
ON FRIED’S CONJECTURE FOR COMPACT HYPERBOLIC
MANIFOLDS

WERNER MÜLLER

Abstract. Fried’s conjecture is concerned with the behavior of dynamical zeta functions
at the origin. For compact hyperbolic manifolds, Fried proved that for an orthogonal
acyclic representation of the fundamental group, the twisted Ruelle zeta function is holo-
morphic at s = 0 and its value at s = 0 equals the Ray-Singer analytic torsion. He also
established a more general result for orthogonal representations, which are not acyclic.
The purpose of the present paper is to extend Fried’s result to arbitrary finite dimensional
representations of the fundamental group. The Ray-Singer analytic torsion is replaced by
the complex-valued torsion introduced by Cappell and Miller.
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1. Introduction

Let X be a d-dimensional closed, oriented hyperbolic manifold. Then there exists a dis-
crete torsion free subgroup Γ ⊂ SO0(d, 1) such thatX = Γ\Hd, where Hd = SO0(d, 1)/ SO(d)
is the d-dimensional hyperbolic space. Every γ ∈ Γ\{e} is hyperbolic and the Γ-conjugacy
class [γ] corresponds to a unique closed geodesic τγ. Let `(γ) denote the length of τγ. A
conjugacy class is called prime if γ is not a non-trivial power of some other element of Γ.
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Let χ : Γ → GL(Vχ) be a finite dimensional complex representation of Γ and let s ∈ C.
Then the Ruelle zeta function R(s, χ) is defined by the following Euler product

(1.1) R(s, χ) :=
∏

[γ]6=e
[γ] prime

det
(
Id−χ(γ)e−s`(γ)

)
.

The infinite product is absolutely convergent in a certain half plane Re(s) > C and admits
a meromorphic extension to the entire complex plane [Fr2], [Sp1]. The Ruelle zeta is a
dynamical zeta function associated to the geodesic flow on the unit sphere bundle S(X) of
X. There are formal analogies with the zeta functions in number theory such as the Artin
L-function associated to a Galois representation. Analogues to the role of zeta functions
in number theory, one expects that special values of the Ruelle zeta function provide a
connection between the length spectrum of closed geodesics and geometric and topological
invariants of the manifold.

In [Fr1], Fried has established such a connection. To explain his result we need to
introduce some notation. Recall that a representation χ is called acyclic, if the cohomology
H∗(X,Fχ) of X with coefficients in the flat bundle Fχ → X associated to χ vanishes. Let
χ be an orthogonal acyclic representation. Then Fχ is equipped with a canonical fibre
metric which is compatible with the flat connection. Let ∆k,χ be the Laplacian acting in
the space Λk(X,Fχ) of Fχ-valued k-forms. Regarded as operator in the space of L2-forms,
it is essentially self-adjoint with a discrete spectrum Spec(∆k,χ) consisiting of eigenvalues
λ of finite multiplicity m(λ). Let ζk(s;χ) =

∑
λ∈Spec(∆k,χ) m(λ)λ−s be the spectral zeta

function of ∆k,χ [Shb]. The series converges absolutely in the half plane Re(s) > d/2 and
admits a meromorphic extension to the complex plane, which is holomorphic at s = 0.
Then the Ray-Singer analytic torsion TRS(X,χ) ∈ R+ is defined by

(1.2) log TRS(X,χ) :=
1

2

d∑
k=1

(−1)kk
d

ds
ζk(s;χ)

∣∣
s=0

,

[RS]. Now we can state the result of Fried [Fr1, Theorem 1]. He proved that for an acyclic
unitary representation χ the Ruelle zeta function R(s, χ) is holomorphic at s = 0 and

(1.3) |R(0, χ)ε| = TRS(X,χ)2,

where ε = (−1)d−1 and the absolute value can be removed if d > 2. If χ is not acyclic,
but still orthogonal, R(s, χ) may have a pole or zero at s = 0. Fried [Fr1] has determined
the order of R(s, χ) at s = 0 and the leading coefficient of the Laurant expansion around
s = 0. Let bk(χ) := dimHk(X,Eχ). Assume that d = 2n+ 1. Put

h = 2
n∑
k=0

(n+ 1− k)(−1)kbk(χ).

Then by [Fr1, Theorem 3], the order of R(s, χ) at s = 0 is h and the leading term of the
Laurent expansion of R(s, χ) at s = 0 is

(1.4) C(χ) · TRS(X,χ)2sh,
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where C(χ) is a constant that depends on the Betti numbers bk(χ). In [Fr4, p. 66] Fried
conjectured that (1.3) holds for all compact locally symmetric manifolds X and acyclic
orthogonal bundles over S(X). This conjecure was recently proved by Shu Shen [Shu].

Let χ be a unitary acyclic representation of Γ. Let τ(X,χ) be the Reidemeister torsion
[RS], [Mu3]. It is defined in terms of a smooth triangulation of X. However, it is inde-
pendent of the particular C∞-triangulation. Since χ is acyclic, τ(X,χ) is a topological
invariant, i.e., it does not depend on the metrics on X and in Fρ. By [Ch], [Mu2] we have
TRS(X,χ) = τ(X,χ). Assume that d is odd. Then (1.3) can be restated as

(1.5) R(0, χ) = τ(X,χ)2.

This provides an interesting relation between the length spectrum of closed geodesics and
a secondary topological invariant.

Another class of interesting representations arises in the following way. LetG := SO0(d, 1).
Let ρ be a finite dimensional complex or real representation of G. Then ρ|Γ is a finite dimen-
sional representation of Γ. In general, ρ|Γ is not an orthogonal representation. However,
the flat vector bundle Fρ associated with ρ|Γ can be equipped with a canonical fibre metric
which allows the use of methods of harmonic analysis to study the Laplace operators ∆k,ρ.
Put

R(s, ρ) := R(s, ρ|Γ).

The behavior of R(s, ρ) at s = 0 has been studied by Wotzke [Wo]. Let θ : G → G be
the Cartan involution of G with respect to K = SO(d). Let ρθ := ρ ◦ θ. Also denote by
TRS(X, ρ) the analytic torsion of X with respect to ρ|Γ and an admissible metric in Fρ.
Assume that ρ 6∼= ρθ. Then Wotzke [Wo] has proved that R(s, ρ) is holomorphic at s = 0
and

(1.6) |R(0, ρ)| = TRS(X, ρ)2.

If ρ ∼= ρθ, then R(s, ρ) may have a zero or a pole at s = 0. Wotzke [Wo] has also
determined the order of R(s, ρ) at s = 0 and the coefficient of the leading term of the
Laurent expansion of R(s, ρ) at s = 0. As in (1.4) the main contribution to the coefficient
is the analytic torsion.

Let τ(X, ρ) be the Reidemeister torsion [Mu3] of X with respect to ρ|Γ. If ρ 6∼= ρθ,
the cohomology H∗(X,Fρ) vanishes [BW, Chapt. VII, Theorem 6.7]. Then τ(X, ρ) is
independent of the metrics on X and in Fρ. By [Mu3, Theorem 1] we have TRS(X, ρ) =
τ(X, ρ). Thus (1.6) can be restated as

(1.7) |R(0, ρ)| = τ(X, ρ)2.

This equality has interestig consequences for arithmetic subgroups Γ. Assume that there
exists a Γ-invariant lattice Mρ ⊂ Vρ. Let Mρ → X be the associated local system of
free Z-modules of finite rank. The cohomology H∗(X,Mρ) is a finitely generated abelian
group. If ρΓ is acyclic, H∗(X,Mρ) is a finite abelian group. Denote by |Hk(X,Mρ)| the
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order of Hk(X,Mρ)|. By [Ch, (1.4)], [BV, Sect. 2.2], τ(X, ρ) can be expressed in terms of
|Hk(X,Mρ)|, k = 0, ..., d. Combined with (1.7) we get

(1.8) |R(0, ρ)| =
d∏

k=0

|Hk(X,Mρ)|(−1)k+1

.

This is another interesting realtion between the length spectrum of X and topological
invariants of X.

For arithmetic subgroups Γ ⊂ G, representations of G with Γ-invariant lattices in the
corresponding representation space exist. See [BV], [MaM].

The main purpose of this paper is to extend the above results about the behaviour of
the Ruelle zeta function at s = 0 to every finite dimensional representation χ of Γ. To this
end we use a complex version TC(X,χ) of the analytic torsion, which was introduced by

Cappell and Miller [CM]. It is defined in terms of the flat Laplacians ∆]
k,χ, k = 0, ..., d,

which are obtained by coupling the Laplacian ∆k on k-forms to the flat bundle Fχ (see

section 2 for its definition). In general, the flat Laplacian ∆]
k,χ is not self-adjoint. However,

its principal symbol equals the principal symbol of a Laplace type operator. Therefore,
it has good spectral properties which allows to carry over most of the results from the
self-adjoint case. The Cappell-Miller torsion TC(X,χ) is defined as an element of the
determinant line

TC(X,χ) ∈ detH∗(X,Fχ)⊗ (detH∗(X,Fχ))∗.

For an acyclic representation TC(X,χ) is a complex number and

(1.9) |TC(X,χ)| = TRS(X,χ)2,

where TC(X,χ) is the Ray-Singer analytic torsion with respect to any choice of a fibre
metric in Fχ. Since χ is acyclic, TRS(X,χ) is independent of the choice of the metric in
Fχ.

Let V k
0 be the generalized eigenspace of ∆]

k,χ, k = 0, ..., d, with generalized eigenvalue 0.

Let d∗,]χ be the coupling of the codifferential d∗χ : Λ∗(X) → Λ∗(X) to the flat bundle Fχ.

Then (V ∗0 , dχ, d
∗,]
χ ) is a double complex in the sense of [CM, §6]. Let

(1.10) T0(X,χ) ∈ detH∗(X,Fχ)⊗ (detH∗(X,Fχ))∗.

be its torsion [CM, §6]. We note that TC(X,χ) and T0(X,χ) are both non-zero elements
of the determinant line detH∗(X,Fχ) ⊗ (detH∗(X,Fχ))∗. Hence there exists λ ∈ C with
TC(X,χ) = λT0(X,χ). Set

TC(X,χ)

T0(X,χ)
:= λ.

Put

(1.11) hk := dimV k
0 , k = 0, ..., d.
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Furthermore, let d = 2n+ 1 and put

(1.12) h :=
n∑
k=0

(d+ 1− 2k)(−1)khk

and

(1.13) C(d, χ) :=
d−1∏
k=0

d−1∏
p=k

(2(n− p))(−1)khk .

Then our main result is the following theorem.

Theorem 1.1. Let χ be a finite dimensional complex representation of Γ. Let h be defined
by (1.12). Then the order of the singularity of R(s, χ) at s = 0 is h and

(1.14) lim
s→0

s−hR(s, χ) = C(d, χ) · T
C(X,χ)

T0(X,χ)
.

Now choose a triangulation of X. Let τcomb(X,χ) ∈ detH∗(X,Fχ)⊗ (detH∗(X,Fχ))∗ be
the combinatorial torsion defined Cappell and Miller [CM, Sect. 9]. It is independent of
the choice of the triangulation. By [CM, Theorem 10.1] we have TC(X,χ) = τcomb(X,χ).
Thus we can restate Theorem 1.1 as

(1.15) lim
s→0

s−hR(s, χ) = C(d, χ) · τcomb(X,χ)

T0(X,χ)
.

If χ is acyclic, then TC(X,χ), T0(X,χ) and τcomb(X,χ) are complex numbers and on the
right hand side of (1.14) and (1.15) appear quotients of complex numbers.

Now we apply Theorem 1.1 to representations of Γ which are restrictions of representa-
tions of G. Then we get

Corollary 1.2. Let ρ ∈ Rep(G) and assume that ρ 6∼= ρθ. Then R(s, ρ) is holomorphic at
s = 0 and

(1.16) R(0, ρ) = C(d, ρ) · T
C(X, ρ)

T0(X, ρ)
.

Using (1.6) and (1.9), it follows that

(1.17) |T0(X, ρ)| = C(d, ρ).

Let d = 3. Then H3 ∼= SL(2,C)/ SU(2). For m ∈ N let ρm : SL(2,C) → SL(Sm(C2))
be the m-th symmetric power of the standard representation of SL(2,C) on C2. For a
compact, oriented hyperbolic 3-manifold X = Γ\H3 and the representations ρm, m ∈ N,
Corollary 1.2 was proved by J. Park [Pa, (5.5)]. He also determined the constant C(3, ρm)
and |T0(X, ρm)|. By [Pa, Prop. 5.1] we have

h0 = 1 and |T0(X, ρm)| = 2, if m is even

h0 = 0 and T0(X, ρm) = 1, if m is odd.
(1.18)
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Moreover C(3, ρm) = (−4)h0 . The order h of R(s, ρm) at s = 0 is zero. Thus by (1.12) we
have h1 = 2h0. Note that ρm is acyclic. Let ∆k,ρm be the usual Laplacian in Λk(X,Fρm)
with respect to the admissible metric in Fρm . Then for m ∈ N even we have

(1.19) ker ∆k,ρm = 0, ker ∆]
k,ρm
6= 0, k = 0, ...,

which shows that for acyclic representations χ, in general, the flat Laplacian ∆]
k,χ need not

be invertible.

Again we can replace TC(X, ρ) in (1.16) by the combinatorial torsion τcomb(X, ρ). How-
ever, in the present case we can replace the combinatorial torsion by the complex Reide-
meister torsion. Since G is a connected semisimple Lie group and ρ a representation of
G, it follows from [Mu3, Lemma 4.3] that ρ is actually a representation in SL(n,C). This
implies that the complex Reidemeister torsion τC(X, ρ) ∈ C∗/{±1} can be defined as the
usual Reidemeister torsion τ(X, ρ) [RS, Definition 1.1], where the absolute value of the
determinant is deleted. In particular, we have

(1.20) |τC(X, ρ)| = τ(X, ρ).

Using (1.16) we get

(1.21) R(0, ρ) = C(d, ρ) · τ
C(X, ρ)2

T0(X, ρ)
.

Another case to which Theorem 1.1 can be applied are deformations of unitary acyclic
representations. Let Rep(Γ,Cn) be the set of all n-dimensional complex representations of
Γ equipped with usual topology. Let Repu0(Γ,Cn) ⊂ Rep(Γ,Cn) be the subset of all unitary
acyclic representations (see section 6.2). By [FN, Theorem 1.1], we have Repu0(Γ,Cn) 6= ∅.
There exists a neighborhood V of Repu0(Γ,Cn) in Rep(Γ,Cn) such that ∆]

χ is invertible for
all χ ∈ V . Using Theorem 1.1, we get

Proposition 1.3. Let χ ∈ V . Then R(s, χ) is regular at s = 0 and

R(0, χ) = TC(X,χ).

This proposition was first proved by P. Spilioti [Sp3] using the odd signature operator
[BK1]. She also discussed the relation with the refined analytic torsion.

2. Coupling differential operators to a flat bundle

We recall a construction of the flat extension of a differential operator introduced in [CM].
Let X be a smooth manifold and E1 and E2 complex vector bundles over X. Let

D : C∞(X,E1)→ C∞(X,E2)

be a differential operator. Let F → X be a flat vector bundle. Then there is a canonically
operator

D]
F : C∞(X,E1 ⊗ F )→ C∞(X,E2 ⊗ F )
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associated to D, which is defined as follows. Let U ⊂ X be an open subset such that F |U
is trivial. Let s1, . . . , sk ∈ C∞(U, F |U) be a local frame field of flat sections. Every section
ϕ of (E1 ⊗ F )|U can be written as

ϕ =
k∑
i=1

ψi ⊗ si

for some sections ψ1, ..., ψk ∈ C∞(U,E1|U). Then define

D]
F |U : C∞(U, (E1 ⊗ F )|U)→ C∞(U, (E2 ⊗ F )|U)

by

(D]
F |U)(ϕ) :=

k∑
i=1

D(ψi)⊗ si.

Let s′1, ..., s
′
k be another local frame field of flat sections of F |U . Then si =

∑k
j=1 fijs

′
j,

i = 1, ..., k, with fij ∈ C∞(U), and it follows that the transition functions fij are constant.

Since D is linear, (D]
F |U)(ϕ) is independent of the choice of the local frame field of flat

sections and therefore, D]
F is globally well defined. Let σ(D) be the principal symbol of

D. Then the principal symbol σ(D]
F ) of D]

F is given by σ(D]
F ) = σ(D) ⊗ IdF . Thus if D

is elliptic, then D]
F is also an elliptic differential operator.

As an example consider a Riemannian manifold X and the Laplace operator ∆p on p-
forms. Let F be a flat bundle over X. Denote by Λp(X,F ) the space of smooth F -valued
p-forms, i.e., Λp(X,F ) = C∞(X,ΛpT ∗(X) ⊗ F ). By the construction above we obtain

the flat Laplacian ∆]
p,F : Λp(X,F ) → Λp(X,F ). If the flat bundle is fixed, we will denote

the flat Laplacian simply by ∆]
p. The flat Laplacian can be also described as the usual

Laplacian. Let dF : Λp−1(X,F ) → Λp(X,F ) be the exterior derivative defined as above.
Let ? : Λp(X)→ Λn−p(X) denote the Hodge ?-operator. Then the flat extension

d∗,]F : Λp(X,F )→ Λp−1(X,F )

of the co-differential d∗ is given by

d∗,]F = (−1)np+n+1(?⊗ IdF ) ◦ dF ◦ (?⊗ IdF ).

Then d∗,]F satisfies d∗,]F ◦ d
∗,]
F = 0 and we have

∆]
F = (dF + d∗,]F )2.

If we choose a Hermitian fibre metric on F , we can define the usual Laplace operator ∆F

in Λp(X,F ), which is defined by

∆F = (dF + d∗F )2 = dFd
∗
F + d∗FdF ,

which is formally self-adjoint. Now note that d∗,]F = d∗F + B, where B is a smooth homo-

morphism of vector bundles. Thus it follows that ∆]
F = ∆F + (BdF + dFB). Thus the
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principal symbol σ(∆]
F )(x, ξ) of ∆]

F is given by

(2.1) σ(∆]
F )(x, ξ) = ‖ξ‖2

x IdΛpT ∗x (X)⊗Fx , x ∈ X, ξ ∈ Fx.

More generally, let E → X be a Hermitian vector bundle over X. Let ∇ be a covariant
derivative in E which is compatible with the Hermitian metric. We denote by C∞(X,E)
the space of smooth sections of E. Let

∆E = ∇∗∇
be the Bochner-Laplace operator associated to the connection ∇ and the Hermitian fiber
metric. Then ∆E is a second order elliptic differential operator. Its leading symbol
σ(∆E) : π∗E → π∗E, where π is the projection of T ∗X, is given by

(2.2) σ(∆E)(x, ξ) =‖ ξ ‖2
x · IdEx , x ∈ X, ξ ∈ T ∗xX.

Let F → X be a flat vector bundle and

∆]
E⊗F : C∞(X,E ⊗ F )→ C∞(X,E ⊗ F )

the coupling of ∆E to F . Then the principal symbol of ∆]
E⊗F is given by

(2.3) σ(∆]
E⊗F )(x, ξ) = ‖ξ‖2

x · IdEx⊗Fx .

3. Regularized determinants and analytic torsion

Let ∆E be as above. Let

P : C∞(X,E)→ C∞(X,E)

be an elliptic second order differential operator which is a perturbation of ∆E by a first
order differential operator, i.e.,

(3.4) P = ∆E +D,

where D : C∞(X,E)→ C∞(X,E) is a first oder differential operator. This implies that P
is an elliptic second order differential operator with leading symbol σ(P )(x, ξ) given by

(3.5) σ(P )(x, ξ) := ‖ξ‖2
x · IdEx .

Though P is not self-adjoint in general, it still has nice spectral properties [Shb, Chapt. I,
§8]. We recall the basic facts. For I ⊂ [0, 2π] let

(3.6) ΛI = {reiθ : 0 ≤ r <∞, θ ∈ I}.
The following lemma describes the structure of the spectrum of P .

Lemma 3.1. For every 0 < ε < π/2 there exists R > 0 such that the spectrum of P is
contained in the set BR(0) ∪ Λ[−ε,ε]. Moreover the spectrum of P is discrete.

Proof. The first statement follows from [Shb, Theorem 9.3]. The discreteness of the spec-
trum follows from [Shb, Theorem 8.4]. �
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For λ ∈ C \ spec(P ) let Rλ(P ) := (P − λ Id)−1 be the resolvent. Given λ0 ∈ spec(P ), let
Γλ0 be a small circle around λ0 which contains no other points of spec(P ). Put

(3.7) Πλ0 =
i

2π

∫
Γλ0

Rλ(P ) dλ.

Then Πλ0 is the projection onto the root subspace Vλ0 . This is a finite-dimensional subspace
of C∞(X,E) which is invariant under P and there exists N ∈ N such that (P−λ0 I)NVλ0 =
0. Furthermore, there is a closed complementary subspace V ′λ0

to Vλ0 in L2(X,E) which

is invariant under the closure P̄ of P in L2 and the restriction of (P̄ − λ0 I) to V ′λ0
has a

bounded inverse. The algebraic multiplicity m(λ0) of λ0 is defined as

m(λ0) := dimVλ0 .

Moreover L2(X,E) is the closure of the algebraic direct sum of finite-dimensional P -
invariant subspaces Vk

(3.8) L2(X,E) =
⊕
k≥1

Vk

such that the restriction of P to Vk has a unique eigenvalue λk, for each k there exists
Nk ∈ N such that (P − λk I)NkVk = 0, and |λk| → ∞. In general, the sum (3.8) is not a
sum of mutually orthogonal subspaces. See [Mu1, Sect. 2] for details.

Recall that an angle θ ∈ [0, 2π) is called an Agmon angle for P , if there exists ε > 0 such
that

(3.9) spec(P ) ∩ Λ[θ−ε,θ+ε] = ∅.

By Lemma 3.1 it is clear that an Agmon angle always exists for P . Assume that P is
invertible. Choose an Agmon angle for P . Define the complex power P−sθ , s ∈ C, as in
[Shb, §10]. For Re(s) > n/2, the complex power P−sθ is a trace class operator and the zeta
function ζθ(s, P ) of P is defined by

(3.10) ζθ(s, P ) := Tr(P−sθ ), Re(s) >
n

2
.

The zeta function admits a meromorphic extension to the entire complex plane which is
holomorphic at s = 0 [Shb, Theorem 13.1]. Let Rθ := {ρeiθ : ρ ∈ R+}. Denote by logθ(λ)
the branch of the logarithm in C \ Rθ with θ < Im logθ < θ + 2π. We enumerate the
eigenvalues of P such that

Re(λ1) ≤ Re(λ2) ≤ · · · ≤ Re(λk) ≤ · · · .

By Lidskii’s theorem [GK, Theorem 8.4] if follows that for Re(s) > n/2 we have

(3.11) ζθ(s, P ) = Tr(P−sθ ) =
∞∑
k=1

m(λk)(λk)
−s
θ ,
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where (λk)
−s
θ = e−s logθ(λk). We will need a different description of the zeta functionThe

zeta function in terms of the heat operator e−tP , which can be defined using the functional
calculus developed in [Mu1, Sect. 2] by

(3.12) e−tP :=
i

2π

∫
Γ

e−tλ
2

(P 1/2 − λ)−1dλ,

where Γ ⊂ C is the same contour as in [Mu1, (2.18)]. As in [Mu1, Lemma 2.4] one can
show that e−tP is an integral operator with a smooth kernel. By [Mu1, Prop. 2.5] it follows
that e−tP is a trace class operator. Using Lidskii’s theorem as above we get

(3.13) Tr(e−tP ) =
∞∑
k=1

m(λk)e
−tλk .

The absolute convergence of the right hand side follows from Weyl’s law [Mu1, Lemma
2.2]. Assume that there exists δ > 0 such that Re(λk) ≥ δ for all k ∈ N. Then by (3.13)
and Weyl’s law it follows that there exist C, c > 0 such that

(3.14) |Tr(e−tP )| ≤ Ce−ct

for t ≥ 1. Since spec(P ) is contained in the half plane Re(s) > 0, we can choose the Agmon
angle as θ = π. Using the asymptotic expansion of Tr(e−tP ) as t→ 0, it follows from (3.11)
and (3.14) that

ζ(s, P ) =
1

Γ(s)

∫ ∞
0

Tr(e−tP )ts−1dt

for Re(s) > n/2.

Then the regularized determinant of P is defined by

(3.15) detθ(P ) := exp

(
− d

ds
ζθ(s, P )

∣∣∣
s=0

)
.

As shown in [BK1, 3.10], detθ(P ) is independent of θ. Therefore we will denote the regu-
larized determinant simply by det(P ).

Assume that the vector bundle E is Z/2Z-graded, i.e., E = E+ ⊕ E− and P preserves
the grading, i.e., assume that with respect to the decomposition

C∞(Y,E) = C+(Y,E+)⊕ C∞(Y,E−)

P takes the form

P =

(
P+ 0
0 P−

)
.

Then we define the graded determinant detgr(P ) of P by

(3.16) detgr(P ) =
det(P+)

det(P−)
.
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Next we introduce the analytic torsion defined in terms of the non-selfadjoint operators
∆]
p,χ. We use the definition given in [CM, section 8]. Recall that the principal symbol of

∆]
p,χ is given by (2.3). Therefore, ∆]

p,χ satisfies the assumptions of section 3.

Let r > 0 be such that Re(λ) 6= r for all generalized eigenvalues λ of ∆]
p,χ. Let Πp,r be

the spectral projection on the span of the generalized eigenvectors with eigenvalues with
real part less than r. Let ∆]

p,χ,r := (1 − Πp,r)∆
]
p,χ. Let S(p, χ, r) be the set of all nonzero

generalized eigenvalues with real part less than r. Furthermore, let V p
0 be the generalized

eigenspace of ∆]
p,χ with generalized eigenvalues 0. Then (V ∗0 , d, d

∗,]) is double complex in
the sense of [CM]. Let

(3.17) T0(X,χ) ∈ (detH∗(X,Fχ))⊗ (detH∗(X,Fχ))∗

be the torsion of the double complex. Then the Cappell-Miller torsion is defined by

(3.18) TC(X,χ) :=
d∏
p=1

det(∆]
p,χ,r)

(−1)p+1p ·
d∏
p=1

( ∏
λ∈S(p,χ,r)

λm(λ)
)(−1)p+1p

· T0(X,χ),

where m(λ) denotes the algebraic multiplicity of λ. Let Πk,0 be the spectral projection on

the generalized eigenspace of ∆]
k,χ with generalized eigenvalue 0. Let

(∆]
k,χ)′ := (Id−Πk,0)∆]

k,χ.

If we choose an Agmon angle we can also write

(3.19) TC(X,χ) =
d∏

k=1

[
det(∆]

k,χ)′
](−1)k+1k

· T0(X,χ).

If χ is acyclic, i.e., H∗(X,Eχ) = 0, then T0(X,χ) and TC(X,χ) are complex numbers.

4. Twisted Ruelle and Selberg zeta functions

In this section we consider compact oriented hyperbolic manifolds of odd dimension
d = 2n+ 1 and we recall some basic facts about Ruelle and Selberg type zeta functions.

We need a more general class of Ruelle zeta functions than the one defined by (4.6). To
begin with we fix some notation. Let G = SO0(d, 1) and K = SO(d). Then G/K equipped
with the normalized invariant metric is isometric to the d-dimensional hyperbolic space
Hd. Let G = KAN be the standard Iwasawa decompositon. Let M be the centralizer of
A in K. Then M ∼= SO(d− 1). Denote by g, k, m, n, and a the Lie algebras of G, K, M ,
N , and A, respectively. Let W (A) ∼= Z/2Z be the Weyl group of (g, a).

Let Γ ⊂ G be a discrete, torsion free, cocompact subgroup. Then Γ acts fixed point free
on Hd. The quotient X = Γ\Hn is a closed, oriented hyperbolic manifold and each such
manifold is of this form. Given γ ∈ Γ, we denote by [γ] the Γ-conjugacy class of γ. The set
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of all conjugacy classes of Γ will be denoted by C(Γ). Let γ 6= 1. Then there exist g ∈ G,
mγ ∈M , and aγ ∈ A+ such that

(4.1) gγg−1 = mγaγ.

By [Wa, Lemma 6.6], aγ depends only on γ and mγ is determined up to conjugacy in M .
By definition there exists `(γ) > 0 such that

(4.2) aγ = exp (`(γ)H) .

Then `(γ) is the length of the unique closed geodesic in X that corresponds to the conjugacy
class [γ]. An element γ ∈ Γ − {e} is called primitive, if it can not be written as γ = γk0
for some γ0 ∈ Γ and k > 1. For every γ ∈ Γ− {e} there exist a unique primitive element

γ0 ∈ Γ and nΓ(γ) ∈ N such that γ = γ
nΓ(γ)
0 . We recall that for R > 0 we have

(4.3) # {[γ] ∈ C(Γ) : `(γ) ≤ R} � e(n−1)R

[BO, (1.31)]. We also need the following auxiliary lemma.

Lemma 4.1. Let χ : Γ→ GL(V ) be a finite dimensional representation of Γ. There exist
C, c > 0 such that

(4.4) | tr(χ(γ))| ≤ Cec`(γ), ∀γ ∈ Γ− {e}.

For the proof see [Sp1, Lemma 3.3]. Let θ : g→ g be the Cartan involution with respect
to k. Let n̄ = θn be the negative root space. Let χ : Γ → GL(V ) be a finite dimensional

complex representation. For σ ∈ M̂ and s ∈ C with Re(s) � 0 the twisted Selberg zeta
function is defined by

(4.5) Z(s;σ, χ) :=
∏

[γ] 6=e
[γ] prime

∞∏
k=0

det
(
1−

(
χ(γ)⊗ σ(mγ)⊗ Sk (Ad(mγaγ)n)

)
e−(s+‖ρ‖)`(γ)

)
,

where [γ] runs over the primitive Γ-conjugacy classes and Sk (Ad(mγaγ)n) denotes the k-th
symmetric power of the adjoint map Ad(mγaγ) restricted to n̄. It follows from (4.3) and
(4.4) that there exists C > 0 such that the product converges absolutely and uniformly on
campact subsets of the half-plane Re(s) > C. See [Sp1, Prop 3.4]. In the same way the
twisted Ruelle zeta function R(s;σ, χ) is defined by

(4.6) R(s;σ, χ) :=
∏

[γ] 6=e
[γ] prime

det
(
1− (χ(γ)⊗ σ(mγ)) e

−(s+|ρ|)`(γ)
)
.

By [Sp1, Prop. 3.5] the product converges absolutely and uniformly in some half-plane
Re(s) > C. Furthermore, Z(s;σ, χ) and R(s;σ, χ) admit meromorphic extensions to the
entire complex plane [Sp1] and satisfy functional equations [Sp2]. For unitary representa-
tions χ, these results were proved by Bunke and Olbrich [BO]. The main technical tool
is the Selberg trace formula. For the extension to the non-unitary case the Selberg trace
formula is replaced by a Selberg trace formula for non-unitary twists, developed in [Mu1].
The proofs are similar except that on has to deal with non-self-adjoint operators.
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There are also expressions of the zeta functions in terms of determinants of certain
elliptic operators. To explain the formulas we need to recall the definition of the relevant

differential operators. Given τ ∈ K̂, let Ẽτ → X̃ be the homogeneous vector bundle

associated to τ and let Eτ := Γ\Ẽτ be the corresponding locally homogeneous vector
bundle over X. Denote by C∞(X,Eτ ) the space of smooth sections of Eτ . There is a
canonical isomorphism

(4.7) C∞(X,Eτ ) ∼= (C∞(Γ\G)⊗ Vτ )K

[Mia, §1]. Let Ω ∈ Z(gC) be the Casimir element and denote by RΓ the right regular
representation of G in C∞(Γ\G). Then RΓ(Ω) acts on the right hand side of (4.7) and via
this isomorphism, defines an operator in C∞(X,Eτ ). We denote the operator induced by
−RΓ(Ω) by Aτ .

Denote by ∇̃τ the canonical connection in Ẽτ and let ∇τ be the induced connection in Eτ .
Let ∆τ := (∇τ )∗∇τ be the associated Bochner-Laplace operator acting in C∞(X,Eτ ) . Let
ΩK ∈ Z(kC) be the Casimir element of K. Assume that τ is irreducible. Let λτ := τ(ΩK)
denote the Casimir eigenvalue of τ . Then we have

(4.8) Aτ := ∆τ − λτ Id .

[Mia, §1]. Thus Aτ is a formally self-adjoint second order elliptic differential operator. Let
Fχ → X be the flat vector bundle defined by χ. Let

A]τ,χ : C∞(X,Eτ ⊗ Fχ)→ C∞(X,Eτ ⊗ Fχ)

be the coupling of Aτ to Fχ.

Denote by R(K) and R(M) the representation rings of K and M , respectively. Let
i : M → K be the inclusion and i∗ : R(K)→ R(M) the induced map of the representation
rings. The Weyl group W (A) acts on R(M) in the canonical way. Let R±(M) denote the
±1-eigenspaces of the non-trivial element w ∈ W (A). Let σ ∈ R(M). It follows from the

proof of Proposition 1.1 in [BO] that there exist mτ (σ) ∈ {−1, 0, 1}, depending on τ ∈ K̂,

which are equal to zero except for finitely many τ ∈ K̃, such that

(4.9) σ =
∑
τ∈K̃

mτ (σ)i∗(τ),

if σ ∈ R+(M), and

(4.10) σ + wσ =
∑
τ∈K̃

mτ (σ)i∗(τ),

if σ 6= wσ. Let

(4.11) E(σ) :=
⊕
τ∈K̃

mτ (σ)=6=0

Eτ .

Then E(σ) has a grading
E(σ) = E+(σ)⊕ E−(σ)
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defined by the sign of mτ (σ). Let σ ∈ M̂ . Denote by νσ the highest weight of σ. Let b be
the standard Cartan subalgebra of m [MP1, Sect. 2]. Let ρm be the half-sum of positive
roots of (mC, bC). Put

(4.12) c(σ) := −‖ρ‖2 − ‖ρm‖2 + ‖νσ + ρm‖2.

We define the operator A]χ(σ) acting in C∞(X,E(σ)⊗ Fχ) by

(4.13) A]χ(σ) :=
⊕
τ∈K̃

mτ (σ)6=0

A]τ,χ + c(σ).

For p ∈ {0, ..., d−1} let σp, be the standard representation of M = SO(d−1) on ΛpRd−1⊗C.
Put

(4.14) A]χ(σp ⊗ σ) :=
⊕

[σ′]∈M̂/W

[(σp⊗σ) : σ′]⊕
i=1

A]χ(σ′),

Recall that A]χ(σp ⊗ σ) acts in the space of sections of a graded vector bundle. Then by
[Sp2, Prop. 1.7] we have the following determinant formula.

Proposition 4.2. For every σ ∈ M̂ one has

R(s;σ, χ) =
d−1∏
p=0

detgr

(
A]χ(σp ⊗ σ) + (s+ n− p)2

)(−1)p

· exp

(
−2π(n+ 1) dim(Vχ) dim(Vσ) vol(X)

vol(Sd)
s

)
,

(4.15)

if σ is Weyl-invariant, and

R(s;σ, χ)R(s;wσ, χ) =
d−1∏
p=0

detgr

(
A]χ(σp ⊗ σ) + (s+ n− p)2

)(−1)p

· exp

(
−4π(n+ 1) dim(Vχ) dim(Vσ) vol(X)

vol(Sd)
s

)
,

(4.16)

otherwise. Here vol(Sd) denotes the volume of the d-dimensional unit sphere.

For unitary χ this was proved in [BO, Prop. 4.6].

5. Proof of the main theorem

To prove Theorem 1.1 we apply Proposition 4.2 for the case σ = 1. Let h = a⊕ b be the
standard Cartan subalgebra of g. Let e1, ..., en+1 ∈ h∗C be the standard basis [MP1, Sect.

2]. Thus e2, ..., en+1 is a basis of b. Then ρm =
∑n+1

j=2 (n+ 1− j)ej and

νp =

{
e2 + · · ·+ ep+1, if p ≤ n,

e2 + · · ·+ e2n+1−p, if p > n,



15

[Kn, Chap. IV, §7]. Moreover, |ρ| = n. An explicit computation shows that c(σp) =
−(n − p)2. Let λp be the p-th exterior power of the standard representation of SO(d) .
Then for p = 0, ..., d − 1 we have i∗(λp) = σp + σp−1. Put τp :=

∑p
k=0(−1)kλp−k. Then it

follows that i∗(τp) = σp, p = 0, ..., d− 1. Using (4.13) and (4.14), we obtain

(5.1) A]χ(σp) + (n− p)2 =

p⊕
k=0

A]λk,χ.

Now recall that A]λk,χ is the coupling of Aλk to Fχ. Furthermore, with respect to the

isomorphism (4.7), Aλk corresponds to the action of −RΓ(Ω) on (C∞(Γ\G) ⊗ ΛkCd). By

the Lemma of Kuga, this operator corresponds to the Laplacian ∆k on Λk(X). Let ∆]
k,χ

be the coupling of ∆k to Fχ. Then by (5.1) we get

(5.2) A]χ(σp) + (n− p)2 =

p⊕
k=0

∆]
k,χ.

Using (4.15) we obtain

R(s;χ) =
d−1∏
p=0

detgr(A
]
χ(σp) + (s+ n− p)2)(−1)p

=
d−1∏
p=0

p∏
k=0

det(∆]
p−k,χ + s(s+ 2(n− p)))(−1)p+k

=
d−1∏
k=0

d−1∏
p=k

det(∆]
k,χ + s(s+ 2(n− p)))(−1)k .

(5.3)

Let hk be the dimension of the generalized eigenspace of ∆]
k,χ with eigenvalue zero.

Lemma 5.1. We have hp = hd−p for p = 0, ..., d.

Proof. Let ? : Λp(X,Fχ) → Λd−p(X,Fχ) be the extension of the Hodge ?-star operator,
which acts locally as ?(ω ⊗ f) = (?ω)⊗ f , where ω is a usual p-form and f a local section
of Fχ. Since ?∆p = ∆d−p?, it follows from the definition of the Laplacians coupled to Fχ
that ?∆]

p,χ = ∆]
d−p,χ?. It follows that for every k ∈ N we have ?(∆]

p,χ)k = (∆]
d−p,χ)k?.This

proves the lemma. �

Denote by h the order of the singularity of R(s, χ) at s = 0. Using (5.3) and Lemma 5.1
it follows that

(5.4) h =
d−1∑
k=0

(d+ 1− k)(−1)khk =
n∑
k=0

(d+ 1− 2k)(−1)khk.

Let Πk,0 be the spectral projection on the generalize eigenspace of ∆]
k,χ with eigenvalue

0. Let (∆]
k,χ)′ := (Id−Πk,0)∆]

k,χ. We note that for s ∈ C, |s| � 1, there is a common
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Agmon angle for the operator (∆]
k,χ)′ + s(s + 2(n − p)). Therefore, in order to study the

limit of det((∆]
k,χ)′+ s(s+ 2(n−p))) as s→ 0, we can use one and the same Agmon angle.

If p 6= n, we get

lim
s→0

s−hk det(∆]
k,χ + s(s+ 2(n− p))) = lim

s→0

[
det((∆]

k,χ)′ + s(s+ 2(n− p))

· (s(s+ 2(n− p)))hk
shk

]
= (2(n− p))hk · det((∆]

k,χ)′).

(5.5)

For p = n we get a similar formula

(5.6) lim
s→0

s−2hk det(∆]
k,χ + s2) = lim

s→0
q det((∆]

k,χ)′ + s2) = det((∆]
k,χ)′).

Let

(5.7) C(d, χ) :=
d−1∏
k=0

d−1∏
p=k

(2(n− p))(−1)khk .

Using (5.4), (5.5) and (5.6) we get

lim
s→0

s−hR(s;χ) =
d−1∏
k=0

d−1∏
p=k
p 6=n

lim
s→0

[
s−hk det(∆]

k,χ + s(s+ 2(n− p)))
](−1)k

·
n∏
k=0

lim
s→0

[
s−2hk det(∆]

k,χ + s2)
](−1)k

= C(d, χ) ·
d−1∏
k=0

det((∆]
k,χ)′)(d−k)(−1)k = C(d, χ) ·

d∏
k=1

det((∆]
k,χ)′)k(−1)k+1

.

(5.8)

For the last equality we used that ∆]
k,χ
∼= ∆]

d−k,χ. Let T0(X,χ) be the torsion (3.17) of

the double complex (V ∗0 , d, d
∗,] and TC(X,χ) the Cappell-Miller torsion defined by (3.18).

We note that TC(X,χ) and T0(X,χ) are both non-zero elements of the determinant line
detH∗(X,Fχ) ⊗ (detH∗(X,Fχ))∗. Hence there exists λ ∈ C with TC(X,χ) = λT0(X,χ).
Set

TC(X,χ)

T0(X,χ)
:= λ.

If we combine this convention with the definition of the Cappell-Miller torsion (3.19), then
(5.8) implies Theorem 1.1.



17

6. Acyclic representations

In this section we assume that χ is acyclic. Then TC(X,χ), T0(X,χ) and τcomb(X,χ)
are complex numbers and the right hand side of (1.14) is the quotient of the two complex
numbers. Besides the Cappell-Miller torsion we need another version of a complex analytic
torsion for arbitrary flat vector bundles Fχ. This is the refined analytic torsion T ran(X,χ) ∈
det(H∗(X,Fχ) introduced by Braverman and Kappeler [BK2]. The definition is based on
the consideration of the odd signature operator Bχ [BK1, 2.1]. It is defined as follows. Let

α : Λ∗(X,Fχ)→ Λ∗(X,Fχ)

be the chirality operator defined by

α(ω) := in+1(−1)k(k+1)/2 ? ω, ω ∈ Λk(M,Fχ).

Let ∇χ be the flat connection in Fχ. Then the odd signature operator is defined as

(6.1) Bχ := α∇χ +∇χα.

It leaves the even subspace Λev(X,Fχ) invariant. Let Bev,χ be the restriction of Bχ to
Λev(X,Fχ). Then T ran(X,χ) ∈ det(H∗(X,Fχ)) is defined in terms of Bev,χ. If χ is acyclic,
then T ran(X,χ) is a complex number. In [BK3], Braverman and Kappeler determined the
relation between the Cappell-Miller torsion and the refined analytic torsion. Let η(B)
be the eta-invariant of Bev,χ. In general, Bχ is not self-adjoint and therefore, η(B) is in
general not real. Furthermore, let η0 be the eta-invariant of the trivial line bundle. Then
by Proposition 4.2 and Theorem 5.1 of [BK3] it follows that

(6.2) TC(X,χ) = ±T ran(X,χ)2 · e−2πi(η(B)−dim(χ)η0).

On the other hand, it follows from [BK2, Theorem 1.9] that

(6.3) |T ran(X,χ)| = TRS(X,χ) · eπ Im(η(B)).

Combining (6.2) and (6.3), we obtain (1.9).

6.1. Restriction of repesentations of the underlying Lie group. The first case that
we consider are representations which are restictions to Γ of representations of G.

Let ρ : G → GL(Vρ) be a finite dimensional real ( resp. complex) representation of G.

Denote by Fρ → X the flat vector bundle associated to ρ|Γ. Let Ẽρ → G/K be the
homogeneous vector bundle associated to ρ|K . By [MM, Part I, Prop. 3.3] there is a
canonical isomorphism

(6.4) Fρ ∼= Γ\Ẽρ.
Let g = k⊕ p be the Cartan decomposition of g. By [MM, Part I, Lemma 3.1], there exists
an inner product 〈·, ·〉 in Vρ such that

(1) 〈τ(Y )u, v〉 = −〈u, τ(Y )v〉 for all Y ∈ k, u, v ∈ Vτ
(2) 〈τ(Y )u, v〉 = 〈u, τ(Y )v〉 for all Y ∈ p, u, v ∈ Vτ .
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Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Since ρ|K is unitary with respect to this inner product, it induces a metric

in Γ\Ẽτ and by (6.4) also in Fρ. Denote by TRS(X, ρ) the Ray-Singer anaytic torsion of
(X,Fρ) with respect to metric on X and the metric in Fρ. Denote by θ : G→ G the Cartan
involution. Let ρθ := ρ ◦ θ. Assume that ρ 6∼= ρθ. Then H∗(X,Fρ) = 0, i.e., ρ|Γ is acyclic.
In this case TRS(X, ρ) is independent of the metrics on X and in Fρ [Mu3, Corollary 2.7].
Let Rρ(s) := R(s, ρ)R(s, ρθ). Then by [Wo, Theorem 8.13] Rρ(s) is holomorphic at s = 0
and

(6.5) Rρ(0) = TRS(X, ρ)4.

Furthermore, from the discussions in [Wo, Sect. 9.1] follows that both R(s, ρ) and R(s, ρθ)

are holomorphic at s = 0 and R(0, ρθ) = R(0, ρ). Thus it follows that

(6.6) |R(0, ρ)| = TRS(X, ρ)2,

which is (6.6). Hence R(s, ρ) is regular at s = 0 and R(0, ρ) 6= 0. Applying Theorem 1.1
we obtain Corollary 1.2.

Next we briefly recall the definition of the Reidemeister torsion [RS]. We work with
vector spaces over C. Let V be C-vector space of dimension m. Let v = (v1, ..., vm) and
w = (w1, ..., wm) be two basis of V . Let T = (tij) be the matrix of the change of basis from
v to W , i.e., wi =

∑
j tijvj. Put [W/v] := det(T ). Let

C∗ : C0 δ0−→ C1 δ1−→ · · · δn−2−−→ Cn−1 δn−1−−→ Cn

be a cochain complex of finite dimensional complex vector spaces. Let Zq = ker(δq) and
Bq := Im(δq−1) ⊂ Cq. Let cq (resp. hq) be a preferred base of Cq (resp. Hq(C∗)).

Choose a basis bq for Bq, q = 0, ..., n, and let b̃q+1 be an independent set in Cq such that

δq(b̃q+1) = bq+1, and let h̃q be an independent set in Zq which represents the base hq of

Hq(C∗). Then (bq, h̃q, b̃q+1) is a basis of Cq and [bq, h̃q, b̃q+1/cq] depends only on bq, hq and
bq+1. Therefore, we denote it by [bq, hq, bq+1/cq]. Then the complex Reidemeister torsion
τC(C∗) ∈ C of the chain complex C∗ is defined by

(6.7) τC(C∗) :=
n∏
q=0

[bq, hq, bq+1/cq]
(−1)q .

Let K be a C∞-triangulation of X and K̃ the lift of K to a triangulation of the univeral

covering Hd of X. Then Cq(K̃,C) is a module over the complex group algebra C[Γ]. Now
recall that ρ is the restriction of a representation of G. Since G is a connected semisimple
Lie group, it follows from [Mu3, Lemma 4.3] that ρ is a representation of Γ in SL(N,C).
Let

Cq(K, ρ) := Cq(K̃,C)⊗C[Γ] CN

the twisted cochain group and

C∗(K, ρ) : 0→ C0(K, ρ)
∂ρ−→ C1(K, ρ)

∂ρ−→ · · · ∂ρ−→ Cd(K, ρ)→ 0
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the corresponding cochain complex. Let e1, ..., erq be a preferres basis of Cq(K̃,C) as
a C[Γ]-module consisting of the duals of lifts of q-simpexes and let v1, ..., vN be a basis
of CN . Then {ei ⊗ vj : i = 1, ..., rq, j = 1, ..., N} is a preferres basis of Cq(K, ρ). Now
consider the complex-valued Reidemeister torsion τC(C∗(K, ρ)). Since ρ is a representation
in SL(N,C), a different choice of the preferred basis {ei} leads at most a to sign change
of τC(X, ρ). If v′ is a different basis of CN , then τC(X, ρ) changes by [v′/v]χ(X). Hence, if
χ(X) = 0, τC(C∗(K, ρ)) is well defined as an element of C∗/{±1}. It depends only on the
choice of the basis hq of Hq(X,Fρ)). Since every two smooth triangulations of X admit a
common subdivision, it follows from [Mi] that τC(C∗(K, ρ)) is independent of the smooth
triangulation K. Put

(6.8) τC(X, ρ) := τC(C∗(K, ρ)).

This is the complex-valued Reidemeister torsion of X and ρ. If ρ 6∼= ρθ, then H∗(X,Fρ) = 0.
Thus in this case τC(X, ρ) is a combinatorial invariant. It follows from property A, satisfied
by τcomb(X, ρ) [CM, 6.2], that

(6.9) τcomb(X, ρ) = τC(X, ρ)2.

This implies (1.21).

6.2. Deformations of acyclic unitary representations. Let Rep(Γ,Cn) be the set of
all n-dimensional complex representations of Γ. It is well known that Rep(Γ,Cn) has a
natural structure of a complex algebraic variety [BK1, 13.6]. Recall that χ ∈ Rep(Γ,Cn)
is called acyclic, if H∗(X,Fχ) = 0, where Fχ → X is the flat vector bundle associated
to χ. Denote by Rep0(Γ,Cn) ⊂ Rep(Γ,Cn) the subset of all acyclic representations. A
representation χ ∈ Rep(Γ,Cn) is called unitary, if there exists a Hermitian scalar product
〈·, ·〉 on Cn which is preserved by all maps χ(γ), γ ∈ Γ. Let Repu0(Γ,Cn) ⊂ Rep0(Γ,Cn) be
the subset of all unitary acyclic representations. By [FN, Theorem 1.1] we get

Proposition 6.1. For every compact hyperbolic manifold Γ\Hd, we have Repu0(Γ,Cn) 6= ∅.

Now let χ ∈ Repu0(Γ,Cn). For such a representation the flat Laplacian ∆]
k,χ equals the

usual Laplace operator ∆k,χ and TC(X,χ) = TRS(X,χ)2. Moreover, hk = 0, k = 0, ..., d,
which implies h = 0 and T0(X,χ) = 1. Thus R(s, χ) is regular at s = 0 and from Theorem
(1.1) we recover Fried’s result [Fr1]

(6.10) R(0, χ) = TRS(X,χ)2.

We equip Rep(Γ,Cn) with the topology obtained from its structure as complex algebraic
variety. The complement of the singular set is a complex manifold. Let W ⊂ Rep(Γ,Cn)
be the connected component of Rep(Γ,Cn) which contains Repu0(Γ,Cn). Let χ0 ∈ W
be a unitary acyclic representation and let E0 be the associated flat vector bundle. By
[GM, Prop. 4.5] every vector bundles Eχ, χ ∈ W , is isomorphic to E0. Thus the flat

connection on Eχ, which is induced by the trivial connection on X̃ ×Cn, corresponds to a
flat connection ∇χ on E0. Now recall that

∆]
χ = (dχ + d∗,]χ )2,
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where
d∗,]χ
∣∣
Λp(X,Eχ)

= (−1)p(?⊗ Id)dχ(?⊗ Id).

Via the isomorphism Eχ ∼= E0, the operator dχ + d∗,]χ corresponds to the operator

D]
χ := ∇χ +∇∗,]χ : Λ∗(X,E0)→ Λ∗(X,E0),

where
∇∗,]χ = (−1)p(?⊗ Id)∇χ(?⊗ Id).

Let ∇0 be the unitary flat connection on E0. Let C(E0) denote the space of connections on
E0. Recall that C(E0) can be identified with Λ1(X,End(E0)) by associating to a connection
∇ ∈ C(E0) the 1-form ∇−∇0 ∈ Λ1(X,End(E0)). We equipp C(E0) with the C0-topology
defined by the sup-norm ‖ω‖sup := maxx∈X |ω(x)|, ω ∈ Λ1(X,End(E0)), where | · | denotes
the natural norm on Λ1(T ∗X) ⊗ E0. Since E0 is acyclic, D0 := ∇0 +∇∗0 is invertible. If
‖∇χ−∇0‖ � 1 it follows as in [BK1, Prop 6.8] that D]

χ is invertible and hence ∆]
χ = (D]

χ)2

is invertible too. Thus we get

Lemma 6.2. There exists an open neighborhood V ⊂ W of Repu0(Γ,Cn) such that ∆]
χ is

invertible for all χ ∈ V .

Let χ ∈ V . Then we have hk = dim(∆]
k,χ) = 0, k = 0, ..., d, and therefore the order h of

R(s, χ) at s = 0 vanishes. Also C = 1 and T0(X,χ) = 1. Thus by Theorem 1.1 we obtain
Proposition 1.3.
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