeneity are subject of [Ar5, Corollary 4.3]. The
homogeneity follows from the previous corollary and the definition of WP (̟, a, π). �

Let θP (λ) = v−1
P

∏
α∈∆P

λ(α∨) for λ ∈ a∗M , where vP denotes the covolume of the lattice
spanned by all α∨, α ∈ ∆P , in aM . Then {wP (λ, a, π)}P∈P(M) defines a (G,M)-family, and
one can attach a certain number to this family by defining

(7.12) wM(a, π) = lim
λ→0


 ∑

P∈P(M)

wP (λ, a, π)θP (λ)
−1




as in [Ar5, §6]. By [Ar3, (6.5)] this can be computed by

wM(a, π) =
1

r!

∑

P∈P(M)

(
lim
t→0

dr

dtr
wP (tΛ, a, π)

)
θP (Λ)

−1

with r = dim aGM and Λ ∈ a∗M some fixed generic element. (Note that wM(a, π) is indepen-
dent of the choice of Λ.) Using (7.11) we get (cf. [Ar5, Lemma 5.4])

wM(a, π) =
∑

Ω

cΩ
∏

(P,̟)∈Ω

log ‖WP (̟, a, π)‖

where Ω runs over all finite multisets consisting of elements in P(M) × Wt(aM), and
the cΩ ∈ C are suitable coefficients which vanish for all but finitely many Ω. Moreover,
each Ω contains at most r = dim aGM many elements. Note that in a neighborhood of
a = 1 this expression is well-defined for all π in an open dense subset of UN1 because
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of Corollary 7.5. Hence we can evaluate wM(a, π) at a = 1 by means of this expression.
Moreover, Corollary 7.5 implies the following result.

Corollary 7.6. For all π in an open dense subset of UN1(R) and all s > 0

wM(1, πs) =
∑

Ω

cΩ
∏

(P,̟)∈Ω

(r̟ log s+ log ‖WP (̟, 1, π)‖).

In particular, as a function of s, wM(1, πs) is a polynomial in log s of degree at most
r = dim aGM .

If now Q′ ∈ F(M) is an arbitrary subgroup, we can analogously define all the above
functions with respect to the Levi component MQ′ instead of G, in particular we can

define the analogue of wM(1, π) which we denote by wQ′

M (1, π). The corollary then stays

true for wQ′

M (1, π) with the necessary changes. Note that a priori wQ′

M (1, π) is defined for π

in a dense open subset of UN
MQ′

1 for P
MQ′

1 = P1 ∩MQ′ . However, we can trivially extend

wQ′

M (1, π) to a dense open subset of UG. By the first equation on [Ar5, p. 256] the weight
function wM,V from (7.1) can then be written as

wM,V(π) =
∑

Q′∈F(M)

wQ′

M (1, π).

This together with Corollary 7.6 implies the Proposition 7.1.

7.4. Convergence.

Lemma 7.7. Let pi : R
k −→ R, i = 1, ..., l, be homogeneous polynomials and put

(7.13) λ(x) :=
l∏

i=1

∣∣ log |pi(x)|
∣∣, x ∈ Rk.

Then for every a > 0

(7.14)

∫

Rk

e−a(log(1+‖x‖))2λ(x) dx <∞.

Proof. Since
∏l

i=1

∣∣ log |pi(x)|
∣∣ ≤∑l

i=1

∣∣ log |pi(x)|
∣∣l, it suffices to consider the case λ(x) =∣∣ log |p(x)|

∣∣l with p : Rk −→ R a homogeneous polynomial of degree κ.

Further note that for every M ∈ N there exists rM > 0 such that (log(1 + ‖x‖))2 ≥
(M/a) log ‖x‖ for all x with ‖x‖ ≥ rM . In particular,

(7.15) e−a(log(1+‖x‖))2 ≤ ‖x‖−M

for all x with ‖x‖ ≥ rM .

We decompose the integral in (7.14) into a sum of integrals over certain subsets of Rk

similarly as in [Ar5, §7]. For each m ∈ N0 let

Bm = {x ∈ Rk | 2m ≤ ‖x‖ ≤ 2m+1}
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and let B = {x ∈ Rk | ‖x‖ ≤ 2}. For ǫ > 0 set

Γǫ = {x ∈ B | |p(x)| < ǫ}, and Γm,ǫ = {x ∈ Bm | |p(x)| < ǫ}.
By [Ar5, (7.1)] there are constants C, t > 0 such that for every ǫ > 0 we have

(7.16)

∫

Γǫ

λ(x) dx ≤ Cǫt.

For m ≥ 0 we can therefore compute, using that p is homogeneous of degree κ, that∫

Γm,ǫ

λ(x) dx ≤ 2mk

∫

Γ2−mκǫ

λ(2my) dy ≤ c12
mkml

∫

Γ2−mκǫ

(1 + λ(y)) dy ≤ c22
mkml2−mκt1ǫt1

≤ c32
m(k+l)ǫt1

where c1, c2, c3, t1 > 0 are suitable constants independent of m and ǫ and the second last
inequality follows from (7.16). Fix ǫ > 0 and let Zǫ = {x ∈ Rk | |p(x)| < ǫ}.
Then, using (7.15) for every M ∈ N there exist c4, rM > 0 such that

∫

Zǫ

e−a(log(1+‖x‖))2λ(x) dx

≤
∫

Γǫ

λ(x) dx+
∑

m≤log2 rM

c4

∫

Γm,ǫ

λ(x) dx+
∑

m≥log2 rM

2−mM

∫

Γm,ǫ

λ(x) dx

≤Cǫt + c5ǫ
t1


1 +

∑

m≥log2 rM

2−mM2m(k+l)


 .

This is finite if we choose M sufficiently large.

Now on Rk\Zǫ the polynomial p(x) is bounded away from 0 so that log |p(x)| is bounded
from below on Rk\Zǫ. Since p(x) is of degree κ, there is a constant A > 0 such that
|p(x)| ≤ A(1 + ‖x‖)κ for all x ∈ Rk. Choose M again sufficiently large and let rM be as in
(7.15). Then for some suitable constant A1 > 0 we get

∫

Rk\Zǫ

e−a(log(1+‖x‖))2λ(x) dx ≤ A1

∫

Rk\Zǫ

‖x‖−M
(
1 + (log(1 + ‖x‖))l

)
dx,

which is finite if M was chosen sufficiently large.

�

8. Examples for weight functions in low rank

8.1. G = GL(2). There are two unipotent conjugacy classes in GL(2), the trivial class
for which Richardson parabolic subgroup equals G, and the regular unipotent conjugacy
class with Richardson parabolic equal to the minimal parabolic subgroup P0 = M0U0.
The archimedean orbital integrals appearing in the fine expansion of Junip are JG(1, f∞),
JG(u0, f∞), and JM0(1, f∞), where u0 = ( 1 1

0 1 ) represents the regular class in G(Q). The
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first two integrals are unweighted, and the last integral JM0(1, f0) is up to a normalization
of Haar measure equal to ∫

U0(R)

f∞(( 1 x
0 1 )) log |x| dx,

see, e.g., [Gel].

8.2. G = GL(3). There are three unipotent conjugacy class in GL(3): The trivial, the
regular, and the subregular class. Let

u(x, y, z) =
(

1 x y
1 z
1

)

for x, y, z ∈ R. Then u(0, 1, 0) is a representative for the subregular class, and u(1, 0, 1)
a representative for the regular class. Let M1 be the Levi subgroup corresponding to the
partition (2, 1) of 3. Every other corank-1 Levi subgroup in L is conjugate to M1 by some
Weyl group element so that it suffices to consider JM(u, f∞) for M ∈ {M0,M1, G}. The
integrals JG(1, f∞), JG(u(0, 1, 0), f∞), and JG(u(1, 0, 1), f∞) are all unweighted. For the
other cases we get (up to normalization of the measures)

(8.1) JM1(1, f∞) =

∫

U1(R)

f∞(u(0, y, z)) log(y2 + z2) du(0, y, z),

(8.2) JM1(u(1, 0, 0), f∞) =

∫

U0(R)

f∞(u(x, y, z)) log |xz| du(x, y, z),

and

(8.3) JM0(1, f∞) =

∫

U0(R)

f∞(u(x, y, z))
(
log |x| log |z|+ (log |x|)2 + (log |z|)2

)
du(x, y, z),

cf. [Fli, p. 67, Lemma 4].

9. Bochner Laplace operators

In this section we summarize some basic facts about Bochner-Laplace operators on global
Riemannian symmetric spaces. For simplicity we assume that G is semisimple and G(R) is
of noncompact type. Then G(R) is a semisimple real Lie group of noncompact type. Let
K∞ ⊂ G(R) be a maximal compact subgroup and

X̃ = G(R)/K∞

the associated Riemannian symmetric space. Let Γ ⊂ G(R) be a torsion free lattice and

let X = Γ\X̃. Let ν be a finite-dimensional unitary representation of K∞ on (Vν , 〈·, ·〉ν).
Let

Ẽν := G(R)×ν Vν
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be the associated homogeneous vector bundle over X̃ . Then 〈·, ·〉ν induces a G(R)-invariant
metric h̃ν on Ẽν . Let ∇̃ν be the connection on Ẽν induced by the canonical connection on

the principal K∞-fibre bundle G(R) → G(R)/K∞. Then ∇̃ν is G(R)-invariant. Let

Eν := Γ\Ẽν

be the associated locally homogeneous vector bundle over X . Since h̃ν and ∇̃ν are G(R)-

invariant, they push down to a metric hν and a connection ∇ν on Eν . Let C
∞(X̃, Ẽν) resp.

C∞(X,Eν) denote the space of smooth sections of Ẽν , resp. Eν . Let

C∞(G(R), ν) := {f : G(R) → Vν : f ∈ C∞, f(gk) =ν(k−1)f(g),

∀g ∈ G(R), ∀k ∈ K∞},(9.1)

Let L2(G(R), ν) be the corresponding L2-space. There is a canonical isomorphism

(9.2) Ã : C∞(X̃, Ẽν) ∼= C∞(G(R), ν)

(see [Mia, p. 4]). Ã extends to an isometry of the corresponding L2-spaces. Let

C∞(Γ\G(R), ν) := {f ∈ C∞(G(R), ν) : f(γg) = f(g) ∀g ∈ G(R), ∀γ ∈ Γ}(9.3)

and let L2(Γ\G(R), ν) be the corresponding L2-space. The isomorphism (9.2) descends to
isomorphisms

(9.4) A : C∞(X,Eν) ∼= C∞(Γ\G(R), ν), L2(X,Eν) ∼= L2(Γ\G(R), ν).

Let ∆̃ν = ∇̃ν
∗∇̃ν be the Bochner-Laplace operator of Ẽν . This is a G(R)-invariant second

order elliptic differential operator whose principal symbol is given by

σ∆̃ν
(x, ξ) = ‖ξ‖2x · IdEν,x, x ∈ X̃, ξ ∈ T ∗

x (X̃).

Since X̃ is complete, ∆̃ν with domain the smooth compactly supported sections is essen-

tially self-adjoint [LM, p. 155]. Its self-adjoint extension will be denoted by ∆̃ν too. Let
Ω ∈ Z(gC) and ΩK∞ ∈ Z(k) be the Casimir operators of g and k, respectively, where the
latter is defined with respect to the restriction of the normalized Killing form of g to k.
Let C∞(G(R), Vν) be the space of smooth Vν-valued functions on G(R) and R the right
regular representation of G(R) in in C∞(G(R), Vν). Let R(Ω) be the differential operator
induced by Ω. Since Ad(g)Ω = Ω, g ∈ G(R), it follows that R(Ω) preserves the subspace
C∞(G(R), ν). Then with respect to the isomorphism (9.2) we have

∆̃ν = −R(Ω) + ν(ΩK∞),(9.5)

(see [Mia, Proposition 1.1]). Let e−t∆̃ν , t > 0, be the heat semigroup generated by ∆̃ν . It
commutes with the action of G(R). With respect to the isomorphism (9.2) we may regard

e−t∆̃ν as bounded operator in L2(G(R), ν), which commutes with the action of G(R). Hence
it is a convolution operator, i.e., there exists a smooth map

(9.6) Hν
t : G(R) → End(Vν)
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such that

(e−t∆̃νφ)(g) =

∫

G(R)

Hν
t (g

−1g′)(φ(g′)) dg′, φ ∈ L2(G(R), ν).

The kernel Hν
t satisfies

Hν
t (k

−1gk′) = ν(k)−1 ◦Hν
t (g) ◦ ν(k′), ∀k, k′ ∈ K, ∀g ∈ G.(9.7)

For q > 0 let C q(G(R)) be Harish-Chandra’s Lq-Schwartz space. We briefly recall its
definition. Let Ξ and ‖ · ‖ be the functions on G(R) used to define Harish-Chandra’s
Schwartz space C(G(R)) (see [Wal, 7.1.2]). Furthermore, for Y ∈ U(gC) denote by L(Y )
(resp. R(Y )) the associated left (resp. right) invariant differential operator on G(R). Then
C q(G(R)) consists of all f ∈ C∞(G(R)) such that

sup
x∈G(R)

(1 + ‖x‖)mΞ(x)−2/q|L(Y1)R(Y2)f(x)| <∞

for all m ≥ 0 and Y1, Y2 ∈ U(gC). Note that C 2(G(R)) equals Harish-Chandra’s Schwartz
space C(G(R)). Proceeding as in the proof of [BM, Proposition 2.4] it follows that Hν

t

belongs to (C q(G(R))⊗ End(Vν))
K∞×K∞ for all q > 0.

Let π be a unitary representation of G(R) on a Hilbert space Hπ. Define a bounded
operator on Hπ ⊗ Vν by

π̃(Hν
t (g)) :=

∫

G(R)

π(g)⊗Hν
t (g) dg.(9.8)

Then relative to the splitting

Hπ ⊗ Vν = (Hπ ⊗ Vν)
K∞ ⊕

(
(Hπ ⊗ Vν)

K∞

)⊥
,

π̃(Hν
t ) has the form

(
π(Hν

t ) 0
0 0

)
,

where π(Hν
t ) acts on (Hπ ⊗ Vν)

K∞ . Assume that π is irreducible. Let π(Ω) be the Casimir
eigenvalue of π. Then as in [BM, Corollary 2.2] it follows from (9.5) that

(9.9) π(Hν
t ) = et(π(Ω)−ν(ΩK∞ )) Id,

where Id is the identity on (Hπ ⊗ Vν)
K∞. Put

(9.10) hνt (g) := trHν
t (g), g ∈ G(R).

Then hνt ∈ C q(G(R)) for all q > 0. In particular, hνt belongs to C 2(G(R)), which equals
Harish-Chandra’s Schwartz space C(G(R)). Let π be a unitary representation of G(R).
Put

π(hνt ) =

∫

G(R)

hνt (g)π(g) dg.
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Assume that π(Hν
t ) is a trace class operator. Then it follows as in [BM, Lemma 3.3] that

π(hνt ) is a trace class operator and

(9.11) Tr π(hνt ) = Tr π(Hν
t ).

Now assume that π is a unitary admissible representation. Let A : Hπ → Hπ be a bounded
operator which is an intertwining operator for π|K . Then A ◦ π(hνt ) is again a finite rank

operator. Define an operator Ã on Hπ ⊗ Vν by Ã := A⊗ Id. Then by the same argument
as in [BM, Lemma 5.1] one has

(9.12) Tr
(
Ã ◦ π̃(Hν

t )
)
= Tr (A ◦ π(hνt )) .

Together with (9.9) we obtain

(9.13) Tr (A ◦ π(hνt )) = et(π(Ω)−ν(ΩK∞ )) Tr
(
Ã|(Hπ⊗Vν)K

)
.

10. Heat kernel estimates

Let the notation be as in the previous section. In this section we prove some estimations

for the function hνt defined by (9.10). Let K̃ν(t, x, y) be the kernel of e−t∆̃ν . Observe that

K̃ν(t, x, y) ∈ Hom((Ẽν)y, (Ẽν)x). Denote by |K̃ν(t, x, y)| the norm of this homomorphism.

Furthermore, let r(x, y) denote the geodesic distance of x, y ∈ X̃ .

Proposition 10.1. Let d = dim X̃. For every T > 0 there exists C > 0 such that we have

|K̃ν(t, x, y)| ≤ Ct−d/2exp

(
−r

2(x, y)

4t

)

for all 0 < t ≤ T and x, y ∈ X̃.

Proof. If ν is irreducible, this is proved in [Mu1, Proposition 3.2]. However, the proof does
not make any use of the irreducibility of ν. So it extends without any change to the case
of finite-dimensional representations. �

Let x0 := eK∞ ∈ X̃ be the base point. For g ∈ G(R) and x ∈ X̃ let Lg : Ẽx → Ẽgx be the

isomorphism induced by the left translation. The kernel K̃ν is related to the convolution
kernel Hν

t : G(R) → End(Vν) by

(10.1) Hν
t (g

−1
1 g2) = L−1

g1 ◦ K̃ν(t, g1x0, g2x0) ◦ Lg2 , g1, g2 ∈ G(R).

Thus we get

(10.2) hνt (g) := trHν
t (g) = tr(K̃ν(t, x0, gx0) ◦ Lg), g ∈ G(R).

Using Proposition 10.1 and the fact that Lg is an isometry, we obtain the following corollary.



38 JASMIN MATZ AND WERNER MÜLLER

Corollary 10.2. Let d = dim X̃. For all T > 0 there exists C > 0 such that we have

|hνt (g)| ≤ Ct−d/2 exp

(
−r

2(gx0, x0)

4t

)

for all 0 < t ≤ T and g ∈ G(R).

Next we turn to the asymptotic expansion of the heat kernel. For x0 ∈ X̃ and x ∈ Tx0X̃

let dx expx0
be the differential of the exponential map expx0

: Tx0X̃ → X̃ at the point x. It

is a map from Tx0X̃ to TxX̃ , where x = expx0
(x). Let

(10.3) jx0(x) := | det(dx expx0
)|

be the Jacobian, taken with respect to the inner products in the tangent spaces. We use
expx0

to introduce normal coordinates centered at x0. Let gij(x) denote the components
of the metric tensor in these coordinates. Then on has

(10.4) jx0(x) = | det(gij(x))|1/2

(see [BGV, (1.22)]). Given y ∈ X̃ and x ∈ TyX̃ , let x = expy(x). Put

(10.5) j(x; y) := jy(x).

Let ε > 0 be sufficiently small. Let ψ ∈ C∞(R) with ψ(u) = 1 for u < ε and ψ(u) = 0 for
u > 2ε.

Proposition 10.3. Let d = dim X̃. Let (ν, Vν) be a finite-dimensional unitary represen-

tation of K∞. There exist smooth sections Φν
i ∈ C∞(X̃ × X̃, Ẽν ⊠ Ẽ∗

ν), i ∈ N0, such that
for every N ∈ N

K̃ν(t, x, y) = (4πt)−d/2ψ(d(x, y)) exp

(
−r

2(x, y)

4t

) N∑

i=0

Φν
i (x, y)j(x; y)

−1/2ti

+O(tN+1−d/2),

(10.6)

uniformly for 0 < t ≤ 1. Moreover the leading term Φν
0(x, y) is equal to the parallel trans-

port τ(x, y) : (Ẽν)y → (Ẽν)x with respect to the connection ∇ν along the unique geodesic
joining x and y.

Proof. Let Γ ⊂ G be a co-compact torsion free lattice. It exists by [Bo]. Let X = Γ\X̃
and Eν = Γ\Ẽν . As in [Do, Sect 3], the proof can be reduced to the compact case, which
follows from [BGV, Theorem 2.30]. �

Let g = k⊕ p be the Iwasawa decomposition. We recall that the mapping

ϕ : p×K∞ → G(R),

defined by ϕ(Y, k) = exp(Y ) · k is a diffeomorphism [He, Ch. VI, Theorem 1.1]. Thus each
g ∈ G(R) can be uniquely written as

(10.7) g = exp(Y (g)) · k(g), Y (g) ∈ p, k(g) ∈ K∞.
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Using (10.2) and Proposition 10.3, we obtain the following corollary.

Corollary 10.4. There exist aνi ∈ C∞(G(R)), i ∈ N0, such that for every N ∈ N we have

(10.8) hνt (g) = (4πt)−d/2ψ(d(gx0, x0)) exp

(
−r

2(gx0, x0)

4t

) N∑

i=0

aνi (g)t
i +O(tN+1−d/2)

which holds for 0 < t ≤ 1. Moreover the leading coefficient aν0 is given by

(10.9) aν0(g) = tr(ν(k(g))) · j(x0, gx0)−1/2.

Proof. By (10.1) we have

Hν
t (g) = K̃ν(t, x0, gx0) ◦ Lg, g ∈ G(R).

Put

(10.10) aνi (g) := tr(Φν
i (x0, gx0) ◦ Lg) · j(x0, gx0)−1/2, g ∈ G(R).

Then (10.8) follows immediately from (10.6) and the definition of hνt . To prove the second
statement, we recall that Φν

0(x, y) is the parallel transport τ(x, y) with respect to the

canonical connection of Ẽν along the geodesic connecting x and y. Let g = exp(Y ) · k,
Y ∈ p, k ∈ K∞. Then the geodesic connecting x0 and gx0 is the curve γ(t) = exp(tY )x0,
t ∈ [0, 1] (see [He, Ch. IV, Theorem 3.3]). The parallel transport along γ(t) equals Lexp(Y ).
Thus Φν

0(x0, gx0) = L−1
exp(Y ). Hence we get.

Φν
0(x0, gx0) ◦ Lg = Lk = ν(k).

Together with (10.10) the claim follows. �

11. Regularized traces

Let G be a reductive algebraic group over Q. For simplicity, we assume that the center
ZG splits over Q, i.e., we have ZG = AG. Let

G(R)1 = G(A)1 ∩G(R).
Then G(R)1 is semisimple and

(11.1) G(R) = G(R)1 · AG(R)
0.

Let K∞ ⊂ G(R)1 be a maximal compact subgroup and let K0
∞ be the connected component

of the identity. Let

X̃ = G(R)1/K0
∞

be the associated Riemannian symmetric space. Let Γ ⊂ G(Q) be an arithmetic subgroup.

For simplicity we assume that Γ is torsion free. Note that Γ ⊂ G(R)1. Let X = Γ\X̃ be
the associated locally symmetric manifold. Let ν : K∞ → GL(Vν) an irreducible unitary
representation of K∞ and let Eν → X be the associated locally homogeneous vector bundle
over X . Let ∆ν be the corresponding Bochner-Laplace operator acting in C∞(X,Eν). Our
goal is to define a regularized trace of the heat operator e−t∆ν .
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Recall that e−t∆ν is an integral operator with a smooth kernel Kν(t, x, y). By definition,
Kν(t, x, y) ∈ Hom((Eσ)y, (Eσ)x). Especially, K(t, x, x) is an endomorphism of (Eσ)x. Let
trKν(t, x, x) be the trace of this endomorphism. If X is compact, then we have

(11.2) Tr
(
e−t∆ν

)
=

∫

X

trKν(t, x, x) dx.

To begin with we rewrite (11.2). Let ∆̃ν be the Bochner-Laplace operator on the universal

covering X̃ . Let Hν
t : G(R)

1 → End(Vν) be the convolution kernel of e−t∆̃ν and

(11.3) hνt (g) := trHν
t (g).

Assume that Γ\G(R)1 is compact. Then one has

(11.4) Tr
(
e−t∆ν

)
=

∫

Γ\G(R)1

∑

γ∈Γ

hνt (g
−1γg) dg.

For the proof see [MP2, (3.13)]. Let RΓ denote the right regular representation of G(R)1

on L2(Γ\G(R)1). Recall that for any f ∈ C∞
c (G(R)1), RΓ(f) is the integral operator with

kernel
∑

γ∈Γ f(g
−1
1 γg2). Thus the right hand side of (11.4) equals TrRΓ(h

ν
t ) and (11.2) can

be rewritten as

(11.5) Tr
(
e−t∆ν

)
= TrRΓ(h

ν
t ).

If X is not compact, we choose an appropriate height function h on X , that is, a function
which measures how far out in the cusp a point is. For Y > 0 letXY = {x ∈ X : h(x) ≤ Y }.
If X = Γ\X̃ with Γ ⊆ G(Q) a congruence subgroup, there is a canonical choice of height
function: Recall the function H0 = HP0 : G(R)1 −→ a0 and fix a norm ‖ · ‖ on a0. Then
X ∋ x 7→ maxγ∈Γ ‖H0(γx)‖ defines a height function on X . Assume that XY is compact.
Then the integral

(11.6)

∫

XY

trKν(t, x, x) dx

is well defined. Suppose that this integral has an asymptotic expansion in Y . Then it
is natural to define the regularized trace Trreg(e

−t∆ν ) as the finite part of the integral as
Y → ∞. For hyperbolic manifolds this has been carried out in [MP1]. The regularized
trace defined in this way depends of course on the choice of the height function. To choose
the height function, we pass to the adelic setting. In fact, we will not define it explicitly.
Instead we use directly the truncated manifold.

Let Kf ⊂ G(Af) be a neat open compact subgroup. Let X(Kf) be the arithmetic
manifold defined by (3.21) and let Eν → X(Kf) be the locally homogeneous vector bundle
defined by (3.26). By (3.19) we have

L2(X(Kf), Eν) =
l⊕

i=1

L2(Γi\X̃, Ei,ν).
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Using (11.1) we extend hνt to a C∞-function on G(R) by

(11.7) h̃νt (g∞z) = hνt (g∞), g∞ ∈ G(R)1, z ∈ AG(R)
0.

Let 1Kf
denote the characteristic function of Kf in G(Af). We normalize the characteristic

function by

(11.8) χKf
:=

1Kf

vol(Kf)
.

Define φν
t ∈ C∞(G(A)) by

(11.9) φν
t (g∞gf ) = h̃νt (g∞)χKf

(gf)

for g∞ ∈ G(R), gf ∈ G(Af). Let R denote the right regular representation of G(A) on
L2(AG(R)

0G(Q)\G(A)), and let ΠKf
denote the orthogonal projection of L2(AG(R)

0G(Q)\G(A))
onto L2(AG(R)

0G(Q)\G(A))Kf . Using the isomorphism (3.19) of G(R)-modules, it follows
that

(11.10) R(φν
t ) =

[
l⊕

i=1

RΓi
(hνt )

]
◦ ΠKf

.

Let C(G(R)1) be Harish-Chandra’s Schwartz space (see [Wal, 7.1.2]). As explained in
section 9, we have hνt ∈ C(G(R)1) for all t > 0. This implies φν

t ∈ C(G(A), Kf). Thus by
[FL1, Theorem 7.1], JT (φν

t ) is defined for all T ∈ a0. Let G(A)
1
≤T be defined by (4.34) and

for T ∈ a0 let d(T ) be defined by (4.35). Let C ⊂ a+0 be a positive cone for which there
exists c > 0 such that

d(T ) ≥ c‖T‖, for all T ∈ C.

Then by Theorem 4.1 it follows that for every t > 0 we have

(11.11)

∫

G(Q)\G(A)1
≤T

∑

γ∈G(Q)

φν
t (x

−1γx) dx = JT (φν
t ) +O

(
e−‖T‖/2

)

for all T ∈ C with ‖T‖ > d0/c, where d0 > 0 is as in Theorem 4.1 and the implied constant
in the remainder term depends on t. Now by [FL1, Theorem 7.1], JT (φν

t ) is a polynomial
in T . Therefore (11.11) suggests to define the regularized trace of e−t∆ν as the constant
term of this polynomial. In order to relate it to the trace formula, we need an additional
assumption. Let T0 ∈ a0 be the unique point determined by [Ar3, Lemma 1.1]. Then the
distribution Jgeo is defined by

Jgeo(f) := JT0(f), f ∈ C∞
c (G(A)1).

and by [FL1, Theorem 7.1], Jgeo extends continuously to C(G(A)1). As proved in [Ar3, p.
19], Jgeo depends only on the choice of a maximal compact subgroup K of G(A) and M0,
but is independent of the choice of the minimal parabolic subgroup P0 with Levi component
M0. Let W0 be the Weyl group of (G,A0). For s ∈ W0 let ws ∈ G(Q) be a representative
of s. As shown in [Ar3, p. 10], ws belongs to KM0(A) for all s ∈ W0. Now assume that
each s ∈ W0 has a representative in G(Q)∩K. Then it follows from [Ar3, Lemma 1.1] that
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sT0 = T0 for all s ∈ W0, and therefore T0 = 0. Thus in this case, the constant term of JT (f)
equals Jgeo(f). Let G = GL(n). Then A0 consists of diagonal matrices and W0 is equal to
the symmetric group Sn which acts by permutations. A permutation matrix Pπ is a n×n-
matrix where in row i the entry π(i) is equal to 1 and all other entries are equal to 0. Such a
matrix belongs to GL(n,Q)∩K. The case G = SL(n) is similar. Thus for G = GL(n) and
G = SL(n) the constant term of JT (f) equals Jgeo(f) and the above discussion suggests
to define the regularized trace to be Jgeo(φ

ν
t ). In general T0 6= 0 and therefore, Jgeo(φ

ν
t ) is

not the constant term of the polynomial JT
geo(φ

ν
t ). Nevertheless we choose Jgeo(φ

ν
t ) as the

definition of the regularized trace in general, because of its independence on the choice of
the minimal parabolic subgroup P0.

Definition 11.1. Let G be a reductive algebraic group over Q with Q-split center. The
regularized trace of e−t∆ν is defined to be

Trreg
(
e−t∆ν

)
:= Jgeo(φ

ν
t ).

12. The asymptotic expansion of the regularized trace for GL(n) and

SL(n)

It is well known that on a compact manifold, the trace of the heat operator Tr
(
e−t∆

)
of

a generalized Laplacian ∆ admits an asymptotic expansion as t→ 0 (see [BGV]). We wish
to establish a similar result for the regularized trace Trreg(e

−∆ν ) introduced in section 11.
For technical reasons we have to restrict to the group G = GL(n) or G = SL(n).

12.1. Auxiliary results. We fix an open compact subgroup Kf ⊂ G(Af). Let φν
t ∈

C∞(G(A)1) be defined by (11.9). To begin with we replace φν
t by a compactly supported

function. Let 0 < a < b. Let h ∈ C∞(R) such that h(u) = 1 if |u| ≤ a, and h(u) = 0, if

|u| ≥ b. Let d(x, y) denote the geodesic distance of x, y ∈ X̃ . Put

r(g∞) := d(g∞K∞, K∞).

Let ϕ ∈ C∞
c (G(R)) be defined by

ϕ(g∞) := h(r(g∞)).

Define φ̃ν
t ∈ C∞(G(A)) by

(12.1) φ̃ν
t (g∞gf) := ϕ(g∞)hνt (g∞)χKf

(gf ).

for g∞ ∈ G(R) and gf ∈ G(Af). Then the restriction of φ̃ν
t to G(A)

1 belongs to C∞
c (G(A)1).

Proposition 12.1. There exist C, c > 0 such that

|Jgeo(φ
ν
t )− Jgeo(φ̃

ν
t )| ≤ Ce−c/t

for 0 < t ≤ 1.
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Proof. Let Jspec(Φ), Φ ∈ C∞
c (G(A)1), be the spectral side of the trace formula. By [FLM1],

Jspec(Φ) converges absolutely for Φ ∈ C(G(A)1;Kf) and by the trace formula we have

(12.2) Jgeo(Φ) = Jspec(Φ), Φ ∈ C(G(A)1;Kf).

Put ψν
t := φν

t − φ̃ν
t and f := 1 − ϕ. Let Ω (resp. ΩK∞) denote the Casimir operator of

G(R) (resp. K∞). Let
∆G = −Ω + 2ΩK∞ .

By the proof of Theorem 3 of [FLM1] (see [FLM1, Sect. 5]), it follows that there exists
k ∈ N such that

|Jspec(φ
ν
t )− Jspec(φ̃

ν
t )| = |Jspec(ψ

ν
t )| ≤ C‖(Id+∆G)

k(ψν
t )‖L1(G(A)1)

for some C > 0. Now note that by definition

ψν
t (g∞gf) = f(g∞)hνt (g∞)χKf

(gf).

Hence
‖(Id+∆G)

k(ψν
t )‖L1(G(A)1) = vol(Kf)‖(Id+∆G)

k(fhνt )‖L1(G(R)1).

Let g be the Lie algebra of G(R) and let Y1, . . . , Yr be an orthonormal basis of g. Then
∆G = −∑i Y

2
i . Denote by ∇ the canonical connection on G(R). Then it follows that

there exists C1 > 0 such that

|(Id+∆G)
kF (g)| ≤ C

k∑

l=0

‖∇lF (g)‖, g ∈ G(R),

for all F ∈ C∞(G(R)). Let m = dimG(R). and j ∈ N. By [Mu1, Proposition 2.1], for
every j ∈ N there exist C2, c > 0 such that

(12.3) ‖∇jhνt (g)‖ ≤ C2t
−(m+j)/2e−cr2(g)/t, g ∈ G(R),

for all 0 < t ≤ 1. Since f vanishes in neighborhood of 1 ∈ G(R), it follows that there exist
C4, c4, c5 > 0 such that

k∑

l=0

‖∇l(fhνt )(g)‖ ≤ C4e
−c4/te−c5r2(g)

for all g ∈ G(R) and 0 < t ≤ 1. Since G(R) ∋ g 7→ e−c5r2(g) is integrable on G(R), we
obtain

‖(Id+∆G)
k(fhνt )‖L1(G(R)1) ≤ C5e

−c4/t

for some constant C5 > 0, which completes the proof. �

Let K(N) ⊂ G(Af ) be the principal congruence subgroup of level N ∈ N. From now on
we assume that Kf is contained in K(N) for some N ≥ 3. By Proposition 12.1 it suffices

to show that Jgeo(φ̃
ν
t ) admits an asymptotic expansion as t → 0. Now by our assumption

on Kf it follows that if the support of f is a sufficiently small neighborhood of 0, then by
(6.2) we have

Jgeo(φ̃
ν
t ) = Junip(φ̃

ν
t ).
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Now we use the fine geometric expansion (6.4) by which we express Junip(φ̃
ν
t ) in terms of

a finite linear combination of weighted orbital integrals. Next we use (6.5). Since at the
finite places our test function is fixed, we are reduced to the consideration of real weighted
orbital integrals in some Levi subgroup of G. Since the weighted orbital integrals JL

M for
L ⊆ G a semistandard Levi subgroup can be treated analogously to the case of L = G

(they can be reduced to weighted orbital integrals of the form J
GL(m)
M ′ or J

SL(m)
M ′ for suitable

m and M ′), it suffices to consider the weighted orbital integrals for L = G. Now observe

that the kernel Hν
t : G(R)

1 → End(Vσ) of e
−t∆̃ν satisfies

Hν
t (k

−1gk′) = ν(k)−1 ◦Hν
t (g) ◦ ν(k′), ∀k, k′ ∈ K, ∀ g ∈ G(R)1.

(see [MP4, §3]). Therefore the function hνt = trHν
t is invariant under conjugation by

k∞ ∈ K∞. Define F ν
t by

F ν
t (g) = ϕ(g)hνt (g), g ∈ G(R).

Then by (7.2) the orbital integral that we need to consider is given by

(12.4) JG
M(U, F ν

t ) = c

∫

N(R)

F ν
t (n)wM(n) dn,

where M ∈ L, U ∈ (UM(R))M(R), wM(n) := wM,U(n) is the weight function described in
section 7 and N is the unipotent radical of some parabolic subgroup Q ∈ F . Our goal is
to determine the asymptotic behavior of the integral on the right hand side as t→ 0+. To
study this integral, we identify N(R) with its Lie algebra n via the map n ∈ N(R) 7→ n−Id.
Furthermore n ∼= Rk for some k ∈ N. Let

x ∈ Rk 7→ n(x) ∈ N(R)

be the inverse map. With respect to the isomorphism the invariant measure dn is identified
with Lebesgue measure dx in Rk. Thus (12.4) equals

(12.5)

∫

Rk

F ν
t (n(x))wM(n(x)) dx.

To determine the asymptotic behavior of this integral as t→ 0+, we will use the asymptotic
expansion (10.8) of hνt . To this end we need to estimate the function

(12.6) r(x) := r(n(x)x0, x0), x ∈ Rk,

where x0 = eK∞ ∈ X̃ . Note that X̃ is a Hadamard manifold of nonpositive curvature and

the orbit N(R)x0 is a horosphere in X̃ . Then it follows by [HH, Theorem 4.6] that there
exist constants C, c > 0 such that

(12.7) r(x) ≥ C arcsinh(c‖x‖), x ∈ Rk.

Now note that

arcsinh(x) = ln
(
x+

√
x2 + 1

)
.

Thus we get

(12.8) r(x) ≥ C ln (1 + ‖x‖) , x ∈ Rk.
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We also need the Taylor expansion of r(x)2 at x = 0. This is described by the following
lemma.

Lemma 12.2. We have

r(x)2 =
1

4
‖x‖2 +O(‖x‖3)

as x→ 0.

Proof. Let H = (H1, . . . , Hn) ∈ a, H1 + . . . , Hn = 0, with n(x) ∈ K∞e
HK∞. Now note

that r(eHx0, x0) = ‖H‖ (see [BH, Corollary 10.42]). Thus it follows that r(x)2 = ‖H‖2.
Moreover,

n+ ‖x‖2 = tr
(
n(x)tn(x)

)
= tr e2H = n+ 4‖H‖2 +O(‖H‖3).

If x → 0, then also H → 0 so that this equation implies ‖H‖3 = O(‖x‖3) for small x.
Hence r(x)2 = ‖H‖2 = 1

4
‖x‖2 +O(‖x‖3) as x→ 0. �

12.2. Asymptotics for t→ 0. We can now turn to the estimation of the weighted orbital
integral (12.5). For ε > 0 let B(ε) ⊂ Rk denote the ball of radius ε centered at the origin
and let U(ε) = Rk \ B(ε). Let ψ be the function occurring in (10.8). Choose ε > 0 so
small such that ϕ(n(x)) = 1 for x ∈ B(ε) and suppψ(n(·)) ⊂ B(ε). Let 0 < t ≤ 1. By
Corollary 10.2 we have

∣∣∣∣
∫

U(ε)

ϕ(n(x))hνt (n(x))wM(n(x)) dx

∣∣∣∣ ≤ Ct−d/2

∫

U(ε)

exp

(
−r

2(x)

4t

)
|wM(n(x))| dx

for some absolute constant C > 0. Using the lower bound 12.8 for r(x), and the result on
the weight function from Proposition 7.1 we can find c, C1, C2 > 0 such that

t−d/2

∫

U(ε)

exp

(
−r

2(x)

4t

)
|wM(n(x))| dx

≤ C1 exp

(
−c(ε)

t

)∫

Rk

exp
(
−c (log(1 + ‖x‖))2

)
λ(x) dx

where c(ε) = C2 log(1 + ε) and λ : Rk −→ C is a function of the form (7.13). By (7.14) of
Lemma 7.7 the last integral is bounded by a constant so that we finally obtain

(12.9)

∣∣∣∣
∫

U(ε)

ϕ(n(x))hνt (n(x))wM(n(x)) dx

∣∣∣∣ ≤ C3 exp

(
−c(ε)

t

)

for some absolute constant C3 > 0. To deal with the integral over B(ε), we use (10.8),
which gives

∫

B(ε)

hνt (n(x))wM(n(x)) dx =t−d/2

N∑

i=0

ti
∫

B(ε)

exp

(
−r

2(x)

4t

)
aνi (x)wM(n(x)) dx

+O(tN+1−d/2)

(12.10)
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for 0 < t ≤ 1, where aνi ∈ C∞
c (B(ε)). Each of the integrals is of the form

(12.11)

∫

B(ε)

exp

(
−r

2(x)

4t

)
f(x)wM(Id+x) dx,

where f ∈ C∞
c (B(ε)). We expand r2(x) and f(x) in their Taylor series at 0. Let N ∈ N,

N ≥ 3. By Lemma 12.2 we have

(12.12) r2(x) = a‖x‖2 + ψN (x), ψN (x) =
∑

3≤|α|≤N

aαx
α + RN(x),

where

(12.13) RN (x) =
∑

|α|=N+1

Dαr2(θx)

α!
xα

for x ∈ B(ε) and some 0 ≤ θ ≤ 1. Now we change variables by x 7→
√
tx. Then (12.11)

equals

(12.14) tk/2
∫

B(εt−1/2)

exp(−a‖x‖2) exp
(
−ψN (t

1/2x)

t

)
f(t1/2x)wM(1, Id+t1/2x)

Now observe that by (12.12) we have

t−1ψN (t
1/2x) =

∑

3≤|α|≤N

aαt
|α|/2−1xα + t−1RN (t

1/2x)

and

t−1RN(t
1/2x) = t(N−1)/2

∑

|α|=N+1

Dαr2(t1/2θx)

α!
xα.

There is C > 0 such that
|Dαr2(t1/2θx)| ≤ C

for all x ∈ B(t−1/2ε), 0 < t ≤ 1, and 0 ≤ θ ≤ 1. Hence it follows that there is C1 > 0 such
that for all 0 < t ≤ 1

|t−1RN(t
1/2x)| ≤ C1t

(N−1)/2‖x‖N+1, x ∈ B(t−1/2ε).

Using the Taylor expansion of exp(u), we get for n ≥ 3

(12.15) exp

(
−ψN (t

1/2x)

t

)
=

N∑

j=0

tj/2pj(x) +RN (t, x),

where pj(x) is a polynomial of degree ≤ N2 and the remainder term satisfies

(12.16) |RN(t, x)| ≤ C2t
(N−1)/2(1 + ‖x‖)N2

for some constant C2 > 0, 0 < t ≤ 1 and x ∈ B(t−1/2ε). Similarly, using the Taylor
expansion of f(x) we get

(12.17) f(t1/2x) =
∑

|α|≤N

bαt
|α|/2xα +QN (t, x)
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with

|QN(t, x)| ≤ C3t
(N+1)/2(1 + ‖x‖)N+1

for 0 < t ≤ 1 and x ∈ B(t−1/2ε). Using (12.14), (12.15), (12.17), and Proposition 7.1, it
follows that

∫

B(ε)

exp

(
−r

2(x)

4t

)
f(x)wM(Id+x) dx = tk/2

N∑

j=0

rj∑

i=0

aij(t)(log t)
itj/2 + φN(t),(12.18)

where each aij(t) is of the form

∫

B(t−1/2ε)

e−a‖x‖2p(x)
h∏

l=1

∣∣ log |pl(x)|
∣∣ dx,

if i < rj, or ∫

B(t−1/2ε)

e−a‖x‖2p(x) dx,

if i = rj , with homogeneous polynomials p(x), p1(x), ..., ph(x). The fact that for i = rj no
logarithm appears in the integral for aij(t) can easily be seen by changing variables from x
to t1/2x in the integral on the left hand side of (12.18) and collecting all log t terms coming
from the weight function.

Finally, φN(t) satisfies

|φN(t)| ≤ Ct(N+k+1)/2

∫

B(t−1/2ε)

e−a‖x‖2(1 + ‖x‖)N2
m∏

i=1

∥∥ log |pi(x)|
∥∥ dx.

Let U(r) = Rk \B(r). Since log(1 + ‖x‖) ≤ ‖x‖ for all x, it follows from Lemma 7.7 that

∣∣∣
∫

U(t−1/2ε)

e−a‖x‖2p(x)
h∏

l=1

∣∣ log |pl(x)|
∣∣ dx

∣∣∣ ≤ Ce−aε2/(2t),

for 0 < t ≤ 1. Thus there are constants cij ∈ R and c > 0 such that

aij(t) = cij +O(e−c/t)

for 0 < t ≤ 1. By the considerations above, for each pair (i, j), 0 ≤ i ≤ rj, there exist
homogeneous polynomials p, p1, . . . , ph, such that

(12.19) cij =





∫
Rk e

−a‖x‖2p(x)
∏h

l=1

∣∣ log |pl(x)|
∣∣ dx, if i < rj ,

∫
Rk e

−a‖x‖2p(x) dx, if i = rj .

In the same way we get

|φN(t)| ≤ Ct(N+k+1)/2, 0 < t ≤ 1.

Putting everything together, we get
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Proposition 12.3. Let M ∈ L, M 6= G. For every N ∈ N, N ≥ 3, there is an expansion

(12.20) JM(u, φ̃ν
t ) = t−(d−k)/2

N∑

j=0

rj∑

i=0

cij(ν)t
j/2(log t)i +O(t(N−d+k+1)/2)

as t→ 0+.

Now we come to the first term in (6.4), where f = φ̃ν
t . Then we have to determine the

asymptotic behavior of hνt (1) as t→ +0. Let Γ′ ⊂ G(R) be a cocompact torsion free lattice.

Such a lattice exists by [Bo1]. Let X ′ = Γ′\X̃ and E ′
ν → X ′ the locally homogeneous vector

bundle associated to ν. Let ∆X′,ν be the corresponding Bochner-Laplace operator. The
kernel of e−t∆X′,ν , regarded as operator in L2(Γ\G(R), ν), is given by

Kν(t, g1, g2) :=
∑

γ∈Γ′

Hν
t (g

−1
1 γg2).

Hence

Tr
(
e−t∆X′,ν

)
=

∫

Γ\G(R)

trKν(t, g, g) dg =

∫

Γ\G(R)

∑

γ∈Γ′

hνt (g
−1γg) dg

= vol(Γ′\G(R))hνt (1) +
∫

Γ′\G(R)

∑

γ∈Γ′\{1}

hνt (g
−1γg) dg.

As in [MP2, (5.10)], the last term on the right can be estimated by C1e
−c1/t for 0 < t ≤ 1

and some constants C1, c1 > 0. Thus we get

hνt (1) =
1

vol(Γ′\G(R) Tr
(
e−t∆X′,ν

)
+O(e−c1/t)

for 0 < t ≤ 1. Now the trace of the heat operator on a compact manifold has an asymptotic
expansion as t→ +0 (see [Gi]). Hence, it follows that there is an asymptotic expansion

hνt (1) ∼
∞∑

j=0

ajt
−d/2+j

as t→ +0. Combined with Proposition 12.3 we obtain Theorem 1.1.

13. The analytic torsion

In this section we assume that G = GL(n) or G = SL(n). We consider the case G =
SL(n). The case G = GL(n) is similar. We choose K∞ = SO(n) as maximal compact

subgroup of G(R) = SL(n,R). Then X̃ = SL(n,R)/ SO(n) and X(Kf) = Γ\X̃ , where
Γ = (G(R)×Kf) ∩G(Q).
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13.1. The Hodge-Laplace operator and heat kernels. Let τ be an irreducible finite-
dimensional representation of G(R) on Vτ . Let Eτ be the flat vector bundle over X asso-

ciated to the restriction of τ to Γ. Let Ẽτ be the homogeneous vector bundle associated

to τ |K∞ and let Eτ := Γ\Ẽτ . There is a canonical isomorphism

(13.1) Eτ ∼= Eτ

[MM, Proposition 3.1]. By [MM, Lemma 3.1], there exists a positive definite inner product
〈·, ·〉 on Vτ such that

(1) 〈τ(Y )u, v〉 = −〈u, τ(Y )v〉 for all Y ∈ k, u, v ∈ Vτ
(2) 〈τ(Y )u, v〉 = 〈u, τ(Y )v〉 for all Y ∈ p, u, v ∈ Vτ .

Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Since τ |K∞ is unitary with respect to this inner product, it induces a metric
on Eτ , and by (13.1) on Eτ , which we also call admissible. Let Λp(Eτ ) = ΛpT ∗(X)⊗ Eτ .
Let

νp(τ) := ΛpAd∗⊗τ : K∞ → GL(Λpp∗ ⊗ Vτ ).(13.2)

Then by (13.1) there is a canonical isomorphism

Λp(Eτ ) ∼= Γ\(G(R)×νp(τ) (Λ
pp∗ ⊗ Vτ ))(13.3)

of locally homogeneous vector bundles. Let Λp(X,Eτ ) be the space the smooth Eτ -valued
p-forms on X . The isomorphism (13.3) induces an isomorphism

Λp(X,Eτ ) ∼= C∞(Γ\G(R), νp(τ)),(13.4)

where the latter space is defined as in (9.3). A corresponding isomorphism also holds for
the spaces of L2-sections. Let ∆p(τ) be the Hodge-Laplacian on Λp(X,Eτ ) with respect
to the admissible metric in Eτ . Let RΓ denote the right regular representation of G(R) in
L2(Γ\G(R)). By [MM, (6.9)] it follows that with respect to the isomorphism (13.4) one
has

(13.5) ∆p(τ) = −RΓ(Ω) + τ(Ω) Id .

Let Ẽτ → X̃ be the lift of Eτ to X̃ . There is a canonical isomorphism

(13.6) Λp(X̃, Ẽτ ) ∼= C∞(G(R), νp(τ)).

Let ∆̃p(τ) be the lift of ∆p(τ) to X̃ . Then again it follows from [MM, (6.9)] that with
respect to the isomorphism (13.6) we have

(13.7) ∆̃p(τ) = −R(Ω) + τ(Ω) Id .

Let e−t∆̃p(τ) be the corresponding heat semigroup. Regarded as an operator in L2(G(R), νp(τ)),
it is a convolution operator with kernel

Hτ,p
t : G(R) → End(Λpp∗ ⊗ Vτ )(13.8)
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which belongs to C∞ ∩ L2 and satisfies the covariance property

(13.9) Hτ,p
t (k−1gk′) = νp(τ)(k)

−1Hτ,p
t (g)νp(τ)(k

′)

with respect to the representation (13.2). Moreover, for all q > 0 we have

(13.10) Hτ,p
t ∈ (Cq(G(R))⊗ End(Λpp∗ ⊗ Vτ ))

K∞×K∞,

where Cq(G(R)) denotes Harish-Chandra’s Lq-Schwartz space (see [MP2, Sect. 4]). We

note that the kernel Hτ,p
t can be expressed in terms of the kernel H

νp(τ)
t of the heat semi-

group e−t∆̃νp(τ) associated to the Bochner-Laplace operator ∆̃νp(τ) acting in C∞(X̃, Ẽνp(τ)).
For p = 0, . . . , n put

Ep(τ) := νp(τ)(ΩK∞),

which we regard as an endomorphism of Λpp∗ ⊗ Vτ . It defines an endomorphism of
ΛpT ∗(X)⊗ Eτ . By (9.5) and (13.7) we have

∆̃p(τ) = ∆̃νp(τ) + τ(Ω) Id−Ep(τ).

Let νp(τ) = ⊕σ∈Π(K∞)m(σ)σ be the decomposition of νp(τ) into irreducible representations.
This induces a corresponding decomposition of the homogeneous vector bundle

(13.11) Ẽνp(τ) =
⊕

σ∈Π(K∞)

m(σ)Ẽσ.

With respect to this decomposition we have

Ep(τ) =
⊕

σ∈Π(K∞)

m(σ)σ(ΩK∞) IdVσ ,

where σ(ΩK∞) is the Casimir eigenvalue of σ and Vσ the corresponding representation

space. Let ∆̃σ be the Bochner-Laplace operator associated to σ. By (13.11) we get a

corresponding decomposition of C∞(X̃, Ẽνp(τ)) and with respect to this decomposition we
have

∆̃νp(τ) =
⊕

σ∈Π(K∞)

m(σ)∆̃σ.

This shows that ∆̃νp(τ) commutes with Ep(τ). Hence we get

(13.12) Hτ,p
t = e−t(τ(Ω)−Ep(τ)) ◦Hνp(τ)

t .

Let hτ,pt ∈ C∞(G(R)) be defined by

(13.13) hτ,pt (g) = trHτ,p
t (g), g ∈ G(R).

Then by (13.12) we get

(13.14) hτ,pt = et(τ(Ω)−trEp(τ))h
νp(τ)
t ,

where h
νp(τ)
t = trH

νp(τ)
t . As in (11.9) we define φτ,p

t ∈ C∞(G(A)) by

(13.15) φτ,p
t (g∞gf) := hτ,pt (g∞)χKf

(gf)
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for g∞ ∈ G(R) and gf ∈ G(Af). Following Definition 11.1, we define the regularized trace
of e−t∆p(τ) by

(13.16) Trreg
(
e−t∆p(τ)

)
:= Jgeo(φ

τ,p
t ).

13.2. Decay for the continuous spectrum. The next goal is to determine the asymp-
totic behavior of Trreg

(
e−t∆p(τ)

)
as t→ ∞ and t→ 0+. To study the asymptotic behavior

as t → ∞ we use the trace formula (5.1). By Theorem 5.1, Jspec is a distribution on
C(G(A);Kf) and by [FL1, Theorem 7.1], Jgeo is continuous on C(G(A);Kf). This implies
that (5.1) holds for φτ,p

t and we have

(13.17) Trreg
(
e−t∆p(τ)

)
= Jspec(φ

τ,p
t ).

Now we apply Theorem 5.1 to study the asymptotic behavior as t→ ∞ of the right hand
side. Let M ∈ L and P ∈ P(M). Recall that L2

dis(AM (R)0M(Q)\M(A)) splits as the
completed direct sum of its π-isotypic components for π ∈ Πdis(M(A)). We have a corre-
sponding decomposition of Ā2(P ) as a direct sum of Hilbert spaces ⊕̂π∈Πdis(M(A))Ā2

π(P ).
Similarly, we have the algebraic direct sum decomposition

A2(P ) =
⊕

π∈Πdis(M(A))

A2
π(P ),

where A2
π(P ) is the K-finite part of Ā2

π(P ). For σ ∈ K̂∞ let A2
π(P )

σ be the σ-isotypic
subspace. Then A2

π(P ) decomposes as

A2
π(P ) =

⊕

σ∈K̂∞

A2
π(P )

σ.

Let A2
π(P )

Kf be the subspace of Kf -invariant functions in A2
π(P ), and for any σ ∈ K̂∞ let

A2
π(P )

Kf ,σ be the σ-isotypic subspace of A2
π(P )

Kf . Recall that A2
π(P )

Kf ,σ is finite dimen-
sional. LetMQ|P (π, λ) denote the restriction ofMQ|P (λ) toA2

π(P ). Recall that the operator
∆X (P, λ), which appears in the formula (5.8), is defined by (5.6). Its definition involves
the intertwining operators MQ|P (λ). If we replace MQ|P (λ) by its restriction MQ|P (π, λ) to
A2

π(P ), we obtain the restriction ∆X (P, π, λ) of ∆X (P, λ) to A2
π(P ). Similarly, let ρπ(P, λ)

be the induced representation in Ā2
π(P ). Fix β ∈ BP,Ls and s ∈ W (M). Then for the

integral on the right of (5.8) with h = φτ,p
t we get

(13.18)
∑

π∈Πdis(M(A))

∫

i(aGLs
)∗
Tr
(
∆XLs (β)

(P, π, λ)M(P, π, s)ρπ(P, λ, φ
τ,p
t )
)
dλ.

Let P,Q ∈ P(M) and ν ∈ Π(K∞). Denote by M̃Q|P (π, ν, λ) the restriction of

MQ|P (π, λ)⊗ Id : A2
π(P )⊗ Vν → A2

π(P )⊗ Vν
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to (A2
π(P )

Kf ⊗ Vν)
K∞ . Denote by ∆̃XLs (β)

(P, π, ν, λ) and M̃(P, π, ν, s) the corresponding

restrictions. Let m(π) denote the multiplicity with which π occurs in the regular represen-
tation of M(A) in L2

dis(AM(R)0M(Q)\M(A)). Then

(13.19) ρπ(P, λ) ∼= ⊕m(π)
i=1 Ind

G(A)
P (A)(π, λ).

Fix positive restricted roots of aP and let ρaP denote the corresponding half-sum of these
roots. For ξ ∈ Π(M(R)) and λ ∈ a∗P let

πξ,λ := Ind
G(R)
P (R)(ξ ⊗ eiλ)

be the unitary induced representation. Let ξ(ΩM) be the Casimir eigenvalue of ξ. Define
a constant c(ξ) by

(13.20) c(ξ) := −〈ρaP , ρaP 〉+ ξ(ΩM).

Then for λ ∈ a∗P one has

(13.21) πξ,λ(Ω) = −‖λ‖2 + c(ξ)

(see [Kn, Theorem 8.22]). Let

(13.22) T := {ν ∈ Π(K∞) : [νp(τ) : ν] 6= 0}.
Using (13.12), (13.19) and (9.13), it follows that (13.18) is equal to

∑

π∈Πdis(M(A))

∑

ν∈T

e−t(τ(Ω)−c(π∞))

∫

i(aGLs
)∗
e−t‖λ‖2 Tr

(
∆̃XLs (β)

(P, π, ν, λ)M̃(P, π, ν, s)
)
dλ.

(13.23)

In order to estimate (13.23) from above, we need the following two preparatory results.

Lemma 13.1. Let (τ, Vτ ) ∈ Rep(G(R)). Assume that τ 6∼= τθ. Let P =MAN be a proper

parabolic subgroup of G and let KM
∞ = M(R) ∩ K∞. Let ξ ∈ M̂(R) and assume that

dim(Wξ ⊗ Λpp∗ ⊗ Vτ )
KM

∞ 6= 0. Then one has

τ(Ω)− c(ξ) > 0.

Proof. Let ξ ∈ M̂(R) with dim(Wξ ⊗ Λpp∗ ⊗ Vτ )
KM

∞ 6= 0. Assume that τ(Ω) − c(ξ) ≤ 0.
Then by (13.21) there exists λ0 ∈ a∗ such that

πξ,λ0(Ω) = τ(Ω).

By Frobenius reciprocity we have

dim (Wξ ⊗ Λpp∗ ⊗ Vτ )
KM

∞ = dim (Hξ,λ0 ⊗ Λpp∗ ⊗ Vτ )
K∞ .

Combined with our assumption and [BW, Proposition II,3.1] it follows that

dimHp(g, K∞;Hξ,λ0,K∞ ⊗ Vτ ) 6= 0,
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where Hξ,λ0,K∞ denotes the subspace of K∞-finite vectors of Hξ,λ0 . Since τ 6= τθ, this is a
contradiction to the first statement of [BW, Proposition II. 6.12]. Thus it follows that

τ(Ω)− c(ξ) > 0

for all ξ ∈ M̂(R) satisfying dim(Wξ ⊗ Λpp∗ ⊗ Vτ )
KM

∞ 6= 0. �

Lemma 13.2. For every R ≥ 0, the number of π ∈ Πdis(M(A)) with λπ∞ ≥ −R and
A2

π(P )
Kf ,ν 6= 0 for some ν ∈ T is finite.

Proof. To prove the lemma, it suffices to show that for every R ≥ 0 we have

(13.24)
∑

π∈Πdis(M(A))
−λπ∞≤R

dim(A2
π(P )

Kf ,ν) <∞.

By passing to a subgroup of finite index, we may assume that Kf =
∏

p<∞Kp. Let

KM,f = Kf ∩M(Af ) and KM.∞ = K∞ ∩M(R). For π ∈ Π(M(A)) and τ ∈ Π(KM,∞) let
Hπ∞(τ) denote the τ -isotypical subspace of the representation space Hπ∞ . Arguing as in
the proof of Proposition 3.5 in [Mu1], it follows that in order to establish (13.24), it suffices
to show that for every τ ∈ Π(KM,∞)

∑

π∈Πdis(M(A))
−λπ∞≤R

dim(HKM,f
πf ) · dim(Hπ∞(τ)) <∞.

Let ΓM ⊂M(R) be an arithmetic subgroup. Let ΩM(R)1 be the Casimir element of M(R)1

and let Aτ be the differential operator in C∞(ΓM\M(R)1; τ) which is induced by −ΩM(R)1 .
Let Āτ be its self-adjoint extension of Aτ in L2. Proceeding as in the proof of Lemma 3.2
of [Mu1], it follows that it suffices to show that for every R ≥ 0, the number of eigenvalues
λi of Āτ (counted with multiplicities), satisfying λi ≤ R is finite. Let ∆τ be the Bochner-
Laplace operator and let Λτ be the Casimir eigenvalue of τ . Then ∆τ = Aτ +Λτ Id. Since
∆τ ≥ 0 and by [Mu3], the counting function of the eigenvalues has a polynomial bound,
the lemma follows. �

Now we can begin with the estimation of (13.23). Using that M(P, π, s) is unitary, it
follows that (13.23) can be estimated by

∑

π∈Πdis(M(A))

∑

ν∈T

dim
(
A2

π(P )
Kf ,ν

)

· e−t(τ(Ω)−c(π∞))

∫

i(aGLs
)∗
e−t‖λ‖2‖∆̃XLs (β)

(P, π, ν, λ)‖ dλ.
(13.25)

For π ∈ Π(M(A)) denote by λπ∞ the Casimir eigenvalue of the restriction of π∞ toM(R)1.
Given λ > 0, let

Πdis(M(A);λ) := {π ∈ Πdis(M(A)) : |λπ∞| ≤ λ} .
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Let d = dimM(R)1/KM
∞ . As in [Mu1, Proposition 3.5] it follows that for every ν ∈ Π(K∞)

there exists C > 0 such that

(13.26)
∑

π∈Πdis(M(A);λ)

dimA2
π(P )

Kf ,ν ≤ C(1 + λd/2)

for all λ ≥ 0. Next we estimate the integral in (13.25). Let β = (β∨
1 , . . . , β

∨
m) and

XLs(β) = (Q1, . . . , Qm) ∈ ΞLs(β) with with Qi = 〈Pi, P
′
i 〉, Pi|βiP ′

i , i = 1, . . . , m. Using
the definition (5.6) of ∆XLs (β)

(P, π, ν, λ), it follows that we can bound the integral by a
constant multiple of

(13.27) dim(ν)

∫

i(aGLs
)∗
e−t‖λ‖2

m∏

i=1

∥∥∥∥δPi|P ′
i
(λ)
∣∣∣
A2

π(P
′
i )

Kf ,ν

∥∥∥∥ dλ.

We introduce new coordinates si := 〈λ, β∨
i 〉, i = 1, . . . , m, on (aGLs,C)

∗. Using (5.2), we can
write

(13.28) δPi|P ′
i
(λ) =

n′
βi
(π, si)

nβi
(π, si)

+ jP ′
i
◦ (Id⊗RPi|P ′

i
(π, si)

−1R′
Pi|P ′

i
(π, si)) ◦ j−1

P ′
i
.

Put
A2

π(P )
Kf ,T =

⊕

ν∈T

A2
π(P )

Kf ,ν ,

where T is defined by (13.22). It follows from [Mu2, Theorem 5.3] that there exist N, k ∈ N
and C > 0 such that

(13.29)

∫

iR

∣∣∣∣
n′
βi
(π, s)

nβi
(π, s)

∣∣∣∣ (1 + |s|2)−k ds ≤ C(1 + λ2π∞
)N , i = 1, . . . , m,

for all π ∈ Πdis(M(A)) with A2
π(P )

Kf ,T 6= 0. Furthermore, for G = GL(n) it follows from
[MS, Proposition 0.2] that there exist k, C > 0 such that

(13.30)

∫

iR

∥∥∥∥RPi|P ′
i
(π, s)−1R′

Pi|P ′
i
(π, s)

∣∣∣
A2

π(P
′
i )

Kf ,ν

∥∥∥∥ (1 + |s|2)−k ds ≤ C, i = 1, . . . , m,

for all ν ∈ T and π ∈ Πdis(M(A)) with A2
π(P )

Kf ,ν 6= 0. To show that (13.30) also holds
for G = SL(n), we proceed as in the proof of [FLM2, Lemma 5.14]. Combining (13.28),
(13.29) and (13.30), it follows that for t ≥ 1 we have

∫

i(aGLs
)∗
e−t‖λ‖2

m∏

i=1

∥∥∥∥δPi|P ′
i
(λ)
∣∣∣
A2

π(P
′
i )

Kf ,ν

∥∥∥∥ dλ≪ (1 + λ2π∞
)mN

for all π ∈ Πdis(M(A)) with A2
π(P )

Kf ,T 6= 0. Thus (13.25) can be estimated by a constant
multiple of

(13.31)
∑

π∈Πdis(M(A))

∑

ν∈T

dim
(
A2

π(P )
Kf ,ν

)
(1 + λ2π∞

)mNe−t(τ(Ω)−c(π∞)).

First assume that M is a proper Levi subgroup. Note that by (13.20) one has

(13.32) τ(Ω)− c(π∞) = τ(Ω) + ‖ρa‖2 − λπ∞ .
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Together with Lemma 13.2, it follows that there exists λ0 > 0 such that

τ(Ω)− c(π∞) ≥ |λπ∞|/2
for all π ∈ Πdis(M(A)) with A2

π(P )
Kf ,T 6= 0 and |λπ∞| ≥ λ0. Decompose the sum over π

in (13.31) in two summands Σ1(t) and Σ2(t), where in Σ1(t) the summation runs over all
π with |λπ∞| ≤ λ0. Using (13.26), it follows that for t ≥ 1

Σ2(t) ≪ e−t|λ0|/2.

Since Σ1(t) is a finite sum by Lemma 13.2, both in π and ν, it follows from Lemma 13.1
that there exists c > 0 such that

Σ1(t) ≪ e−ct

for t ≥ 1. Putting everything together it follows that for every τ ∈ Rep(G(R)) such that
τ 6∼= τθ and every proper Levi subgroup M of G there exists c > 0 such that

(13.33) Jspec,M(φτ,p
t ) = O(e−ct)

for t ≥ 1.

Now consider the case M = G. Then c(π∞) = π∞(Ω) and we need to show that

(13.34) τ(Ω)− π∞(Ω) > 0

for all π ∈ Πdis(G(A)) with dimHKf ,T
π 6= 0. This follows from [BV, Lemma 4.1], and we

can proceed as in the case M 6= G to prove that

Jspec,G(φ
τ,p
t ) = O(e−ct)

for t ≥ 1. Combined with (13.33) we obtain

Proposition 13.3. Let τ ∈ Rep(G(R)). Assume that τ 6∼= τθ. Then there exists c > 0
such that

Jspec(φ
τ,p
t ) = O

(
e−ct

)

for all t ≥ 1 and p = 0, . . . , n.

13.3. Definition of analytic torsion. Applying the trace formula (5.1), we get

Trreg
(
e−t∆p(τ)

)
= O(e−ct), as t→ ∞,

which is the proof of Theorem 1.2. Using (13.16), (13.14) and Theorem 1.1, it follows that
as t→ +0, there is an asymptotic expansion of the form

Trreg
(
e−t∆p(τ)

)
∼ t−d/2

∞∑

j=0

ajt
j + t−(d−1)/2

∞∑

j=0

rj∑

i=0

bijt
j/2(log t)i.

Thus the corresponding zeta function ζp(s; τ), defined by the Mellin transform

(13.35) ζp(s; τ) :=
1

Γ(s)

∫ ∞

0

Trreg
(
e−t∆p(τ)

)
ts−1 dt.



56 JASMIN MATZ AND WERNER MÜLLER

is holomorphic in the half-plane Re(s) > d/2 and admits a meromorphic extension to the
whole complex plane. It may have a pole at s = 0. Let f(s) be a meromorphic function
on C. For s0 ∈ C let

f(s) =
∑

k≥k0

ak(s− s0)
k

be the Laurent expansion of f at s0. Put FPs=s0 := a0. Now we define the analytic torsion
TX(τ) ∈ R+ by

(13.36) log TX(τ) =
1

2

d∑

p=0

(−1)pp

(
FPs=0

ζp(s; τ)

s

)
.

Put

(13.37) K(t, τ) :=
d∑

p=1

(−1)ppTrreg
(
e−t∆p(τ)

)
.

Then K(t, τ) = O(e−ct) as t→ ∞ and the Mellin transform
∫ ∞

0

K(t, τ)ts−1dt

converges absolutely and uniformly on compact subsets of Re(s) > d/2 and admits a
meromorphic extension to C. Moreover, by (13.36) we have

(13.38) log TX(τ) = FPs=0

(
1

Γ(s)

∫ ∞

0

K(t, τ)ts−1dt

)
.

Let

φτ
t :=

d∑

p=1

(−1)ppφτ,p
t and kτt :=

d∑

p=1

(−1)pphτ,pt .

Then by (13.16) we have

(13.39) K(t, τ) = Jspec(φ
τ
t ).

For π ∈ Π(G(R)) let Θπ be the global character. Then we get

(13.40) Jspec,G(φ
τ
t ) =

∑

π∈Πdis(G(A))

m(π) dim
(
HKf

πf

)
Θπ∞(k

τ
t ).

For n ∈ N, n ≥ 2, let δn := rankC SL(n)− rankC SO(n) be the fundamental rank of SL(n).

Lemma 13.4. For G = GL(n) and n ≥ 5 we have Jspec,G(φ
τ
t ) = 0.

Proof. Let Q be a standard cuspidal parabolic subgroup of G(R). Let Q = MQAQNQ be
the Langlands decomposition of Q. Let (ξ,Wξ) be a discrete series representation of MQ

and let ν ∈ a∗Q,C. Let πξ,ν be the induced representation. By [MP2, Proposition 4.1] we
have Θξ,ν(k

τ
t ) = 0, if dim aQ ≥ 2. If δn ≥ 2, it follows that dim aQ ≥ 2 for every cuspidal

parabolic subgroup Q of G(R). Thus Θξ,ν(k
τ
t ) = 0 for all cuspidal parabolic subgroups Q

and pairs (ξ, ν) as above. Now observe that for GL(n) the R-group is trivial. Therefore, it
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follows from [De, section 2.2] that the Grothendieck group of all admissible representations
of G(R) is generated by the induced representations πξ,ν as above. Hence Θπ(k

τ
t ) = 0 for

all π ∈ Π(G(R)). If n ≥ 5, then δn ≥ 2 and the lemma follows from (13.40). �

Remark 13.5. If Γ is cocompact and n ≥ 5, then it follows that TX(τ) = 1. In the
noncompact case this need not be true. In [MP1] the case of finite volume hyperbolic
manifolds has been studied. It has been shown that in even dimensions, the renormalized
analytic torsion has a simple expression, but is not trivial. This includes the case of SL(2).

14. The case G = GL(3)

If G = GL(3), the weight functions are explicitly given by (8.1)- (8.3). Using the explicit
form of the weight function, we can extract more precise information about the pole at
s = 0. To this end we need to show that the coefficients cij(ν) in (12.20) with j = d − k
and i = 1, . . . , rd−k vanish for the corresponding orbital integrals. In our case d = 5. Now
consider the first integral (8.1). Then k = 2 and the weight function is log(y2 + z2). Thus
the highest power with which log t occurs in the asymptotic expansion of (8.1) is 1. This
means that c13(ν) is the only coefficient that we need to consider. It is of the form (12.19).
We are in the case i = rj . Hence

c13(ν) =

∫

R2

e−a‖x‖2p(x) dx,

where p(x) is a homogeneous polynomial. Moreover, from its construction it follows that
p(x) is odd, i.e., p(−x) = −p(x). Hence c13(ν) = 0. Thus the asymptotic expansion of the
first integral has the form

(14.1) JM1(1, h
ν
t ) ∼ t−3/2

∞∑

j=0

aj(ν)t
j/2 + t−3/2

∞∑

k=0

bk(ν)t
k/2 log t,

as t→ +0, and b3(ν) = 0.

Now consider the second integral (8.2). Then k = 3. By (8.2) we need only to consider
c12(ν), which we denote by c2(ν). Let p1(x) and p2(x) be the polynomials occurring on the
right hand side of (12.15) and aνj (g) the coefficients on the right hand side of (10.8). If we
collect all possible contributions, we get

c2(ν) =a
ν
0(1)

∫

R3

p2(x)e
−‖x‖2 dx+

3∑

i=1

∂

∂xi
aν0(n(x))

∣∣
x=0

∫

R3

xip1(x)e
−‖x‖2 dx

+
3∑

i,j=1

∂2

∂xi∂xj
aν0(n(x))

∣∣
x=0

∫

R3

xixje
−‖x‖2dx+ aν1(1)

∫

R3

e−‖x‖2 dx.

(14.2)

By definition we have

p1(x) =
∑

|α|=3

Dαr2(x)
∣∣
x=0

xα.
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Now recall that for g ∈ SL(n,R) the distance r(g(x0), x0) is given as follows. Let λ1, . . . , λn
be the eigenvalues of the positive definite matrix g⊤ · g. Then

r(g(x0), x0)
2 =

n∑

i=1

(log λi)
2.

An explicit computation shows that

r2(x1, x2, 0) = 2 log2

(
1 +

x21 + x22
2

+

√
x21 + x22 +

(x21 + x22)
2

4

)
.

Thus r(x1, x2, 0) is even in x1 and x2. The same holds for r(x1, 0, x3) and r(0, x2, x3). This
implies that for α 6= (1, 1, 1) we have Dαr2(x)

∣∣
x=0

= 0. Finally note that
∫

R3

xix1x2x3e
−‖x‖2dx = 0, and

∫

R3

xixje
−‖x‖2dx = 0, i 6= j.

Thus (14.2) is reduced to

c2(ν) =a
ν
0(1)

∫

R3

p2(x)e
−‖x‖2 dx+ aν1(1)

∫

R3

e−‖x‖2 dx

+

3∑

i=1

∂2

∂x2i
aν0(n(x))

∣∣
x=0

∫

R3

x2i e
−‖x‖2dx.

(14.3)

Thus for the second integral we get an asymptotic expansion of the form

(14.4) JM1(u(1, 0, 0), h
ν
t ) ∼ t−1

∞∑

j=0

aj(ν)t
j/2 + t−1

∞∑

k=0

ck(ν)t
k/2 log t

with c2(ν) given by (14.3). Finally consider the integral (8.3). Again k = 3. By (8.3) we
only need to consider c12(ν) and c22(ν). By the same considerations as in the previous
case, it follows that c22(ν) = c2(ν). Furthermore, c12(ν) has the same form as c2(ν), except
that the integrals contain in addition some factors log |xi| for i = 1, 2, 3. Thus we obtain

(14.5) JM0(1, h
ν
t ) ∼ t−1

∞∑

j=0

aj(ν)t
j/2 + t−1

∞∑

k=0

c1k(ν)t
k/2 log t+ t−1

∞∑

l=0

c2l(ν)t
l/2(log t)2,

with c22(ν) = c2(ν), where c2(ν) is given by (14.3), and c12(ν) is given by a similar formula
as described above. Now we specialize ν to νp(τ), which is defined by (13.2).

Lemma 14.1. Let (τ, Vτ ) be a finite dimensional representation of G(R). We have

5∑

p=1

(−1)pp · aνp(τ)0 (1) = 0,
5∑

p=1

(−1)pp · aνp(τ)1 (1) = 0.

Proof. By (10.9) we have a
νp(τ)
0 = dim(Λpp∗ ⊗ Vτ ) =

(
5
p

)
· dimVτ . Now observe that∑5

p=1(−1)pp
(
5
p

)
= 0. This proves the first statement. For the second statement we note
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that by (10.10) we have a
νp(τ)
1 (1) = tr(φ

νp(τ)
1 (x0, x0)), and by (10.6), φ

νp(τ)
1 (x0, x0) is the

second coefficient of the asymptotic expansion as t → +0 of trKνp(τ)(t, x0, x0). Using the
known structure of the coefficient, we get

(14.6) a
νp(τ)
1 (1) = −R · dim(τ)

6

{(
5

p

)
− 6

(
3

p− 1

)}
,

where R is the scalar curvature (which is constant) and it is understood that
(
m
p

)
= 0, if

p < 0 or p > m. For τ = 1, this follows from [Gi, Theorem 4.1.7, (b)]. It is easy to extend
this to the twisted case. Using (14.6), the second statement follows. �

Lemma 14.2. For every finite dimensional representation (τ, Vτ ) of G(R) we have

∂2

∂x2i

∣∣∣∣
x=0

(
5∑

p=1

(−1)pp a
νp(τ)
0 (n(x))

)
= 0.

for i = 1, 2, 3.

Proof. We consider the derivative with respect to x1. Let

n1(u) =



1 u 0
0 1 0
0 0 1


 .

Then
∂2

∂x21
a
νp(τ)
0 (n(x))

∣∣
x=0

=
∂2

∂u2
a
νp(τ)
0 (n1(u))

∣∣
u=0

.

By (10.9) we have

a
νp(τ)
0 (n1(u)) = tr(νp(τ)(k(u)) · j(x0, n1(u)x0),

where k(u) := k(n1(u)) ∈ SO(3) is determined by (10.7). Furthermore, by (13.2) we have

tr(νp(τ)(k(u)) = tr(ΛpAd∗
p(k(u)) · tr(τ(k(u)).

Let
S :=

{
A ∈ Mat3(R) : A = At, tr(A) = 0

}
,

equipped with the inner product

〈Y1, Y2〉 = Tr(Y1Y2), Y1, Y2 ∈ S.

Then p ∼= S as inner product spaces. Moreover, the adjoint representation Adp of SO(3)
on S is given by

(14.7) Adp(k)Y = k · Y · k∗, k ∈ SO(3), Y ∈ S.

With respect to this isomorphism, k(u) is determined as follows. Let A(u) := n1(u)n1(u)
∗.

Then A(u) = A(u)t and A(u) > 0. Let S(u) = A(u)−1/2. Then k(u) = S(u) · n1(u). Note
that k(u) is a block diagonal matrix of the form

(
r(θ) 0
0 1

)
,



60 JASMIN MATZ AND WERNER MÜLLER

where r(θ) ∈ SO(2) is the rotation by the angle θ. Let

Y1 =



−1/2 0 0
0 −1/2 0
0 0 1


 .

Then with respect to (14.7) we have Adp(k(u))(Y1) = Y1. Let S1 := RY1 and S0 = S⊥
1 .

Then the decomposition S = S0 ⊕ S1 is invariant under Adp(k(u)) and Adp(k(u))|S1 = Id.
Let T (u) := Adp(k(u))|S0. Then we have

(14.8)
5∑

p=1

(−1)pp tr(ΛpAd∗
p(k(u))) =

5∑

p=0

(−1)p tr(ΛpT (u)) = det(Id−T (u)).

For λ ∈ C let

(14.9) f(λ, u) := det(λ Id−T (u)), λ ∈ C, u ∈ R.

Recall that T (u) is unitary. So every eigenvalue µ of T (u) satisfies |µ| = 1. Assume that
|λ| 6= 1. Then f(λ, u) 6= 0 for all u ∈ R and

(14.10)
∂

∂u
log f(λ, u) = − tr(T ′(u)(λ Id−T (u))−1),

where T ′(u) = d
du
T (u). Note that f(λ, 0) = det(λ Id−T (0)) = (λ− 1)4. Thus

∂

∂u
f(λ, u)

∣∣
u=0

= −(λ− 1)3 tr(T ′(0)).

Since T (u) is orthogonal, it follows that tr(T ′(0)) = 0, and therefore

(14.11)
∂

∂u
f(λ, u)

∣∣
u=0

= 0.

Using (14.10), we get

∂2

∂u2
f(λ, u) = − ∂

∂u
f(λ, u) · tr(T ′(u)(λ Id−T (u))−1)

− f(λ, u) tr(T ′′(u)(λ Id−T (u))−1)

− f(λ, u) tr(T ′(u)(λ Id−T (u))−1T ′(u)(λ Id−T (u))−1).

(14.12)

Using (14.11), we obtain

∂2

∂u2
f(λ, u)

∣∣
u=0

= −(λ− 1)3 tr(T ′′(0))− (λ− 1)2 tr(T ′(0)2).

Since f(λ, u) is a polynomial in λ, it follows that this equality holds for all λ ∈ C. In
particular, we get

∂2

∂u2
f(1, u)

∣∣
u=0

= 0.

Combined with (14.8) and the definition of f(λ, u), the statement follows for i = 1. The
proof of the other cases is similar. �
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Using (14.4), (14.5) and Lemmas 14.1 and 14.2, it follows that

5∑

p=1

(−1)pp ζp(s; τ)

is holomorphic at s = 0. Thus in this case we can define log TX(Kf )(τ) by

log TX(Kf )(τ) =
1

2

d

ds

(
5∑

p=1

(−1)pp ζp(s; τ)

) ∣∣∣∣
s=0

.

15. Example: Classes of finite order for GL(2) and GL(3)

In order to remove the assumption that Γ ⊆ Γ(N) for some N ≥ 3, we need to understand
distributions Jo appearing in the coarse geometric expansion of the trace formula for which
the equivalence classes o which are not necessarily unipotent. Let Kf be an arbitrary

subgroup of G(Ẑ) of finite index and let f = f∞ ·1Kf
∈ C∞

c (G(A)1) with f∞ ∈ C∞
c (G(R)1)

and 1Kf
∈ C∞

c (G(Af)) the characteristic function of Kf . In this situation, more than just
the unipotent orbit may contribute non-trivially to the coarse geometric expansion. The
equivalence classes o ∈ O are in bijection with semisimple orbits in G(Q). Hence there is a
canonical bijection between O and monic polynomial of degree n with rational coefficients
and non-vanishing constant term if G = GL(n) by sending the semisimple conjugacy class
to its characteristic polynomial. We may therefore speak of the characteristic polynomial
and the eigenvalues of a class o. The following lemma is explained in the proof of [LM,
Lemma 5.1].

Lemma 15.1. We can choose a K∞-bi-invariant neighborhood ω ⊆ G(R)1 of K∞ such that
if o ∈ O is such that there exists f∞ ∈ C∞

c (G(R)1) supported in ω with Jo(f∞ · 1Kf
) 6= 0,

then the eigenvalues of o are all roots of unity (over some algebraic closure of Q).

Let O1 denote the set of all o ∈ O whose eigenvalues (in some algebraic closure of Q)
are all roots of unity. Note that this set is finite. By the preceding lemma we can choose
a bi-K∞-invariant f∞ ∈ C∞

c (G(R)1) with f(1) = 1 and

Jgeo(f∞ · 1Kf
) =

∑

o∈O1

Jo(f∞ · 1Kf
).

Let o ∈ O1, and let σ ∈ G(Q) ∩ o be a semisimple representative for o. Then σ is in G(R)
conjugate to some element σ∞ in O(n). For each o and f ∈ C∞

c (G(A)1) we have the fine
expansion

Jo(f) =
∑

(M,γ)

aM(γ, S)JM(γ, f),

where S is a sufficiently large finite set of places of Q with ∞ ∈ S, aM(γ, S) are certain
global coefficients as defined in [Ar7], (M, γ) runs over all pairs of Levi subgroups M
containing M0 and γ over representatives of the M(Q)-conjugacy classes in M(Q)∩ o, and
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JM(γ, f) are S-adic weighted orbital integrals. Since the (finite) set O1 and the set S are
fixed in our setting, the value of the coefficients aM(γ, S) is not relevant for us.

15.1. Orbits of finite order for GL(2). If G = GL(2), then each o ∈ O1 is represented
by one of the following semisimple elements:

σ±
0 = ±

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ±

i = ±
(

cos θi sin θi
− sin θi cos θi

)
, i = 2, 3,

with θ2 = π/2 and θ3 = π/3. We accordingly write oi or o
±
i for the associated equivalence

classes. Note that σ1, σ
±
2 , σ

±
3 are all regular semisimple so that the associated equivalence

class is in fact equal to the conjugacy class of the respective element. (In fact, o+2 = o−2 ,
but we keep the superscript to make notation more uniform.) Moreover, since we assume
that our test function f is K∞-invariant, Junip(f) = Jo−0 (f) for o−0 the class attached to

σ−
0 . Hence we only need to consider the regular elements.

The element σ1 is the only of the remaining elements which is split over R. Since it is
regular, the distribution o1 is of a simple form, namely,

Jo1(f) =

∫

U0(A)

f(u−1σ1u)vT (u) du

for every bi-K∞-invariant f ∈ C∞
c (G(A)1). It follows that if f = f∞ · 1Kf

, then

Jo1(f) = a1

∫

R

f∞(u(x)) log(1 + x2) dx+ a2

∫

R

f∞(u(x)) dx

where u(x) = ( 1 x
0 1 ), and a1, a2 ∈ R are suitable constants depending only on Kf . Using

Taylor expansion of log(1 + x2) around x = 0, we get, as in § 12, that for every N > 0,

Jo1(φ̃
ν
t ) = t−(d−1)/2

N∑

k=0

ckt
k/2 +ON(t

(N−d+1)/2)

for suitable coefficients ck.

The remaining classes are regular elliptic and non-split over R. In particular, for each
i ∈ {2, 3} we have

Jo±i (f) = ai

∫

Gσi(R)\G(R)

f∞(g−1σ±
i g) dg

for a suitable constant ai ∈ R again depending only on Kf and o±i . We have for i = 2, 3
that Gσ±

i
(R) = Z(R)K∞ so that using KAK decomposition we get

Jo±i (f) = ai

∫ ∞

0

f∞(a−1σ±
i a) sinh(2X) dX

where a = eX . We can write

±
(

cos θi e−2X sin θi
−e−2X sin θi cos θi

)
= a−1σ±

i a = k1

(
eY 0
0 e−Y

)
k2
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with suitable k1, k2 ∈ K∞ and Y ≥ 0. Hence

sinh(Y ) = αi sinh(2X)

with αi =
√
2 sin θi. Hence

Y 2 = 4α2
iX

2 +Oo±i
(X4)

around 0. Since r(a−1σ±
i a) = ‖(Y,−Y )‖, we therefore get

r2(a−1σ±
i a) = 8α2

iX
2 +Oo±i

(X4).

Using the Taylor expansion of sinh(2X), we get, as in § 12, that for any N ,

Jo±i
(φ̃ν

t ) = t−(d−2)/2
N∑

k=0

ckt
k/2 + ON,o±i

(t(N−d+2)/2)

as t→ 0+ for suitable coefficients ck depending on o±i .

15.2. Orbits of finite order for GL(3). ForG = GL(3) the real weighted orbital integrals
associated to G(R)-conjugacy classes of elements in the classes in O1 can have a more
complicated form. Each o ∈ O1 has a semisimple element which in G(R) is conjugate to
one of the following matrices:

σ±
0 = ±



1 0 0
0 1 0
0 0 1


 , σ±

1 = ±



1 0 0
0 1 0
0 0 −1


 , σ±,±

i = ±




cos θi sin θi 0
− sin θi cos θi 0

0 0 ±1


 , i = 2, 3,

with θ2 and θ3 as for GL(2). Again, we write o±i , i = 0, 1, and Jo±,±
i

, i = 2, 3, for the

associated equivalence classes. We already understand the distributions Jo±0 .

If i = 2, 3, the only semi-standard Levi subgroups of G(R) containing σ±,±
i are M(R) :=

GL2(R) × GL1(R) (diagonally embedded in G(R)) and G(R) itself. Let P (R) be the
standard parabolic subgroup of G(R) with Levi component M(R). Moreover, o±,±

i in fact
equals the conjugacy class of σ±,±

i . Hence we need to understand the real weighted orbital

integrals JM(σ±,±
i , φ̃ν

t,∞) and JG(σ
±,±
i , φ̃ν

t,∞). The latter integral equals

JG(σ
±,±
i , φ̃ν

t,∞) =

∫

M(R)
σ
±,±
i

\M(R)

∫

U(R)

φ̃ν
t,∞(u−1m−1σ±,±

i mu) du dm

=

∫

M(R)
σ
±,±
i

\M(R)

∫

U(R)

φ̃ν
t,∞(m−1σ±,±

i mu) du dm

where we used the O(n)-conjugation invariance of φ̃ν
t,∞ and that the centralizer of σ±,±

i in
G(R) and M(R) coincide. Hence for t→ 0 we get an asymptotic expansion

JG(σ
±,±
i , φ̃ν

t,∞) = t−(d−4)/2
N∑

k=0

Ckt
k/2 +ON(t

(N−d+4)/2)
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for any N > 0 where Ck are certain coefficients depending on o
±,±
i .

The other weighted orbital integral is of the form

JM(σ±,±
i , φ̃ν

t,∞) =

∫

M(R)
σ
±,±
i

\M(R)

∫

U(R)

φ̃ν
t,∞(u−1m−1σ±,±

i mu)vM(u) du dm

where the weight function is given by

vM(u) = log(1 + x2 + y2)

for u =



1 0 x
0 1 y
0 0 1


 ∈ U(R). A change of variables therefore gives

JM(σ±,±
i , φ̃ν

t,∞) =

∫

M(R)
σ
±,±
i

\M(R)

∫

U(R)

φ̃ν
t,∞(m−1σ±,±

i mu) log
(
1 + ‖w‖2

)
du dm

where

w =
(
id−m−1σ±,±

i m
)−1
(
x
y

)
∈ R2.

Using the series expansion of log around 1, this integral also has an asymptotic expansion
in t as t→ 0. Altogether, we get

Jo±,±
i

(φ̃ν
t ) = t−(d−4)/2

N∑

k=0

Bkt
k/2 +ON(t

(N−d+4)/2)

for suitable constants Bk and any N > 0.

The remaining two classes o±1 contain more elements than just the conjugates of σ±
1 .

Hence we have more orbital integrals to consider. Let u1 =
(

1 1 0
0 1 0
0 0 1

)
. Then we need to

consider the weighted orbital integrals JM0(σ
±
1 , f∞), JL(σ

±
1 , f∞), and JL(σ

±
1 u1, f∞), L =

M,G, for f∞ = φ̃ν
t,∞. For the invariant integrals we get

JG(σ
±
1 , f∞) =

∫

U(R)

f∞(u−1σ±
1 u) du = c1

∫

U(R)

f∞(σ±
1 u) du,

and similarly, after a change of variables,

JG(σ
±
1 u1, f∞) = c2

∫

U0(R)

f∞(σ±
1 u) du.

Here c1, c2 > 0 are suitable constants. The weighted orbital integrals can also be written
as integrals over U0(R), but against a non-invariant measure. For JM0(σ

±
1 , f∞) it involves

a weight function of the form log(1+x2+ y2) as above and a linear function in log |a| if we
write u =

(
1 a 0
0 1 0
0 0 1

)(
1 0 x
0 1 y
0 0 1

)
. Similarly, JM(σ±

1 u1, f∞) equals an integral over U0(R) against

log(1+x2+y2) times the invariant measure, and JM(σ±
i , f∞) equals the integral over U(R)
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against log(1 + x2 + y2) times the invariant measure on U(R). Proceeding similarly as
before, one can then show that

Jo±1 (φ̃
ν
t ) = t−(d−3)/2

N∑

k=0

Ckt
k/2 + t−(d−3)/2

N∑

k=0

Bkt
k/2 log t+ON(t

(N−d+3)/2)

for suitable constants Ck, Bk and any N .
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