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Abstract. Let X = Γ\G/K be a compact locally symmetric space. In this paper we
establish a version of the Selberg trace formula for non-unitary representations of the
lattice Γ. On the spectral side appears the spectrum of the “flat Laplacian” ∆#, acting
in the space of sections of the associated flat bundle. In general, this is a non-self-adjoint
operator.

1. Introduction

Let G be a connected real semisimple Lie group with finite center and of non-compact
type. Let K be a maximal compact subgroup of G. Then S = G/K is a Riemannian
symmetric space of nonpositive curvature. We fix an invariant metric on S which we
normalize using the Killing form. Let Γ ⊂ G be a discrete subgroup such that Γ\G is
compact. We assume that Γ is torsion free. Then Γ acts properly discontinuously and
fixed point free on S, and X = Γ\S is a compact locally symmetric manifold.

Let χ : Γ → GL(Vχ) be a finite-dimensional unitary representation. Denote by Eχ → Γ\S
the associated flat vector bundle. It is equipped with a canonical Hermitian fiber metric hχ

and a compatible flat connection ∇χ. Let dχ : C∞(X,Eχ) → Λ1(X,Eχ) be the associated
exterior derivative and let δχ be the formal adjoint of dχ with respect to the inner products
in C∞(X,Eχ) and C∞(X, T ∗(X) ⊗ Eχ), respectively, induced by the invariant metric on
S and the fiber metric hχ in Eχ. Let ∆χ = δχdχ be the associated Laplace operator. Then
∆χ is a second order elliptic, formally self-adjoint, nonnegative differential operator. In
this setting, the Selberg trace formula is an equality which expresses the trace of certain
integral operators, which are functions of the Laplacian ∆χ, in geometric terms associated
to the conjugacy classes of Γ.

The trace formula has many applications. Of particular interest for the present paper are
applications to Ruelle and Selberg zeta functions. Especially the analytic continuation and
the functional equation of twisted Ruelle and Selberg zeta functions rely on the twisted
Selberg trace formula [BO], [Se2]. Also spectral invariants of locally symmetric spaces
such as analytic torsion and eta invariants can be studied with the help of the trace
formula (see [Fr], [Mil], [MS1], [MS2]). So far, these applications are restricted to unitary
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representations of Γ and it this very desirable to extend the scope of the trace formula so
that all finite-dimensional representations are covered. This is the main goal of this paper.

To begin with we recall the trace formula for a unitary representation χ (see [Se1], [Se2]).
Let spec(∆χ) be the spectrum of ∆χ. It consists of a sequence 0 ≤ λ1 < λ2 < · · · of
eigenvalues of finite multiplicities. Denote by m(λk) the multiplicity of λk. Let ϕ ∈ S(R)
be even and assume that the Fourier transform ϕ̂ of ϕ belongs to C∞

c (R). Then ϕ((∆χ)1/2)
is a trace class operator.

We note that in the scalar case it this convenient to introduce a shift of the spectrum of
∆χ which is given by the lower bound c of the continuous spectrum of the Laplacian ∆̃
on S. Then one considers the operator ϕ

(
(∆χ − c)1/2

)
in place of ϕ((∆χ)1/2). However

this is not necessary at this stage. It only plays a role in the explicit expression of the
trace formula (see (1.4)). Moreover for operators on vector bundles like the Laplacian on
differential forms there is no appropriate choice of a shift of the spectrum. This will become
clear in the discussions of section 6. Especially (6.20) shows that in general, there is no
choice of a shift of the spectrum which leads to a simple formula for Θσ,λ(trhϕ) holding
simultaneously for all σ. Therefore for the following discussion we prefer to work with
ϕ((∆χ)1/2). However everything that we say here holds for ϕ

(
(∆χ − c)1/2

)
as well.

First observe that the trace of ϕ((∆χ)1/2) is given by

(1.1) Trϕ((∆χ)1/2) =
∑

λ∈spec(∆χ)

m(λ)ϕ(λ1/2).

Let ∆̃ be the Laplacian of S, and let hϕ be the convolution kernel of the invariant in-

tegral operator ϕ(∆̃1/2). It belongs to the space C∞
c (G//K) of K-bi-invariant compactly

supported smooth functions on G. Given γ ∈ Γ let {γ}Γ denote its Γ-conjugacy class.
Furthermore, let Gγ and Γγ denote the centralizer of γ in G and Γ, respectively. Then the
first version of the trace formula is the following identity.

∑

λ∈spec(∆χ)

m(λ)ϕ(λ1/2) = vol(Γ\S) dimVχhϕ(e)

+
∑

{γ}Γ 6=e

trχ(γ) vol(Γγ\Gγ)

∫

Gγ\G

hϕ(g−1γg) dġ.
(1.2)

To make this formula more explicit, one can use the Plancherel formula to express hϕ in
terms of ϕ. Furthermore, the orbital integrals

I(g;ϕ) =

∫

Gγ\G

hϕ(g−1γg) dġ

are invariant distributions and therefore, one can use Harish-Chandra’s Fourier inversion
formula to compute them (see [DKV, §4]). In the higher rank case this is rather complicated
and no closed formula is available. In the rank one case, however, the situation is much
better. There is a simple formula expressing the orbital integrals in terms of characters
which leads to an explicit form of the trace formula [Wa, Theorem 6.7].
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To extend the Selberg trace formula to all finite-dimensional representations of Γ, we first
note that, because hϕ has compact support, the sum on the right hand side of (1.2) is finite
and therefore, it is well defined for all finite-dimensional representations χ. The question
is what is the appropriate operator which replaces the Laplacian on the left hand side. In
general there is no Hermitian metric on Eχ which is compatible with the flat connection
∇χ. A special case has been studied by Fay [Fa]. He considered the analytic torsion TM(χ)
of a Riemann surface M = Γ\H of genus g > 1 and a unitary character χ ∈ Hom(Γ, S1)
and established the analytic continuation of TM(χ) to all characters χ ∈ Hom(Γ,C∗). To
this end he introduced a non-self-adjoint Laplacian. We use a similar approach in the
general case. The operator that replaces ∆χ is the “flat Laplacian” ∆#

χ which is defined
as follows. Let ∗ : Λp(T ∗X) → Λn−p(T ∗X) be the Hodge star operator associated to the
Riemannian metric of X. Extend ∗ to an operator ∗χ in Λp(T ∗X)⊗Eχ by ∗χ = ∗ ⊗ IdEχ

.
Define δ#

χ := (−1)n+1 ∗χ dχ ∗χ . Then the flat Laplacian ∆# is defined as

∆#
χ = δ#

χ dχ.

If χ is unitary, ∆#
χ equals ∆χ. For an arbitrary χ we pick any Hermitian fiber metric in

Eχ and use it together with the Riemannian metric on X to introduce an inner product
in C∞(X,Eχ). In general, ∆#

χ is a not self-adjoint w.r.t. this inner product. However,
if we define the corresponding Laplace operator ∆χ as above by δχdχ, where the formal
adjoint δχ is taken w.r.t. to the inner product, then ∆#

χ has the same principal symbol

as ∆χ. This implies that the operator ∆#
χ has nice spectral properties. Its spectrum is

discrete and contained in a translate of a positive cone C ⊂ C with R
+ ⊂ C (see [Sh]). If

we assume for the moment that the origin does not belong to the spectrum, then it follows
that an Agmon angle θ exists for ∆#

χ .

Now recall that ϕ is the inverse Fourier transform of an even function ϕ̂ ∈ C∞
c (R). Thus ϕ

can be continued analytically to an entire function which is the Fourier-Laplace transform
of ϕ̂ and is usually called a Paley-Wiener function. We denote the space of Paley-Wiener
functions on C by P(C). For its precise definition we refer to the section following (2.16).
So from now on we will view ϕ as an even Paley-Wiener function.

Using the existence of an Agmon angle, this permits us to define ϕ
(
(∆#

χ

)1/2

θ
) by the

usual functional calculus [Sh]. It is a trace class operator. Since ϕ is assumed to be even,

ϕ
(
(∆#

χ

)1/2

θ
) is independent of θ and we can delete θ from the notation. Lidskii’s theorem

[GK, Theorem 8.4] generalizes (1.1). As mentioned above, the spectrum spec(∆#
χ ) of

∆#
χ is discrete and consists of eigenvalues only. For λ ∈ spec(∆#

χ ) let m(λ) denote the
algebraic multiplicity of λ, i.e., m(λ) is the dimension of the root space which consists of
all f ∈ C∞(X,Eχ) such that there is N ∈ N with (∆#

χ − λ I)Nf = 0. Then by Lidskii’s
theorem we have

(1.3) Trϕ((∆#
χ )1/2) =

∑

λ∈spec(∆#
χ )

m(λ)ϕ(λ1/2).
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The first version of our trace formula generalizes (1.2) with Trϕ
(
(∆#

χ

)1/2
) on the left hand

side.

Actually, we prove a more general result. Let τ be an irreducible representation of
K and Eτ → Γ\S the associated locally homogeneous vector bundle, equipped with its
canonical invariant connection ∇τ . Let ∇ = ∇τ,χ be the product connection in Eτ ⊗ Eχ,
and let ∆#

τ,χ = −Tr(∇2) be the corresponding connection Laplacian. Then for ϕ as above

ϕ
(
(∆#

τ,χ)1/2
)

is a trace class operator and we establish a trace formula for this operator
which is similar to the scalar case.

If G has split rank one, we get an explicit version of the trace formula. To describe it
we need to introduce some notation. Let G = KAN be an Iwasawa decomposition of G.
Then dimA = 1. Let a be the Lie algebra of A. The restriction of the Killing form to a∗

defines an inner product on a∗. Let |ρ| denote the norm of the half-sum ρ of positive roots
of (G,A). Let γ ∈ Γ \ {e}. Then there is a unique closed geodesic τγ that corresponds to
the Γ-conjugacy class {γ}Γ of γ. Denote by l(γ) the length of τγ . Furthermore, let γ0 ∈ Γ
be the unique primitive element such that γ = γk

0 for some k ∈ N. Finally let D(γ) be the
discriminant of γ (see (6.2) for its definition). Let β(λ)dλ be the Plancherel measure for
spherical functions on G [Hel]. We can now state our main result in the scalar case. As
remarked above, in the scalar case it is convenient to introduce a shift of the spectrum by
the lower bound of the essential spectrum of the Laplacian ∆̃ on S which in the present
case equals |ρ|2. To introduce this shift is suggested by (6.23) and (6.24), because it leads
to the simplified formulas (6.25) and (6.26) for the spherical Fourier transform of the kernel
of the operator ϕ

(
(∆χ − |ρ|2)1/2

)
. Using these observations, we get our main result in the

scalar case which is the following theorem.

Theorem 1.1. Let ϕ be an even Paley-Wiener function and let ϕ̂ ∈ C∞
c (R) be the Fourier

transform of ϕ|R. Then we have

∑

λ∈spec(∆#
χ )

m(λ)ϕ
(
(λ− |ρ|2)1/2

)
= dim(Vχ)

vol(Γ\S)

2

∫

R

ϕ(λ)β(λ) dλ

+
∑

{γ}Γ 6=e

trχ(γ)
l(γ0)

D(γ)
ϕ̂(l(γ)).

(1.4)

Note that for every c > 0 there are only finitely many conjugacy classes {γ}Γ with
l(γ) ≤ c. Therefore the sum on the right hand side is finite. If χ is unitary, this is the
trace formula established by Selberg [Se1], [Hej].

To describe our method we restrict attention to the scalar case, i.e, we consider the
operator ∆#

χ − |ρ|2. Our method is based on the approach of Bunke and Olbrich [BO] to
the Selberg trace formula in the unitary case. We consider the wave equation

(1.5)

(
∂2

∂t2
+ ∆#

χ − |ρ|2
)
u(t) = 0, u(0) = f, ut(0) = 0,
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for any initial conditions f ∈ C∞(X,Eχ). Since the principal symbol of ∆χ# −|ρ|2 is given

by σ(x, ξ) =‖ ξ ‖2 IdEx
, the operator L = ∂2

∂t2
+∆#

χ −|ρ|2 is strictly hyperbolic in the sense
of [Ta1, Chapt. IV, §3]. Therefore (1.5) has a unique solution u(t; f). Let ϕ ∈ P(C) be
even and let ϕ̂ ∈ C∞

c (R) be the Fourier transform of ϕ|R. Then it follows that

(1.6) ϕ
(
(∆#

χ − |ρ|2)1/2
)
f =

1√
2π

∫

R

ϕ̂(t)u(t; f) dt.

Let ũ(t; f) and f̃ denote the lift of u(t, f) and f , respectively, to S which is a universal

covering ofX. Then the corresponding wave equation on S with initial conditions u(0) = f̃ ,
ut(0) = 0 is also strictly hyperbolic and by finite propagation speed it follows that it has

a unique solution u(t; f̃). Thus we obtain ũ(t, x̃; f) = u(t, x̃; f̃). Since the lift of Eχ to S

is trivial, the lifted operator ∆̃#
χ takes the form ∆̃#

χ = ∆̃ ⊗ IdVχ
, where ∆̃ is the Laplace

operator on S. Let hϕ ∈ C∞
c (G//K) be the kernel of the G-invariant integral operator

ϕ
(
(∆̃ − |ρ|2)1/2

)
. Then it follows that the kernel Kϕ(x, y) of ϕ

(
(∆#

χ − |ρ|2)1/2
)

is given

by

(1.7) Kϕ(x, y) =
∑

γ∈Γ

hϕ(g−1
1 γg2)χ(γ),

where x = Γg1K and y = Γg2K. The derivation of this formula is one of the key issues
in the proof. The main steps are (3.17), (4.3) and (5.6). One can now proceed in the
same way as in the case of a unitary representation χ and derive the twisted Selberg trace
formula (1.4).

Besides unitary representations of Γ, there is a second class of representations of Γ for
which the usual trace formula can be applied. These are representations which are the
restriction to Γ of a finite-dimensional representation η : G → GL(E). Let Eη → X
be the flat vector bundle associated to η|Γ. Then Eη is canonically isomorphic to the
locally homogeneous vector bundle Eτ associated to the principal K-bundle Γ\G→ X via
the representation τ = η|K . The bundle carries a canonical Hermitian fiber metric and
the Laplacian in C∞(X,Eη) with respect to this metric is closely related to the Casimir
operator acting in C∞(X,Eτ ). This brings us back to the usual framework of the Selberg
trace formula for locally homogeneous vector bundles. Details will be discussed in section
7.

We also note that Petersson [Pe] started to develop a theory of vector-valued holomorphic
automorphic forms.

Finally, let me point out two problems related to a possible extension of this work. First
it would be interesting to treat also the finite volume case. The main problem is the
continuous spectrum which I don’t know how to deal with. Secondly, in the unitary case
there is the representation theoretic framework for the Selberg trace formula (see [Wa]).
It would be interesting to see if there is a representation theoretic approach which works
in the nonunitary case.
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The paper is organized as follows. In section 2 we collect a number of facts about
spectral theory of elliptic operators with leading symbol of Laplace type and we develop
some functional calculus for such operators. The kernels of the associated integral operators
are studied in section 3. Especially, we prove (1.6) and (1.7). In section 4 we apply these
results to the case of twisted Bochner-Laplace operators. In section 5 we turn to the locally
symmetric case and we prove the first version of the trace formula which is Proposition 5.1.
In section 6 we specialize to the case where G has split rank one and we prove Theorem 1.1.
In the final section 7 we are concerned with representations of Γ which are the restriction
of a representation of G.

Acknowledgment. I would like to thank the referees for their careful review and the
valuable comments and suggestions which helped to improve the paper. Especially, we
owe the approach in the section before Lemma 2.4 to one of the referees and we are very
grateful to him for his help with this issue.

2. Functional calculus

In this section we develop the necessary facts of the functional calculus we are going to
use in this paper.

Let X be a compact Riemannian manifold without boundary of dimension n and E → X
a Hermitian vector bundle overX. Let ∇ be a covariant derivative in E which is compatible
with the Hermitian metric. We denote by C∞(X,E) the space of smooth sections of E, and
by L2(X,E) the space of L2-sections of E w.r.t. the metrics on X and E. Furthermore,
for each s ∈ R we will denote by Hs(X,E) the Sobolev space of order s of sections of E
(see [Sh, I, §7]. Let

∆E = ∇∗∇
be the Bochner-Laplace operator associated to the connection ∇ and the Hermitian fiber
metric. Then ∆E is a second order elliptic differential operator which is essentially self-
adjoint in L2(X,E). Its leading symbol σ(∆E) : π∗E → π∗E, where π is the projection of
T ∗X, is given by

(2.1) σ(∆E)(x, ξ) =‖ ξ ‖2
x · IdEx

, x ∈ X, ξ ∈ T ∗
xX.

In this section we consider the class of elliptic operators

P : C∞(X,E) → C∞(X,E)

which are the perturbation of ∆E by a first order differential operator, i.e., we assume that

(2.2) P = ∆E +D,

where D : C∞(X,E) → C∞(X,E) is a first order differential operator. Equivalently, one
can say that P is an elliptic second order differential operator with leading symbol given
by

(2.3) σ(P )(x, ξ) =‖ ξ ‖2
x · IdEx

.
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For I ⊂ [0, 2π] let
ΛI =

{
reiθ : 0 ≤ r <∞, θ ∈ I}.

be the solid angle attached to I. The following lemma describes the structure of the
spectrum of P .

Lemma 2.1. For every 0 < ε < π/2 there exists R > 0 such that the spectrum of P is
contained in the set BR(0) ∪ Λ[−ε,ε]. Moreover the spectrum of P is discrete.

Proof. The first statement follows from [Sh, Theorem 9.3]. The discreteness of the spectrum
follows from [Sh, Theorem 8.4]. �

Though P is not self-adjoint in general, it still has nice spectral properties [Sh, Chapt.
I, §8]. Given λ0 ∈ spec(P ), let Γλ0

be a small circle around λ0 which contains no other
points of spec(P ). Put

(2.4) Πλ0
=

i

2π

∫

Γλ0

Rλ(P ) dλ.

Then Πλ0
is the projection onto the root subspace Vλ0

. This is a finite-dimensional subspace
of C∞(X,E) which is invariant under P and there exists N ∈ N such that (P−λ0 I)NVλ0

=
0. Furthermore, there is a closed complementary subspace V ′

λ0
to Vλ0

in L2(X,E) which

is invariant under the closure P̄ of P in L2 and the restriction of (P̄ − λ0 I) to V ′
λ0

has a
bounded inverse. The algebraic multiplicity m(λ0) of λ0 is defined as

m(λ0) = dim Vλ0
.

If λ1, λ2 ∈ spec(P ) with λ1 6= λ2, then the projections Πλ1
and Πλ2

are disjoint, i.e.,

Πλ1
Πλ2

= Πλ2
Πλ1

= 0.

Let Rλ(∆E) be the resolvent of ∆E and let D be the first order differential operator
occurring in (2.2). Since D is a first order operator, it follows from Sobolev space theory
that DRλ(∆E) is a compact operator in L2(X,E). This means that D is compact relative
to ∆E . Therefore by [Mk, I,§4, Theorem 4.3] the root vectors are complete. This means
that L2(X,E) is the closure of the algebraic direct sum of finite-dimensional P -invariant
subspaces Vk

(2.5) L2(X,E) =
⊕

k≥1

Vk

such that the restriction of P to Vk has a unique eigenvalue λk, for each k there exists
Nk ∈ N such that (P − λk I)NkVk = 0, and |λk| → ∞. In general, the sum (2.5) is not a
sum of mutually orthogonal subspaces. This generalizes the spectral decomposition of a
self-adjoint operator. Here, of course, we are making use of the compactness of X. At the
moment it is not clear to the author how to generalize (2.5) in the cofinite case.

Given r > 0, let

N(r, P ) :=
∑

λ∈spec(P ), |λ|≤r

m(λ).
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be the counting function of the eigenvalues of P , where eigenvalues are counted with their
algebraic multiplicity. For the self-adjoint operator ∆E we have Weyl’s formula which
describes the asymptotic behavior of the counting function as r → ∞. Since P is a
perturbation of ∆E by a lower order differential operator, we may expect Weyl’s formula
to hold for P as well. This is indeed the case as the following lemma shows.

Lemma 2.2. Let n = dimX. We have

N(r, P ) =
rk(E) vol(X)

(4π)n/2Γ(n/2 + 1)
rn/2 + o(rn/2), r → ∞.

Proof. We note that the trace Tr(e−t∆E) of the heat semigroup e−t∆E has an asymptotic
expansion of the form

Tr(e−t∆E) ∼ t−n/2
∑

k≥0

akt
k, t→ +0

(see [Gi, Lemma 1.8.3]), and by [Gi, Lemma 4.1.4] the leading coefficient a0 is given by
a0 = (4π)−n/2 rk(E) vol(X). Let N(r,∆E) be the counting function of the eigenvalues of
∆E . Using the Tauberian theorem (see [Sh, Chapt. II, §14]), we get

(2.6) N(r,∆E) =
rk(E) vol(X)

(4π)n/2Γ(n/2 + 1)
rn/2 + o(rn/2), r → ∞.

The lemma follows from [Mk, I, §8, Corollary 8.5]. �

Denote by spec(P ) the spectrum of P . First we assume that 0 /∈ spec(P ). It follows from
Lemma 2.1 that there exists an Agmon angle θ for P and we can define the square root

P
1/2
θ as in [Sh]. For the convenience of the reader we include some details. By Lemma 2.1

there exist 0 < θ < 2π and ε > 0 such that

spec(P ) ∩ Λ[θ−ε,θ+ε] = ∅.
θ is called an Agmon angle for P . Since spec(P ) is discrete and 0 /∈ σ(P ), there exists also
r0 > 0 such that

spec(P ) ∩ {z ∈ C : |z| < 2r0} = ∅.
Define the contour Γ = Γθ,r0

⊂ C as the union of three curves Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 = {reiθ : ∞ > r ≥ r0}, Γ2 = {r0eiα : θ ≤ α ≤ θ + 2π},
Γ3 = {rei(θ+2π) : r0 ≤ r <∞}.

The curve Γθ,r0
is oriented as follows. On Γ1, r runs from ∞ to r0, Γ2 is oriented clockwise,

and on Γ3, r runs from r0 to ∞. Put

(2.7) P
−1/2
θ =

i

2π

∫

Γθ,r0

λ−1/2(P − λ)−1 dλ.

By [Sh, Corollary 9.2, Chapt. II, §9] we have ‖ (P−λ)−1 ‖≤ C|λ|−1 for λ ∈ Γθ,r0
. Therefore

the integral is absolutely convergent. Put

P
1/2
θ = P · P−1/2

θ .
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Then P
1/2
θ satisfies (P

1/2
θ )2 = P . If θ is fixed, we simply denote this operator by P 1/2. We

recall [See], [Sh, Theorem 11.2] that P 1/2 is a classical pseudo-differential operator with
principal symbol

(2.8) σ(P 1/2)(x, ξ) =‖ ξ ‖x · IdEx
.

In each coordinate chart, the complete symbol q(x, ξ) of P 1/2 has an asymptotic expansion

(2.9) q(x, ξ) ∼
∞∑

j=0

q1−j(x, ξ),

where q1−j(x, ξ) is a symbol of order 1 − j (see [Sh, I,§1]) which is homogeneous in ξ of

order 1− j and q1 equals the principal symbol (2.8). The same holds for ∆
1/2
E , i.e., in each

coordinate chart, the complete symbol q̃(x, ξ) of ∆
1/2
E has an asymptotic expansion of the

form (2.9) and the principal symbol q̃1 equals (2.8). Since the principal symbols of P 1/2

and ∆
1/2
E coincide, it follows that

(2.10) P 1/2 = ∆
1/2
E +B,

where B is a pseudo-differential operator of order zero, i.e., in each coordinate chart, the
complete symbol b(x, ξ) of B has an asymptotic expansion of the form

(2.11) b(x, ξ) ∼
∞∑

j=0

b−j(x, ξ).

Being a pseudo-differential operator of order zero, B extends to a bounded operator in
L2(X,E) (see [Sh, Theorem 7.1]). Thus similarly to (2.2) we may regard P 1/2 as a pertur-

bation of ∆
1/2
E by a pseudo-differential operator of order zero.

Let Rλ(P
1/2) = (P 1/2 − λ I)−1 and Rλ(∆

1/2
E ) = (∆

1/2
E − λ I)−1 be the resolvents of P 1/2

and ∆
1/2
E , respectively. For λ 6∈ spec(∆

1/2
E ) we have the following equality

(2.12) P 1/2 − λ I = (I +BRλ(∆
1/2
E ))(∆

1/2
E − λ I).

Since ∆
1/2
E is self-adjoint, the resolvent of ∆

1/2
E satisfies

(2.13) ‖ Rλ(∆
1/2
E ) ‖≤ | Im(λ)|−1

[Ka, Chapt. V, §3.5]. Let b = 2 ‖ B ‖. It follows from (2.13) that for | Im(λ)| ≥ b we have

‖ BRλ(∆
1/2
E ) ‖≤ 1/2. Thus in this range of λ the operator I +BRλ(∆

1/2
E ) is invertible and

Rλ(P
1/2) = Rλ(∆

1/2
E )(I +BRλ(∆

1/2
E ))−1.

Combined with (2.13) we get

(2.14) ‖ Rλ(P
1/2) ‖≤ 2| Im(λ)|−1, | Im(λ)| ≥ b.

We can now summarize the spectral properties of P 1/2.
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Lemma 2.3. The resolvent of P 1/2 is compact. The spectrum of P 1/2 is discrete. There
exist b > 0 and c ∈ R such that the spectrum of P 1/2 is contained in the domain

(2.15) Ωb,c =
{
λ ∈ C : Re(λ) > c, | Im(λ)| < b

}
.

Proof. Since P 1/2 is an elliptic pseudo-differential operator of order 1 on a closed manifold,
its resolvent is compact and hence, its spectrum is discrete. The remaining statements are
a consequence of (2.14). �

It follows from the spectral decomposition(2.5) that P 1/2 has a similar spectral decom-
position with eigenvalues λ1/2, λ ∈ spec(P ), and m(λ1/2) = m(λ).

Now we introduce the functions which we will use for the functional calculus. Let P(C)
be the space of Paley-Wiener functions on C. Recall that

(2.16) P(C) =
⋃

R>0

PR(C)

with the inductive limit topology, where PR(C) is the space of entire functions φ on C such
that for every N ∈ N there exists CN > 0 such that

(2.17) |φ(λ)| ≤ CN(1 + |λ|)−NeR| Im(λ)|, λ ∈ C.

Given h ∈ C∞
c ((−R,R)), let

ϕ(λ) =
1√
2π

∫

R

h(r)e−irλ dr, λ ∈ C,

be the Fourier-Laplace transform of h. Then ϕ satisfies (2.17) for every N ∈ N, i.e., ϕ ∈
PR(C). Conversely, by the Paley-Wiener theorem [Ho2, Theorem 7.3.1], every φ ∈ PR(C)
is the Fourier-Laplace transform of a function in C∞

c ((−R,R)).

First assume that 0 /∈ spec(P ). For b > 0 and d ∈ R let Γ = Γb,d ⊂ C be the contour
which is union of the two half-lines L±b,d = {z ∈ C : Im(z) = ±b, Re(z) ≥ d} and the
semi-circle S = {d + beiθ : π/2 ≤ θ ≤ 3π/2}, oriented counterclockwise. By Lemma 2.3
there exist b > 0, d ∈ R such that spec(P 1/2) is contained in the interior of Γb,d. For an
even Paley-Wiener function ϕ ∈ P(C) put

(2.18) ϕ(P 1/2) :=
i

2π

∫

Γ

ϕ(λ)(P 1/2 − λ I)−1 dλ.

Note that by (2.17), ϕ(λ) is rapidly decreasing in each strip | Im(λ)| < δ, δ > 0. Therefore
it follows from (2.14) that the integral is absolutely convergent.

Now assume that 0 ∈ spec(P ). Then we modify the definition of ϕ(P 1/2) as follows. Let
Π0 be the projection (2.4) onto the root space V0 of the eigenvalue 0. We claim that Π0 is
a smoothing operator. This can be seen as follows. The range of Π0 is a finite-dimensional
subspace of C∞(X,E). Therefore, for all k, l ∈ N, the operator P kΠ0P

l = P k+lΠ0 extends
to a bounded operator in L2(X,E). Let s ∈ R. Since P is a second order elliptic operator,
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the Sobolev space Hs(X,E) is the completion of C∞(X,E) with respect to the norm
‖ (I +P )s/2f ‖. Since for all k, l ∈ N, P kΠ0P

l extends to a bounded operator in L2(X,E),
it follows that for all k, l ∈ N, Π0 extends to bounded operator of Hk(X,E) into H l(X,E)
which by standard Sobolev space theory implies that Π0 is a smoothing operator.

The complementary subspace V ′
0 of V0 is invariant under P . Let P1 = P |V ′

0
. Then

0 /∈ spec(P1) and we can define (P1)
−1/2 as above by formula (2.7) with P replaced by P1.

To derive the properties of P
1/2
1 it is convenient to introduce the auxiliary operator

(2.19) P̂ = (I−Π0)P ⊕ Π0.

Since Π0 is a smoothing operator, P̂ is a pseudo-differential operator with the same prin-

cipal symbol as P and 0 /∈ spec(P̂ ). So P̂−1/2 can be defined by (2.7). By definition

P̂−1/2|V ′

0
= P

−1/2
1 . It follows that Lemma 2.3 holds for P

1/2
1 and we can define ϕ(P

1/2
1 ) by

formula (2.18).

It remains to deal with contribution of N = PΠ0. The operator N : V0 → V0 is nilpotent,
i.e, there exists m ∈ N such that Nm = 0. In general, such an operator has no square root.
Nevertheless we can define ϕ(N1/2). We owe the following approach to one of the referees
and we are very grateful to him for his help with this issue. Put

(2.20) U(t;N) :=
m∑

k=0

(−1)kt2k

(2k)!
Nk,

where m = dim V0. It satisfies

(2.21)

(
∂2

∂t2
+N

)
U(t;N) = 0, U(0;N) = I,

∂

∂t
U(t;N)|t=0 = 0.

Thus we may regard U(t;N) as cos(tN1/2). Let ϕ ∈ P(C) be even and let ϕ̂ be the Fourier
transform of ϕ|R. Put

(2.22) ϕ(N1/2) :=
1√
2π

∫

R

ϕ̂(t)U(t;N) dt.

It follows from (2.20) that

(2.23) ϕ(N1/2) =

m∑

k=0

ϕ2k(0)

(2k)!
Nk.

Now we put

(2.24) ϕ(P 1/2) := ϕ(P
1/2
1 )(I−Π0) + ϕ(N1/2)Π0.

The relevant property of these operators is described by the following lemma.

Lemma 2.4. ϕ(P 1/2) is an integral operator with a smooth kernel.
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Proof. First note that∫

Γ

ϕ(λ)(P1 − λ2)(P
1/2
1 − λ)−1 dλ =

∫

Γ

ϕ(λ)(P
1/2
1 + λ) dλ = 0.

This implies that for k, l ∈ N we have

P kϕ(P
1/2
1 )(I−Π0)P

l =
i

2π

∫

Γ

λ2(k+l)ϕ(λ)(P
1/2
1 − λ)−1 dλ.

The function λ 7→ λ2(k+l)ϕ(λ) is rapidly decreasing on | Im(λ)| = ±b. Hence the operator

P kϕ(P
1/2
1 )(I−Π0)P

l is a bounded operator in L2(X,E). Let s ∈ R. Since P is elliptic of
order 2, the Sobolev space Hs(X,E) is the completion of C∞(X,E) with respect to the
norm ‖ (I+P )s/2f ‖. Together with the above observation it follows that for all s, r ∈ R,

ϕ(P
1/2
1 )(I−Π0) extends to a bounded operator from Hs(X,E) to Hr(X,E), which shows

that ϕ(P
1/2
1 )(I−Π0) is a smoothing operator.

Since Π0 is a smoothing operator, it follows that N is a smoothing operator, and hence
ϕ(N1/2)Π0 also. Thus ϕ(P 1/2) is a smoothing operator and hence, an integral operator
with a smooth kernel. �

In order to continue, we need to establish an auxiliary result about smoothing operators.
Let

A : L2(X,E) → L2(X,E)

be an integral operator with a smooth kernel H ∈ C∞(X ×X,E ⊠ E∗).

Proposition 2.5. A is a trace class operator and

(2.25) Tr(A) =

∫

X

trH(x, x) dµ(x).

Proof. We generalize the proof of Theorem 1 in [La, Chapt VII, §1]. Let ∇E be a Hermitian
connection in E and let ∆E = (∇E)∗∇E be the associated Bochner-Laplace operator. Then
∆E is a second order elliptic operator which is essentially self-adjoint and non-negative.
Its spectrum is discrete. Let {φj}j∈N be an orthonormal basis of L2(X,E) consisting of
eigensections of ∆E with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞. In other word, they are the
eigensections for the standard self-adjoint unperturbed operator on C∞(X,E). We can
expand H in the orthonormal basis as

(2.26) H(x, y) =
∞∑

i,j=1

ai,jφi(x) ⊗ φ∗
j (y),

where

(2.27) ai,j = 〈Aφi, φj〉.
Since H is smooth, the coefficients ai,j are rapidly decreasing. Indeed, for every N we have

(1 + λi + λj)
Nai,j = 〈(I +∆E ⊗ I + I⊗∆E)NH, φi ⊗ φ∗

j〉.
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Hence for every N ∈ N there exists CN > 0 such that

|ai,j| ≤ CN(1 + λi + λj)
−N , i, j ∈ N.

This implies that the series (2.26) converges in the C∞ topology. Let Pi,j be the integral
operator with kernel φi ⊗ φ∗

j . Thus

Pi,j(φk) =

{
0, k 6= j;

φi, k = j.

Let Pj be the orthogonal projection of L2(X,E) onto the 1-dimensional subspace Cφj. Put

B =
∑

i,j

ai,j(1 + λj)
nPi,j, C =

∑

j

(1 + λj)
−nPj .

Then A = BC and it follows from (2.6) that B and C are Hilbert-Schmidt operators. Thus
A is a trace class operator. Furthermore, by (2.26) and (2.27) we get

∫

X

trH(x, x) dx =
∞∑

i,j=1

ai,j

∫

X

〈φi(x), φj(x)〉 dx =
∞∑

i=1

ai,i = Tr(A).

�

Now we apply this result to ϕ(P 1/2). Let Kϕ(x, y) be the kernel of ϕ(P 1/2). Then by
Proposition 2.5, ϕ(P 1/2) is a trace class operator and we have

(2.28) Trϕ(P 1/2) =

∫

X

trKϕ(x, x) dµ(x).

By Lidskii’s theorem [GK, Theorem 8.4] the trace is equal to the sum of the eigenvalues of
ϕ(P 1/2), counted with their algebraic multiplicities. The eigenvalues of ϕ(P 1/2) and their
algebraic multiplicities can be determined as follows. Given N ∈ N, let ΠN denote the
projection onto the direct sum of the root subspaces Vk, k ≤ N , of P . As explained above,
we have

PΠN =

N∑

k=1

(λkΠk +Dk),

where Πk is the projection onto Vk and Dk is a nilpotent operator in Vk. Note that this
is just the Jordan normal form of a linear operator in a finite-dimensional complex vector
space. Then it follows from [Ka, I, (5.50)] that

ϕ(P 1/2)ΠN =

N∑

k=1

(ϕ(λ
1/2
k )Πk +D′

k),

where D′
k is again a nilpotent operator in Vk. Thus ϕ(P 1/2) leaves the decomposition (2.5)

invariant and the restriction of ϕ(P 1/2) to Vk has a unique eigenvalue ϕ(λ
1/2
k ). Of course,

some of the eigenvalues ϕ(λ
1/2
k ) may coincide in which case the root space is the sum of

the corresponding root spaces Vk. Now, applying Lidskii’s theorem [GK, Theorem 8.4] and
(2.28), we get the following proposition.
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Proposition 2.6. Let ϕ ∈ P(C) be even and let ϕ̂ be the Fourier transform of ϕ|R. Then
we have

(2.29)
∑

λ∈spec(P )

m(λ)ϕ(λ1/2) =

∫

X

trKϕ(x, x) dx.

By Lemma 2.2, the series on the left hand side is absolutely convergent.

Remark. Recall that P 1/2 = P
1/2
θ depends on the choice of an Agmon angle θ, and so do

the eigenvalues λ
1/2
k = (λk)

1/2
θ . Let 0 < θ < θ′ < 2π be two Agmon angles. Then it follows

from Lemma 2.1 that there are only finitely many eigenvalues λ1, ..., λm of P which are
contained in Λ[θ,θ′]. Therefore for λ ∈ spec(P ) we have

(λ)
1/2
θ′ =

{
(λ)

1/2
θ , if λ 6∈ {λ1, ..., λm};

−(λ)
1/2
θ , if λ ∈ {λ1, ..., λm}.

Since ϕ is even ϕ
(
(λ)

1/2
θ

)
is independent of θ. This justifies the notation on the left hand

side of (2.29). �

3. The kernel and the wave equation

In this section we give a description of the kernel Kϕ of the smoothing operator ϕ(P 1/2)
in terms of the solution of the wave equation. Consider the wave equation

(3.1)
∂2u

∂t2
+ Pu = 0, u(0, x) = f(x), ut(0, x) = 0.

Proposition 3.1. For each f ∈ C∞(X,E) there is a unique solution u(t; f) ∈ C∞(R ×
X,E) of the wave equation (3.1) with initial condition f . Moreover for every T > 0 and
s ∈ R there exists C > 0 such that for every f ∈ C∞(X,E)

(3.2) ‖ u(t, f) ‖s≤ C ‖ u(0, f) ‖s, |t| ≤ T,

where ‖ · ‖s denotes the s-Sobolev norm.

Proof. We proceed in the same way as in [Ta1, Chapt. IV, §§1,2] and replace (3.1) by a
first order system. Let ∆E be the Bochner-Laplace operator associated to the connection
∇E in E. Put Λ = (∆E + Id)1/2 and

(3.3) L :=

(
0 Λ

−PΛ−1 0

)
:
C∞(X,E)

⊕
C∞(X,E)

−→
C∞(X,E)

⊕
C∞(X,E)

.

Then L is a pseudo-differential operator of order 1. Let u be a solution of (3.1). Put

u1 = Λu, u2 =
∂

∂t
u.
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Then (u1, u2) satisfies

(3.4)
∂

∂t

(
u1

u2

)
= L

(
u1

u2

)
, u1(0) = Λf, u2(0) = 0.

On the other hand, let (u1, u2) be a solution of the initial value problem (3.4). Put
u = Λ−1u1. Then u is a solution of (3.1). Thus it suffices to consider (3.4). By (2.3)
it follows that P = ∆E +D where D is a differential operator of order ≤ 1. Therefore we
get

PΛ−1 = (∆E + Id)Λ−1 + (D − Id)Λ−1 = Λ +B1,

where B1 is a pseudo-differential operator of order 0. Therefore

L+ L∗ =

(
0 Λ

−Λ − B1 0

)
+

(
0 −Λ −B∗

1

Λ 0

)
= −

(
0 B∗

1

B1 0

)
,

is a pseudo-differential operator of order zero. Hence (3.4) is a symmetric hyperbolic system
in the sense of [Ta1, Chapt. IV, §2]. So we can proceed as in the proof of Theorem 2.3
in [Ta1, Chapt. IV, §2] to establish existence and uniqueness of solutions of (3.1). The
estimation (3.2) follows from the proof using Gronwall’s inequality. �

Proposition 3.2. Let ϕ ∈ P(C) be even and let ϕ̂ be the Fourier transform of ϕ|R. Then
for every f ∈ C∞(X,E) we have

(3.5) ϕ(P 1/2)f =
1√
2π

∫

R

ϕ̂(t)u(t; f) dt.

Proof. First consider the case where 0 /∈ spec(P ). Let Γ ⊂ C be as in (2.18). Let c ≥ 0 be
such that the spectrum of P + c is contained in Re(z) > 0. For σ > 0 define the operator
cos(tP 1/2)e−σ(P+c) by the functional integral

cos(tP 1/2)e−σ(P+c) =
i

2π

∫

Γ

cos(tλ)e−σ(λ2+c)(P 1/2 − λ)−1 dλ.

By (2.14) the integral is absolutely convergent. For f ∈ C∞(X,E) and σ > 0 put

(3.6) u(t; σ, f) := cos(tP 1/2)e−σ(P+c)f.

Then u(t; σ, f) satisfies
(
∂2

∂t2
+ P

)
u(t; σ, f) =

i

2π

∫

Γ

cos(tλ)e−σ(λ2+c)(P − λ2)(P 1/2 − λ)−1 dλ

=
i

2π

∫

Γ

cos(tλ)e−σ(λ2+c)(P 1/2 + λ) dλ = 0.

and u(0; σ, f) = e−σ(P+c)f . Thus u(t; σ, f) is the unique solution of (3.1) with initial
condition e−σ(P+c)f . Then u(t; f) − u(t; σ, f) is the solution of (3.1) with initial condition
f − e−(P+c)f . Hence by (3.2) we get for all s ∈ R

(3.7) ‖ u(t; f) − u(t; σ, f) ‖Hs≤ C ‖ f − e−σ(P+c)f ‖Hs, |t| ≤ T.
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Now note that for every f ∈ C∞(X,E) we have

lim
σ→0

‖ e−σ(P+c)f − f ‖= 0.

This follows from the parametrix construction. Hence we get

‖ f − e−σ(P+c)f ‖Hs = ‖ (P + c)s/2f − e−σ(P+c)(P + c)s/2f ‖L2→ 0

as σ → 0. Combined with (3.7) we get

(3.8) lim
σ→0

‖ u(t; f) − u(t; σ, f) ‖Hs= 0.

Furthermore we have

1√
2π

∫

R

ϕ̂(t)u(t; σ, f) dt =
1√
2π

∫

R

ϕ̂(t)
i

2π

∫

Γ

cos(tλ)e−σ(λ2+c)(P 1/2 − λ)−1f dλ dt

=
i

2π

∫

Γ

(
1√
2π

∫

R

ϕ̂(t) cos(tλ) dt

)
e−σ(λ2+c)(P 1/2 − λ)−1f dλ

=
i

2π

∫

Γ

ϕ(λ)e−σ(λ2+c)(P 1/2 − λ)−1f dλ.

For σ → 0, the right hand side converges to ϕ(P 1/2)f . By (3.8) the left hand side converges
to (2π)−1/2

∫
R
ϕ̂(t)u(t; f) dt.

Now assume that 0 ∈ spec(P ). Then we use the definition (2.24) of ϕ(P 1/2). Let
f ∈ C∞(X,E). Since Π0 is a smoothing operator, we have Π0f, (I−Π0)f ∈ C∞(X,E).
Moreover by the uniqueness of the solution of 3.1 it follows that

(3.9) u(t; f) = u(t; Π0f) + u(t; (I−Π0)f).

We use again the auxiliary operator P̂ defined by (2.19). Let û(t; (I−Π0)f) be the unique

solution of the initial value problem (3.1) with respect to P̂ . Since 0 /∈ spec(P̂ ) it follows
from the first part that

(3.10) ϕ(P̂ 1/2)(I−Π0)f =
1√
2π

∫

R

ϕ̂(t)û(t; (I−Π0)f) dt.

Since by definition of P̂ and P1, P̂
1/2(I−Π0) = P

1/2
1 (I−Π0), we get

(3.11) ϕ(P̂ 1/2)(I−Π0)f = ϕ(P
1/2
1 )(I−Π0)f.

Next observe that Π0û(0; (I−Π0)f) = Π0(I−Π0)f = 0. By uniqueness of solutions of

(3.1) we get Π0û(0; (I−Π0)f) = 0. Using that P̂ (I−Π0) = P (I−Π0), it follows that
û(t; (I−Π0)f) = u(t; (I−Π0)f). Together with (3.10) and (3.11) we get

(3.12) ϕ(P
1/2
1 )(I−Π0)f =

1√
2π

∫

R

ϕ̂(t)u(t; (I−Π0)f) dt.

Next consider u(t; Π0f). Observe that by (2.21) we have

u(t; Π0f) = U(t;N)Π0f.
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Hence by (2.22) and (2.23) we get

(3.13) ϕ(N1/2)Π0f =
1√
2π

∫

R

ϕ̂(t)u(t,Π0f) dt.

Combining (3.9), (3.12) and (3.13), and using the definition of ϕ(P 1/2) by (2.24), we get
(3.5). �

Let p : X̃ → X be a universal covering of X which is fixed by the choice of a base point
x0 ∈ X. The fiber of p over x0 is equal to the fundamental group Γ := π1(X, x0) of X

with the base point x0. The group Γ acts properly and freely on X̃ which leads to an

identification of X with the quotient manifold Γ\X̃, when p is identified with the quotient

map X̃ → Γ\X̃. If conversely X̃ is a simply connected manifold on which a group Γ acts

acts properly and freely, as in the Introduction with X̃ = G/K, then, after a choice of

a base point in X := Γ\X̃, the manifold X̃ and the canonical projection X̃ → Γ\X̃ are
isomorphic to the universal covering described above.

Let Ẽ = p∗E, and P̃ : C∞(X̃, Ẽ) → C∞(X̃, Ẽ) the lift of P to X̃. Let ũ(t, x̃, f) and f̃ be

the pull back to X̃ of u(t, x; f) and f , respectively. Then ũ(t, f) satisfies

(3.14)

(
∂2

∂t2
+ P̃

)
ũ(t; f) = 0, ũ(0; f) = f̃ , ũt(0, f) = 0.

By (2.2) we have P̃ = ∆̃E + D̃, where D̃ is a differential operator of order ≤ 1. Then it

follows from energy estimates as in [Ta2, Chapt. 2, §8] that solutions of ( ∂2

∂t2
+P̃ )u = 0 have

finite propagation speed. This implies that for every ψ ∈ C∞(X̃, Ẽ) the wave equation
(
∂2

∂t2
+ P̃

)
u(t;ψ) = 0, u(0;ψ) = ψ, ut(0;ψ) = 0,

has a unique solution. Hence we get

(3.15) ũ(t; f) = u(t, f̃).

Let d(x, y) denote the geodesic distance of x, y ∈ X̃. For δ > 0 let

Uδ = {(x, y) ∈ X̃ × X̃ : d(x, y) < δ}.

Proposition 3.3. There exist δ > 0 and Hϕ ∈ C∞(X̃×X̃,Hom(Ẽ, Ẽ)) with suppHϕ ⊂ Uδ

such that for all ψ ∈ C∞(X̃, Ẽ) we have

1√
2π

∫

R

ϕ̂(t)u(t, x̃;ψ) dt =

∫

eX

Hϕ(x̃, ỹ)(ψ(ỹ)) dỹ.

Proof. Suppose that supp ϕ̂ ⊂ [−T, T ]. Let V ⊂ X̃ be an open relatively compact subset.
For r > 0 let

Vr = {y ∈ V : d(y, V ) < r}.
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Let χ ∈ C∞
c (V2T ) such that χ = 1 on VT . By finite propagation speed, we have

u(t, x̃;ψ) = u(t, x̃;χψ), x̃ ∈ V, |t| < T,

for all ψ ∈ C∞(X̃, Ẽ). Thus we are reduced to the case of a compact manifold and the
proof follows from Lemma 2.4 and Proposition 3.2. �

Using Proposition 3.3 together with (3.15) and Proposition 3.2, we obtain

(3.16) ϕ(P 1/2)f(x̃) =

∫

eX

Hϕ(x̃, ỹ)(f̃(ỹ)) dỹ

for all f ∈ C∞(X,E). Let F ⊂ X̃ be a fundamental domain for the action of the funda-

mental group Γ on X̃. Given γ ∈ Γ, let Rγ : Ẽ → Ẽ be the induced bundle map. Thus for

each ỹ ∈ X̃, we have a linear isomorphism Rγ : Ẽey → Ẽγey. Note that f̃ satisfies

f̃(γỹ) = Rγ(f̃(ỹ)), γ ∈ Γ.

Then we get
∫

eX

Hϕ(x̃, ỹ)(f̃(ỹ)) dỹ =
∑

γ∈Γ

∫

γF

Hϕ(x̃, ỹ)(f̃(ỹ)) dỹ

=
∑

γ∈Γ

∫

F

Hϕ(x̃, γỹ)(f̃(γỹ)) dỹ

=

∫

F

(∑

γ∈Γ

Hϕ(x̃, γỹ) ◦Rγ

)
(f̃(ỹ)) dỹ.

Combining this expression with (3.16), it follows that the kernel Kϕ of ϕ(P 1/2) is given by

(3.17) Kϕ(x, y) =
∑

γ∈Γ

Hϕ(x̃, γỹ) ◦Rγ,

where x̃ and ỹ are any lifts of x and y to the fundamental domain F . So by Proposition
2.6 we get

Proposition 3.4. Let ϕ ∈ P(C) be even. Then we have

∑

λ∈spec(P )

m(λ)ϕ(λ1/2) =
∑

γ∈Γ

∫

F

tr(Hϕ(x̃, γx̃) ◦Rγ) dx̃.

Note that the sum on the right is finite.
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4. The twisted Bochner-Laplace operator

Let E → X be a complex vector bundle with covariant derivative ∇. Define the invariant
second covariant derivative ∇2 by

∇2
U,V = ∇U∇V −∇∇UV ,

where U, V are any two vector fields on X. Then the connection Laplacian ∆# is defined
by

∆# = −Tr(∇2).

Let (e1, ..., en) be a local frame field. Then

∆# = −
∑

j

∇2
ej ,ej

.

This formula implies that the principal symbol of ∆# is given by

σ(∆#)(x, ξ) =‖ ξ ‖2
x IdEx

.

Thus the results of the previous section can be applied to ∆#.

Assume that E is equipped with a Hermitian fiber metric and ∇ is compatible with the
metric. Then it follows that

(4.1) ∇∗∇ = −Tr∇2,

[LM, p.154], i.e., the connection Laplacian equals the Bochner-Laplace operator ∆E =
∇∗∇.

Now let ρ : Γ → GL(V ) be a finite-dimensional complex representation of Γ = π1(X). Let
F → X be the associated flat vector bundle with connection ∇F . Let E be a Hermitian
vector bundle over X with Hermitian connection ∇E. We equip E ⊗ F with the product
connection ∇E⊗F , which is defined by

∇E⊗F
Y = ∇E

Y ⊗ 1 + 1 ⊗∇F
Y ,

for Y ∈ C∞(X, TX). Let ∆#
E,ρ be the connection Laplacian associated to ∇E⊗F . Locally

it can be described as follows. Let U ⊂ X be an open subset such that F |U is trivial. Then
(E ⊗ F )|U is isomorphic to the direct sum of m = rank(F ) copies of E|U :

(E ⊗ F )|U ∼= ⊕m
i=1E|U .

Let e1, ..., em be a basis of flat sections of F |U . Then each ϕ ∈ C∞(U, (E ⊗ F )|U) can be
written as

ϕ =

m∑

j=1

ϕj ⊗ ej ,

where ϕi ∈ C∞(U,E|U), i = 1, ..., m. Then

∇E⊗F
Y (ϕ) =

∑

j

(∇E
Yϕj) ⊗ ej .
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Let ∆E = (∇E)∗∇E be the Bochner-Laplace operator associated to ∇E . Using (4.1), we
get

(4.2) ∆#
E,ρϕ =

∑

j

(∆Eϕj) ⊗ ej .

Let Ẽ and F̃ be the pullback to X̃ of E and F , respectively. Then F̃ ∼= X̃ × V and

C∞(X̃, Ẽ ⊗ F̃ ) ∼= C∞(X̃, Ẽ) ⊗ V.

It follows from (4.2) that with respect to this isomorphism, the lift ∆̃#
E,ρ of ∆#

E,ρ to X̃ takes
the form

∆̃#
E,ρ = ∆̃E ⊗ Id,

where ∆̃E is the lift of ∆E to X̃. Let ψ ∈ C∞
c (X̃, Ẽ)⊗ V . Then the unique solution of the

wave equation
(
∂2

∂t2
+ ∆̃#

E,ρ

)
u(t;ψ) = 0, u(0;ψ) = ψ, ut(0, ψ) = 0,

is given by

u(t;ψ) =
(
cos
(
t(∆̃E)1/2

)
⊗ Id

)
ψ.

Let ϕ be as above and let kϕ(x̃, ỹ) be the kernel of

ϕ
(
(∆̃E)1/2

)
=

1√
2π

∫

R

ϕ̂(t) cos
(
t(∆̃E)1/2

)
dt.

Then the kernel Hϕ of Proposition 3.3 is given by Hϕ(x̃, ỹ) = kϕ(x̃, ỹ)⊗ Id. Let Rγ : Ẽey →
Ẽγey be the canonical isomorphism. Then it follows from (3.17) that the kernel of the

operator ϕ
(
(∆#

E,ρ)
1/2
)

is given by

(4.3) Kϕ(x, y) =
∑

γ∈Γ

kϕ(x̃, γỹ) ◦ (Rγ ⊗ ρ(γ)).

Combined with (3.4) we get

Proposition 4.1. Let Fρ be a flat vector bundle over X, associated to a finite-dimensional

complex representation ρ : π1(X) → GL(V ). Let ∆#
E,ρ be the twisted connection Laplacian

acting in C∞(X,E ⊗ Fρ). Let ϕ ∈ P(C) be even and denote by kϕ(x̃, ỹ) the kernel of

ϕ
(
(∆̃E)1/2

)
. Then we have

(4.4)
∑

λ∈spec(∆#

E,ρ
)

m(λ)ϕ(λ1/2) =
∑

γ∈Γ

tr ρ(γ)

∫

F

tr (kϕ(x̃, γx̃) ◦Rγ) dx̃.
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5. Locally symmetric spaces

In this section we specialize to the case where X is a locally symmetric manifold. We
recall some basic facts about harmonic analysis on symmetric spaces. This is much in the
spirit of Selberg’s original approach [Se1]. However, we consider only the Casimir operator
and not the full algebra of invariant differential operators.

Let G be a connected semisimple real Lie group of non-compact type with finite center.
Let K ⊂ G be a maximal compact subgroup of G. Denote by g and k the Lie algebras of
G and K, respectively. Let

(5.1) g = p ⊕ k

be the Cartan decomposition. Put S = G/K. This is a Riemannian symmetric space of
non-positive curvature. The invariant metric is obtained by translation of the restriction
of the Killing form to p ∼= Te(G/K). Let Γ ⊂ G be a discrete, torsion free, cocompact
subgroup. Then Γ acts freely on S by isometries and X = Γ\S is a compact locally
symmetric manifold.

Let τ : K → GL(Vτ ) be a finite-dimensional unitary representation of K, and let

Ẽτ = (G× Vτ )/K → G/K

be the associated homogeneous vector bundle, where K acts on the right as usual by

(g, v)k = (gk, τ(k−1)v), g ∈ G, k ∈ K, v ∈ Vτ .

Let

(5.2) C∞(G; τ) :=
{
f : G→ Vτ | f ∈ C∞, f(gk) = τ(k−1)f(g), g ∈ G, k ∈ K

}
.

Similarly, by C∞
c (G; τ) we denote the subspace of C∞(G; τ) of compactly supported func-

tions and by L2(G; τ) the completion of C∞
c (G; τ) with respect to the inner product

〈f1, f2〉 =

∫

G/K

〈f1(g), f2(g)〉 dġ.

There is a canonical isomorphism

(5.3) C∞(S, Ẽτ ) ∼= C∞(G; τ).

[Mi, p.4]. Similarly, there are isomorphisms C∞
c (S, Ẽτ ) ∼= C∞

c (G; τ) and L2(S, Ẽτ ) ∼=
L2(G; τ).

Let ∇τ be the canonical G-invariant connection on Ẽτ . It is defined by

∇τ
g∗Y f(gK) =

d

dt

∣∣∣∣
t=0

(g exp(tY ))−1 f(g exp(tY )K),

where f ∈ C∞(G; τ) and Y ∈ p. Let ∆̃τ be the associated Bochner-Laplace operator.

Then ∆̃τ is G-invariant, i.e., ∆̃τ commutes with the right action of G on C∞(S, Ẽτ ). Let
Ω ∈ Z(gC) and ΩK ∈ Z(kC) be the Casimir elements of G and K, respectively. Assume
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that τ is irreducible. Let R denote the right regular representation of G on C∞(G; τ).
Then with respect to (5.3), we have

(5.4) ∆̃τ = −R(Ω) + λτ Id,

where λτ = τ(ΩK) is the Casimir eigenvalue of τ [Mi, Proposition 1.1]. We note that
λτ ≥ 0.

Let ϕ ∈ P(C) be even. Then ϕ(∆̃
1/2
τ ) is a G-invariant integral operator. Therefore its

kernel kϕ satisfies

kϕ(gx̃, gỹ) = kϕ(x̃, ỹ), g ∈ G.

In the scalar case this is a point-pair invariant considered originally by Selberg [Se1]. With
respect to the isomorphism (5.3) it can be identified with a compactly supported C∞-
function

hϕ : G→ End(Vτ ),

which satisfies

hϕ(k1gk2) = τ(k1) ◦ hϕ(g) ◦ τ(k2), k1, k2 ∈ K.

Then ϕ(∆̃
1/2
τ ) acts by convolution

(5.5)
(
ϕ(∆̃1/2

τ )f
)

(g1) =

∫

G

hϕ(g−1
1 g2)(f(g2)) dg2.

Let

Eτ = Γ\Ẽτ

be the locally homogeneous vector bundle over Γ\S induced by Ẽτ . Let χ : Γ → GL(Vχ) be
a finite-dimensional complex representation and let Fχ be the associated flat vector bundle
over Γ\S. Let ∆#

τ,χ be the twisted connection Laplacian acting in C∞(Γ\S,Eτ ⊗Fχ). Then

it follows from (4.3) that the kernel Kϕ of ϕ(∆̃
1/2
τ ) is given by

(5.6) Kϕ(g1K, g2K) =
∑

γ∈Γ

hϕ(g−1
1 γg2) ⊗ χ(γ).

For the unitary case compare [Se1, (2.2)]. By Proposition 4.1 we get

(5.7)
∑

λ∈spec(∆#

E,ρ
)

m(λ)ϕ(λ1/2) =
∑

γ∈Γ

trχ(γ)

∫

Γ\G

tr hϕ(g−1γg) dġ.

We now proceed in the usual way, grouping terms together into conjugacy classes. Given
γ ∈ Γ, denote by {γ}Γ, Γγ, and Gγ the Γ-conjugacy class of γ, the centralizer of γ in Γ,
and the centralizer of γ in G, respectively. With the conjugacy class {e}Γ separated from
the others as usual, we get a first version of the trace formula.
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Proposition 5.1. For all even ϕ ∈ P(C) we have
∑

λ∈spec(∆#

E,ρ
)

m(λ)ϕ(λ1/2) =dim(Vχ) vol(Γ\S) trhϕ(e)

+
∑

{γ}Γ 6=e

trχ(γ) vol(Γγ\Gγ)

∫

Gγ\G

trhϕ(g−1γg) dġ.

(5.8)

In order to make this formula more explicit, one needs to express the kernel hϕ in terms
of ϕ, and to evaluate the orbital integrals on the right hand side. The kernel hϕ can be
determined using Harish-Chandra’s Plancherel formula. The orbital integrals can be com-
puted using the Fourier inversion formula. However, both formulae are pretty complicated
in the higher rank case. A sufficiently explicit formula can be obtained in the rank one
case which we discuss in the next section.

6. The rank one case

Let G and K be as above. We introduce some notation following [Wa]. Let G = KAN
be an Iwasawa decomposition of G (see [Hel]). Then A is a maximal vector subgroup of G
and N is a maximal unipotent subgroup of G. In this section we assume that G has split
rank one, i.e., dimA = 1. Let M be the centralizer of A in K. We set P = MAN . Then
P is a parabolic subgroup of G. Since G has split rank 1, every proper parabolic subgroup
of G is conjugate to P .

Denote by Ĝ and M̂ the set of equivalence classes of irreducible unitary representations of

G and M , respectively. For π ∈ Ĝ we denote by Hπ the Hilbert space in which π operates.

Let a and n be the Lie algebras of A and N , respectively. Choose H ∈ a such that
ad(H)|n has eigenvalues 1 and possibly 2. Then a = RH . For t ∈ R we set at = exp(tH)
and log at = t. Let A+ = {at : t > 0}.

Let ρ be the half-sum of positive roots of (g, a). Its norm |ρ| with respect to the normalized
Killing form is given as follows. Let p and q be the dimensions of the eigenspaces of ad(H)|n
with eigenvalues 1 and 2, respectively. Then p > 0 and 0 ≤ q < p. Then

(6.1) |ρ| =
1

2
(p+ 2q).

For σ ∈ M̂ and λ ∈ R let πσ,λ be the unitarily induced representation from P to G which
is defined as in [Wa, p. 177]. Let Θσ,λ denote the character of πσ,λ.

If γ ∈ Γ, γ 6= e, then there exists g ∈ G such that gγg−1 ∈MA+. Thus there are mγ ∈M
and aγ ∈ A+ such that gγg−1 = mγaγ. By [Wa, Lemma 6.6], aγ depends only on γ and
mγ is determined by γ up to conjugacy in M . Let

l(γ) = log aγ.
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Then l(γ) is the length of the unique closed geodesic of Γ\S determined by {γ}Γ. Further-
more, by the above remark

(6.2) D(γ) := e−l(γ)|ρ|
∣∣ det (Ad(mγaγ)|n − Id)

∣∣
is well defined. Let

u(γ) = vol(Gmγaγ
/A).

Let h ∈ C∞
c (G) be K-finite. Then by [Wa, pp. 177-178] (correcting a misprint) we have

(6.3)

∫

Gγ\G

h(gγg−1) dġ =
1

2π

1

u(γ)D(γ)

∑

σ∈cM

tr σ(γ)

∫

R

Θσ,λ(h) · e−il(γ)λ dλ.

Since h is K-finite, Θσ,λ(h) 6= 0 only for finitely many σ. Thus the sum over σ ∈ M̂ is
finite. The volume factors in (5.8) are computed as follows. Since G has rank one, Γγ is
infinite cyclic [DKV, Proposition 5.16]. Thus there is γ0 ∈ Γγ such that γ0 generates Γγ

and γ = γ
n(γ)
0 for some integer n(γ) ≥ 1. Then

(6.4)
vol(Γγ\Gγ)

u(γ)
= l(γ0).

Inserting (6.3) and (6.4) into (5.8), we get the following form of the trace formula in the
rank one case.

Proposition 6.1. Let ϕ ∈ P(C) be even and let ϕ̂ be the Fourier transform of ϕ|R. Then

Trϕ
(
(∆#

τ,χ)1/2
)

=dim(Vχ) vol(Γ\S) trhϕ(e)

+
∑

{γ}Γ 6=e

trχ(γ)
1

2π

l(γ0)

D(γ)

∑

σ∈cM

tr σ(γ)

∫

R

Θσ,λ(hϕ) · e−il(γ)λ dλ.
(6.5)

We note that in the self-adjoint case the Selberg trace formula is stated in this form in
[Wa, Theorem 6.7]. The right hand side of (6.5) is still not in an explicit form. First of all
we can use the Plancherel formula [Kn] to express tr hϕ(e) in terms of characters. In this

way we are reduced to the computation of the characters Θπ, π ∈ Ĝ, evaluated on trhϕ.

To this end we use the theory of τ -spherical functions and the spherical transform for
homogeneous vector bundles [Ca]. We will assume that K is multiplicity free in G, i.e., we
require that

(6.6) ∀τ ∈ K̂, ∀π ∈ Ĝ : [π|K : τ ] ≤ 1.

For each τ ∈ K̂ let I0,τ (G) be the convolution algebra consisting of all f ∈ C∞
c (G) which are

K-central and invariant under convolution with dτ χ̄τ , where dτ and χτ are the dimension
and the character of τ , respectively (see [Ca, §2]). If τ is the trivial representation, this is
the usual convolution algebra C∞

c (G//K) of bi-K-invariant smooth compactly supported

functions on G. Condition (6.6) implies that for all τ ∈ K̂ the convolution algebra I0,τ (G) is
commutative [Ca, Proposition 2.2]. This simplifies the theory of the τ -spherical functions.
We will use (6.6) in the computations following (6.19).
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By [Ko] condition (6.6) is satisfied for G = SO0(n, 1) and G = SU(n, 1). Let

Ĝ(τ) =
{
π ∈ Ĝ : [π|K : τ ] = 1

}
.

Then for each π ∈ Ĝ(τ) we can identify the τ -isotypical subspace Hπ(τ) of τ in Hπ with
Vτ . Let Pτ be the orthogonal projection of Hπ onto Hπ(τ). Define the τ -spherical function
Φπ

τ on G by

Φπ
τ (g) := Pτπ(g)Pτ , g ∈ G.

Then Φπ
τ is a C∞-map

Φπ
τ : G→ End(Vτ )

which satisfies

(6.7)
Φπ

τ (g)∗ = Φπ
τ (g−1)

Φπ
τ (k1gk2) = τ(k1)Φ

π
τ (g)τ(k2), g ∈ G, k1, k2 ∈ K.

Let v ∈ Vτ and set

(6.8) fπ
τ,v(g) = Φπ

τ (g−1)(v).

Then fπ
τ,v ∈ C∞(G; τ) and it follows from (5.4) that

(6.9) ∆̃τf
π
τ,v = (−π(Ω) + λτ )f

π
τ,v.

The functions fπ
τ,v generalize the usual spherical functions [Hel] which correspond to the

trivial representation τ = 1. Indeed Ĝ(1) is the set of all π ∈ Ĝ which have a nonzero K-
invariant vector v ∈ Hπ. These are exactly the principal series representations πλ := π1,λ,
λ ∈ R, which are induced from the trivial representation of M . The subspace HK

λ of K-
invariant vectors in the Hilbert space Hλ of the representation πλ has dimension one. So
let v ∈ Hλ with ‖ v ‖= 1. Set

(6.10) φλ(g) = 〈πλ(g)v, v〉, g ∈ G, λ ∈ R.

Then φλ is a smooth bi-K-invariant function on G which is an eigenfunction of the Casimir
operator. It corresponds to a smooth K-invariant function on S = G/K which is an eigen-
function of the Laplace operator ∆̃ on S. In the higher rank case they are eigenfunctions
of the whole algebra of invariant differential operators on S. These are the eigenfunctions
considered by Selberg [Se1, p. 53]. See also (6.28), where (6.10) is used.

Now we return to the general case. Let u(t, x; fπ
τ,v) be the unique solution of

(
∂2

∂t2
+ ∆̃τ

)
u(t) = 0, u(0) = fπ

τ,v, ut(0) = 0.

Lemma 6.2. For t ∈ R, τ ∈ K̂ and π ∈ Ĝ(τ), we have −π(Ω) + λτ ≥ 0 and

u(t, x; fπ
τ,v) = cos

(
t
√

−π(Ω) + λτ

)
fπ

τ,v(x).
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Proof. Let 〈·, ·〉 be the Killing form on g. Its restriction to p (resp. k) is positive (resp.
negative) definite. Let X1, ..., Xd ∈ p and Y1, ..., Ym ∈ k be bases of p and k, respectively,
such that 〈Xi, Xj〉 = δij , 〈Yi, Yj〉 = −δij . Then Ω =

∑
iX

2
i −∑j Y

2
j and ΩK = −∑j Y

2
j .

Let v ∈ Hπ(τ), ‖ v ‖= 1. Then we get

−π(Ω) + λτ = −〈π(Ω)v, v〉 + λτ =
∑

i

‖ π(Xi)v ‖2≥ 0,

which proves the first statement. For the second statement, we note that by definition, we
have

(6.11)
∂2

∂t2
u(t, x; fπ

τ,v) = −∆̃τu(t, x; f
π
τ,v).

Fix x0 ∈ S. Let χ ∈ C∞
c (S) be such that

χ(y) =

{
1, y ∈ B2t(x);

0, y ∈ S \B3t(x).

Then by finite propagation speed we have

u(t, x; fπ
τ,v) = u(t, x;χfπ

τ,v), x ∈ Bt(x0).

Since χfπ
τ,v ∈ C∞

c (S, Ẽτ ), we have

u(t, x; fπ
τ,v) =

(
cos
(
t(∆̃τ )

1/2
)

(χfπ
τ,v)
)

(x), x ∈ Bt(x0).

Using that ∆̃τ commutes with cos
(
t(∆̃τ )

1/2
)
, and finite propagation speed, we get

∆̃τu(t, x; f
π
τ,v) = u(t, x; ∆̃τf

π
τ,v).

By (6.9) it follows that

u(t, x; ∆̃τf
π
τ,v) = −(−π(Ω) + λτ )u(t, x; f

π
τ,v).

Combined with (6.11) it follows that for every x ∈ S, u(t, x; fπ
τ,v) satisfies the following

differential equation in t
(
d2

dt2
− π(Ω) + λτ

)
u(t, x; fπ

τ,v) = 0, u(0, x; fπ
τ,v) = fπ

τ,v(x), ut(0, x;φλ) = 0.

This implies the claimed equality. �

Let ϕ ∈ P(C) be even and let ϕ̂ be the Fourier transform of ϕ|R. Since the kernel of the

integral operator ϕ((∆̃τ )
1/2) is given by hϕ ∈ C∞

c (G), ϕ((∆̃τ )
1/2)(fπ

τ,v) is well defined and
it follows from Lemma 6.2 that

ϕ((∆̃τ )
1/2)(fπ

τ,v) =
1√
2π

∫

R

ϕ̂(t)u(t; fπ
τ,v) dt =

1√
2π

∫

R

ϕ̂(t) cos(t
√

−π(Ω) + λτ )f
π
τ,v dt

= ϕ
(√

−π(Ω) + λτ

)
fπ

τ,v.
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If we rewrite this equality in terms of the kernel hϕ and use the definition of fπ
τ,v, we get

(6.12)

∫

G

hϕ(g−1g1)Φ
π
τ (g−1

1 )v dg1 = ϕ
(√

−π(Ω) + λτ

)
Φπ

τ (g−1)v.

Let dτ := dimVτ . Putting g = 1 and taking the trace of both sides, we get
∫

G

Tr[hϕ(g)Φπ
τ (g

−1)] dg = dτϕ
(√

−π(Ω) + λτ

)
.

We continue by rewriting the left hand side. To this end put

φπ
τ (g) := tr Φπ

τ (g), g ∈ G.

Note that φπ
τ satisfies φπ

τ (g) = φπ
τ (g

−1). Using the Schur orthogonality relations (see [Kn,
Chapt. I, §5]), we get

Φπ
τ (g) = dτ

∫

K

Tr[τ(k−1)Φπ
τ (g)]τ(k) dk = dτ

∫

K

φπ
τ (k−1g)τ(k) dk.(6.13)

Using (6.13), we get
∫

G

Tr[hϕ(g)Φπ
τ (g−1)] dg = dτ

∫

G

∫

K

φπ
τ (k−1g−1) Tr[hϕ(g)τ(k)] dkdg

= dτ

∫

K

∫

G

φπ
τ (gk) trhϕ(gk) dgdk

= dτ

∫

G

trhϕ(g)φπ
τ (g) dg.

(6.14)

Together with (6.12) we obtain

(6.15)

∫

G

trhϕ(g)φπ
τ (g) dg = ϕ

(√
−π(Ω) + λτ

)
.

Now let τ ′ ∈ K̂ be any other representation which occurs in π|K . Repeating the argument
used in (6.14), we get

∫

G

trhϕ(g)φπ
τ ′(g) dg =

∫

G

Tr

[(∫

K

φπ
τ ′(k−1g−1)τ(k) dk

)
hϕ(g)

]
dg.

Again by the Schur orthogonality relations, we have
∫

K

φπ
τ ′(k−1g−1)τ(k) dk = 0,

if τ ′ 6∼= τ . Hence we get

(6.16)

∫

G

tr hϕ(g)φπ
τ ′(g) dg = 0, τ ′ ∈ K̂, τ ′ 6∼= τ.
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Choose an orthonormal basis of Hπ which is adapted to the decomposition of π|K into
irreducible representations of K. Then it follows from (6.16) that

Θπ(tr hϕ) = Tr

[∫

G

trhϕ(g)π(g) dg

]
=
∑

τ ′

∫

G

trhϕ(g)φπ
τ ′(g) dg

=

∫

G

tr hϕ(g)φπ
τ (g) dg.

(6.17)

Combined with (6.15) we obtain the following lemma.

Proposition 6.3. Let ϕ ∈ P(C) be even and let ϕ̂ be the Fourier transform of ϕ|R. Let

hϕ be the kernel of ϕ((∆̃τ )
1/2). Then for all π ∈ Ĝ(τ) we have

Θπ(tr hϕ) = ϕ
(√

−π(Ω) + λτ

)
.

Since G has split rank one, the tempered dual of G (which is the support of the Plancherel

measure) is the union of the unitarily induced representations πσ,λ, σ ∈ M̂ , λ ∈ R, and the
discrete series, where the latter exists only if rankG = rankK. First consider the induced
representation πσ,λ. Let T ⊂M be a maximal torus and t the Lie algebra of T . Let Λσ ∈ it

be the infinitesimal character of σ ∈ M̂ and ρM the half-sum of positive roots of (M,T ).
Then by [Kn, Proposition 8.22]

(6.18) πσ,λ(Ω) = −λ2 − |ρ|2 + |Λσ + ρM |2 − |ρM |2,

where |ρ| is given by (6.1). Let τ ∈ K̂. By Frobenius reciprocity [Kn, p.208] we have

(6.19) [πσ,λ|K : τ ] = [τ |M : σ], σ ∈ M̂.

Since we are assuming that K is multiplicity free in G, it follows that [τ |K : σ] ≤ 1. Let

M̂(τ) = {σ ∈ M̂ : [τ |M : σ] = 1}.

Then by (6.19) it follows that πσ,λ ∈ Ĝ(τ) if and only if σ ∈ M̂(τ), and by Proposition 6.3
we get

(6.20) Θσ,λ(tr hϕ) = ϕ
(√

λ2 + |ρ|2 + |ρM |2 − |Λσ + ρM |2 + λτ

)
, σ ∈ M̂(τ), λ ∈ R.

Now suppose that rankG = rankK. Then G has a non-empty discrete series. Let H ⊂ G
be a compact Cartan subgroup with Lie algebra h. Let L ⊂ ih be the lattice of all µ ∈ ih
such that ξµ(expY ) = eµ(Y ), Y ∈ hC exists. Let L′ ⊂ L be the subset of regular elements.
According to Harish-Chandra the discrete series of G is parametrized by L′, i.e., for each
µ ∈ L′ there is a discrete series representation πµ. Moreover πµ

∼= πµ′ iff there exists
w ∈ W such that µ = wµ′, and each discrete series representation is of the form πµ for
some µ ∈ L′. Then by [Ar, (6.8)] we have

(6.21) πµ(Ω) = |µ+ ρ|2 − |ρ|2, µ ∈ L′.
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So Proposition 6.3 gives in this case

(6.22) Θπµ
(tr hϕ) = ϕ

(√
|µ+ ρ|2 − |ρ|2 + λτ

)
, µ ∈ L′, πµ ∈ Ĝ(τ).

Using the Plancherel formula, (6.20) and (6.22), we get an explicit form of the trace formula
(6.5).

Now we consider the case where τ0 = 1 is the trivial representation. Then we always have
[π|K : τ0] ≤ 1. Indeed, if [π|K : τ0] > 0, then π is a principal series representation π1,λ, where
1 denotes the trivial representation of M and it follows from Frobenius reciprocity [Kn, p.
208] that [π|K : τ0] = 1. Then hϕ is a function which belongs to the space C∞

c (G//K) of bi-
K-invariant, smooth, compactly supported functions on G. Let c(λ) be Harish-Chandra’s
c-function. Then the Plancherel measure for the spherical Fourier transform is given by
|c(λ)|−2dλ, and the Plancherel formula for spherical functions (see [Hel]) gives

(6.23) hϕ(e) =
1

2

∫

R

ϕ
(√

λ2 + |ρ|2
)
|c(λ)|−2 dλ.

Furthermore, note that by Frobenius reciprocity M̂(1) consists only of the trivial represen-
tation 1 of M . We denote the character of the induced representation πλ := π1,λ by Θλ.
By (6.20) we have

(6.24) Θλ(hϕ) = ϕ
(√

λ2 + |ρ|2
)
, λ ∈ R.

Formulas (6.23) and (6.24) suggest to shift the spectrum by |ρ|2, i.e., to replace ∆#
χ by

∆#
χ − |ρ|2. So let hϕ,ρ be the kernel of ϕ

(
(∆̃ − |ρ|2)1/2

)
. As above, we get

(6.25) hϕ,ρ(e) =
1

2

∫

R

ϕ(λ)|c(λ)|−2 dλ

and

(6.26) Θλ(hϕ,ρ) = ϕ(λ), λ ∈ R.

Inserting (6.25) and (6.26) into the trace formula for ϕ
(
(∆̃ − |ρ|2)1/2

)
which is analogous

to (6.5) we obtain Theorem 1.1.

�

Finally, we indicate the connection with [Se1]. Let v ∈ HK
λ with ‖ v ‖= 1 and let

φλ be the spherical function (6.10) associated with v. Let f ∈ C∞
c (G//K). Since f is

bi-K-invariant, we get

(6.27) Θλ(f) = Tr πλ(f) =

∫

G

〈πλ(g)v, v〉f(g) dλ.

Using (6.10) we get

(6.28) Θλ(f) =

∫

G

φλ(g)f(g) dg.
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The right hand side is the spherical Fourier transform F(f)(λ) of f . Using the Cartan
decomposition G = KA+K and A+ ∼= (1,∞), the bi-K-invariant functions f and φλ can
be identified with functions on (1,∞). Choosing a standard integral representation for the
spherical function, we end up with the classical Selberg transform.

7. Restrictions of representations of G

In this section we consider representations of Γ which are the restriction of a finite-
dimensional complex representation η : G → GL(E) of G. For such representations there
exists another approach to the Selberg trace formula.

Denote the flat bundle associated to η|Γ by Eη. There is a different description of Eη

as follows. Let Eτ = Γ\Ẽτ be the locally homogeneous vector bundle associated to the
restriction τ of η to K. Then there is a canonical isomorphism

(7.1) Eη
∼= Eτ

[MM, Proposition 3.1]. Note that the space of C∞-sections of Eτ can be identified with

the space (C∞(Γ\G) ⊗ E)K of K-invariant vectors in (C∞(Γ\G) ⊗E), where K acts by
k 7→ R(k) ⊗ η(k), k ∈ K. Thus there is a canonical isomorphism

(7.2) φ : C∞(X,Eη) ∼= (C∞(Γ\G) ⊗E)K .

Let g = k⊕p be the Cartan decomposition. By [MM, Lemma 3.1] there exists a Hermitian
inner product 〈·, ·〉E in E which satisfies the following properties.

〈η(Y )u, v〉E = −〈u, η(Y )v〉E, for Y ∈ k, u, v ∈ E;

〈η(Y )u, v〉E = 〈u, η(Y )v〉E, for Y ∈ p, u, v ∈ E.

In particular, 〈·, ·〉E is K-invariant. Therefore, it defines a G-invariant Hermitian fiber

metric in Ẽτ which descends to a fiber metric in Eτ . By (7.1) it corresponds to a fiber
metric in Eη. Let ∆η = (∇η)∗∇η be the associated Laplacian in C∞(X,Eη). It is a formally
self-adjoint operator. Its spectral decomposition can be determined as follows. By Kuga’s
lemma [MM, (6.9)] we have

(7.3) ∆η = −R(Ω) + η(Ω) Id .

Assume that η is absolutely irreducible. Then there is a scalar λη ≥ 0 such that

η(Ω) = λη Id .

Let RΓ be the right regular representation of G in L2(Γ\G). Let

(7.4) L2(Γ\G) =
⊕̂

π,∈ bG
mΓ(π)Hπ

be the decomposition of RΓ into irreducible subrepresentations, where Hπ denotes the
Hilbert space of the representation π. Denote by (Hπ ⊗ E)K the space of K invariant
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vectors of Hπ ⊗E, where the action of K is given by k 7→ π(k)⊗ η(k). By (7.1) and (7.4)
we get

(7.5) L2(X,Eη) ∼= (L2(Γ\G) ⊗E)K ∼=
⊕̂

π∈ bG
mΓ(π)(Hπ ⊗E)K .

For π ∈ Ĝ let

λπ = π(Ω)

be the Casimir eigenvalue of π. Then R(Ω) acts in (Hπ ⊗ E)K by λπ. By (7.3) it follows
that w.r.t. the isomorphism (7.5), ∆η acts in (Hπ ⊗ E)K as (−λπ + λη) Id. Thus (7.5) is
the eigenspace decomposition of ∆η.

Let ϕ ∈ P(C) be even. By Lemma 2.4 ϕ
(
(∆η)

1/2
)

is a smoothing operator. So it is a

trace class operator. It acts in (Hπ ⊗E)K by ϕ
(
(−λπ + λη)

1/2
)
. Then it follows from (7.5)

that

(7.6) Trϕ
(
(∆η)

1/2
)

=
∑

π∈ bG

mΓ(π) dim(Hπ ⊗ E)Kϕ
(
(−λπ + λη)

1/2
)
.

To derive the trace formula, we can proceed as in section 5. The lift ∆̃η of ∆η to S
is a G-invariant elliptic differential operator which is symmetric and non-negative. Let

hη,ϕ : Γ\G → End(E) be the kernel of ϕ
(
(∆̃η)

1/2
)
. Applying Proposition 5.1 with χ = 1

and (7.6), we get
∑

π∈ bG

mΓ(π) dim(Hπ ⊗ E)Kϕ
(
(−λπ + λη)

1/2
)

= vol(Γ\S) trhη,ϕ(e)

+
∑

{γ}Γ 6=e

vol(Γγ\Gγ)

∫

Gγ\G

tr hη,ϕ(g−1γg) dġ.
(7.7)

Remark. Let χ = η|Γ. Then we also have the trace formula of Proposition 5.1 with τ = 1.
The two formulas are, of course, different, since the operators are different. In the present
case, the advantage is that we can work with self-adjoint operators. On the other hand,
the formula (5.8) is more suitable for applications to Ruelle- and Selberg zeta functions. �

If the split rank of G is 1, we can use (6.3) to express the orbital integrals in terms of
characters. This gives

Proposition 7.1. Assume that the split rank of G is 1. Let η : G→ GL(E) be an absolutely
irreducible finite-dimensional complex representation of G. Let ϕ ∈ P(C) be even. Then
with the same notation as above we have

∑

π∈ bG

mΓ(π) dim(Hπ ⊗ E)Kϕ
(
(−λπ + λη)

1/2
)

= vol(Γ\S) trhη,ϕ(e)

+
∑

{γ}Γ 6=e

1

2π

l(γ0)

D(γ)

∑

σ∈cM

trσ(γ)

∫

R

Θσ,λ(hη,ϕ) · e−il(γ)λ dλ.
(7.8)
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The characters Θσ,λ(hη,ϕ) can be computed by the method explained in section 6.

So there are two classes of finite-dimensional representations of Γ for which we can work
with self-adjoint operators and apply the usual Selberg trace formula. These are unitary
representations and restrictions of rational representations of G. In general, not every rep-
resentation of Γ belongs to one of these classes. However, if rank(G) ≥ 2, the superrigidity
theorem of Margulis [Ma, Chapt. VII, §5] implies that a general representation of Γ is
not too far from a representation which is either unitary or the restriction of a rational
representation. See [BW, p. 245] for more details.
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