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Abstract. In this article we discuss some recent developments concerning the asymptotic
behavior of the discrete spectrum of the right regular representation in L2(Γ\G) for a
lattice Γ in a semisimple Lie group G.

1. Introduction

This article is a continuation of [Mu8]. Some of the problems raised in [Mu8] have been
solved by now and I will report on some of the new developments.

Let G be a connected linear semisimple Lie group of non-compact type with a fixed choice
of a Haar measure. Let Π(G) denote the set of all equivalence classes of irreducible unitary
representations of G, equipped with the Fell topology. We fix a Haar measure on G. Let
Γ ⊂ G be a lattice in G, i.e., a discrete subgroup such that vol(Γ\G) < ∞. Let RΓ be the
right regular representation of G on L2(Γ\G). Let L2

disc(Γ\G) be the span of all irreducible
subrepresentations of RΓ and denote by RΓ,disc the restriction of RΓ to L2

disc(Γ\G). Then
RΓ,disc decomposes discretely as

(1.1) RΓ,disc
∼=
⊕̂

π∈Π(G)
mΓ(π)π,

where

mΓ(π) = dimHomG(π,RΓ) = dimHomG(π,RΓ,disc)

is the multiplicity with which π occurs in RΓ. The multiplicities are known to be finite
under a weak reduction-theoretic assumption on (G,Γ), which is satisfied if G has no
compact factors or if Γ is arithmetic. The study of the multiplicities mΓ(π) is one of the
main concerns in the theory of automorphic forms. Apart from special cases like discrete
series representations, one cannot hope in general to describe the multiplicity function on
Π(G) explicitly. A more feasible and interesting problem is the study of the asymptotic
behavior of the multiplicities with respect to the growth of various parameters such as the
level of congruence subgroups or the infinitesimal character of π. This is closely related to
the study of families of automorphic forms (see [SST]).

We pick three representative problems which we will discuss in some detail.
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The first problem in this context is the Weyl law. It is related to the basic question
of the existence of cusp forms. Let K be a maximal compact subgroup of G. Fix an
irreducible representation σ of K. Let Π(G; σ) be the subspace of all π ∈ Π(G) such that
[π|K : σ] > 0. Especially, if σ is the trivial representation, then Π(G; σ) is the spherical
dual Πsph(G). Given π ∈ Π(G), denote by λπ = π(Ω) the Casimir eigenvalue of π. For
λ ≥ 0 let the counting function be defined by

(1.2) Nσ
Γ (λ) =

∑

π∈Π(G;σ)
|λπ|≤λ

mΓ(π).

Then the problem is to determine the behavior of the counting function as λ → ∞.

Another basic problem is the limit multiplicity problem, which is the study of the asymp-
totic behavior of the multiplicities if vol(Γ\G) → ∞. For G = GLn(R) this corresponds
to the study of harmonic families of cuspidal automorphic representations of GLn(A), A
being the ring of adeles (see [SST]). More precisely, for a given lattice Γ define the discrete
spectral measure µΓ on Π(G), associated to Γ, by

(1.3) µΓ =
1

vol(Γ\G)

∑

π∈Π(G)

mΓ(π)δπ,

where δπ is the Dirac measure at π. Then the limit multiplicity problem is concerned with
the study of the asymptotic behavior of µΓ as vol(Γ\G) → ∞. For appropriate sequences
of lattices (Γn) one expects that the measures µΓn

converge to the Plancherel measure µpl

on Π(G).

One can also consider more sophisticated functions of the spectrum. An important
example is the Ray-Singer analytic torsion TX(ρ) of a compact Riemannian manifoldX and
a finite dimensional representation ρ of its fundamental group π1(X) [RS]. The analytic
torsion TX(ρ) is defined as a weighted product of regularized determinants of the Laplace
operators ∆p(ρ) on p-forms on X with values in the flat vector bundle associated to ρ. In
the present context X is a compact locally symmetric space Γ\G/K, where K is a maximal
compact subgroup of G and Γ is a uniform, torsion free lattice in G. Of particular interest
are representations of Γ which arise as the restriction of a representation of G. Let (Γn)
be a tower of normal subgroups of Γ. Put Xn = Γn\G/K, n ∈ N. Then Xn → X is a
sequence of finite normal coverings of X . For appropriate representations, called strongly
acyclic, Bergeron and Venkatesch [BV] studied the asymptotic behavior of log TXn

(ρ) as
n → ∞. One of their main results is

(1.4) lim
n→∞

log TXn
(ρ)

vol(Xn)
= log T

(2)
X (ρ),

where T
(2)
X (ρ) is the L2-torsion [Lo], [MV]. Using the equality of analytic torsion and

Reidemeister torsion [Ch], [Mu1], (1.4) implies results about the growth of the torsion
subgroup in the integer homology of arithmetic groups. Let G be a semisimple algebraic
group over Q, G = G(R) and Γ ⊂ G(Q) a co-compact, arithmetic subgroup. As shown
in [BV], there are strongly acyclic representations ρ of G on a finite dimensional vector
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space V such that V contains a Γ-invariant lattice M . Let M be the local system of free
Z-modules over X , attached to M . Then the cohomology H∗(X,M) of X with coefficients
in M is a finite abelian group. Denote by |H∗(X,M)| its order. Assume that d = dim(X)
is odd. Then by [BV] one has

lim
n→∞

d∑

p=1

(−1)p+
d−1

2

log |Hp(Xn,M)|

[Γ : Γn]
= cM,G vol(X),

where cM,G is a constant that depends only on G and M . Moreover, if δ(G) := rankG −
rankK = 1, then cM,G > 0. It is conjectured that the limit

(1.5) lim
n→∞

log |Hj(Xn,M)|

[Γ : Γn]

always exists and is equal to zero, unless δ(G) = 1 and j = (d− 1)/2. In the latter case it
is equal to cM,G times vol(X). The conjecture is known to be true for G = SL2(C).

An important problem is to extend these results to the non-compact case and we will
discuss the current status of the problem. In the present article we will focus on the Weyl
law and the analytic torsion.

2. The Weyl law

The Weyl law is concerned with the study of the asymptotic behavior of the counting
function (1.2) as λ → ∞. This is the first problem which needs to be solved in order to
be able to pursue a deeper study of the cuspidal automorphic spectrum. For example, the
study of statistical properties of the automorphic spectrum requires first of all to know
that the spectrum is infinite and has the right asymptotic properties. This, in particular,
concerns the study of families of automorphic forms (see [SST]).

The investigation of the asymptotic behavior of the counting function (1.2) is closely
related to the study of the counting function of the eigenvalues of the Laplace operator on
a compact Riemannian manifold. We refer to [Mu8, Sect. 3] for details.

The connection with the estimation of the counting function (1.2) is established as follows.

Let X̃ = G/K. It can be equipped with a G-invariant metric which is unique up to scaling.

Let X = Γ\X̃. Assume that Γ is torsion free. Then X is a complete Riemannian manifold

of finite volume. Let σ ∈ K̂ and let Ẽσ → X̃ be the homogeneous vector bundle associated

to σ, which is equipped with the invariant Hermitian metric induced by σ. Let Eσ = Γ\Ẽσ

be the corresponding locally homogeneous vector bundle over X . Let ∇σ be the connection

in Eσ induced by the canonical connection in Ẽσ. Let ∆σ = (∇σ)∗∇σ be the Bochner-
Laplace operator, acting in C∞(X,Eσ). It is an elliptic, second order, formally self-adjoint
differential operator of Laplace type, i.e., its principal symbol is given by ‖ξ‖2x IdEσ,x

. Let
Ω ∈ Z(gC) be the Casimir element and RΓ(Ω) the Casimir operator acting in C∞(Γ\G).
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Let C∞(X,Eσ) be the space of smooth sections of Eσ. Recall that there is a canonical
isomorphism

(2.1) C∞(X,Eσ) ∼= (C∞(Γ\G)⊗ Vσ)
K .

With respect to this isomorphism, the Bochner-Laplace operator is related to the Casimir
operator RΓ(Ω) by

(2.2) ∆σ = −RΓ(Ω) + λσ Id,

where λσ is the Casimir eigenvalue of σ. Assume that X is compact. Then ∆σ has a pure
discrete spectrum consisting of a sequence of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞ of finite
multiplicities. Let

NΓ(λ; σ) = #{j : λj ≤ λ}

be the counting function of the eigenvalues, where eigenvalues are counted with their
multiplicity. Using (2.1) and (2.2), it follows that the counting function (1.2) has the same
asymptotic behavior as NΓ(λ; σ). Applying the heat equation method [BGV], [Gi], we
obtain the following Weyl law

(2.3) NΓ(λ, σ) =
dim(σ) vol(Γ\G/K)

(4π)d/2Γ(d/2 + 1)
λd/2 + o(λd/2), λ → ∞,

where d = dim(X).

Remark 2.1. We emphasize that the heat equation method does not lead to any nontrivial
estimation of the remainder term. Instead one has to use the wave equation [Ho]. For a
locally symmetric manifold this means to use the Selberg trace formula. So far estimations
of the remainder term are only known if σ is the trivial representation, i.e., for the case of
the Laplace operator on functions.

Remark 2.2. For a locally symmetric space X = Γ\X̃ there is not only the Laplace

operator, but the whole algebra of invariant differential operators D(X̃) on X̃, which one
needs to consider. This leads to corresponding asymptotic formulas which contain more
information about the distribution of the discrete spectrum then just the Weyl law.

If Γ is not co-compact, then ∆σ has a nonempty continuous spectrum which consists of
a half-line [c,∞) for some c ≥ 0. Then the heat equation method breaks down, because
the heat operator e−t∆σ is not trace class anymore. One of the basic tools to study the
cuspidal automorphic spectrum in the finite volume case is the trace formula.

We turn now to the case of a general lattice. We assume that G = G(R), where G is a

connected semisimple algebraic group over Q. Let X = Γ\X̃ = Γ\G/K and Eσ → X be as
above. Let ∆σ : C

∞(X,Eσ) → C∞(X,Eσ) be the Bochner-Laplace operator. As operator
in L2(X,Eσ) it is essentially self-adjoint. Let L2

disc(X,Eσ) be the subspace of L2(X,Eσ)
which is the closure of the span of all L2-eigensections of ∆σ. Recall that a cusp form for
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Γ is a smooth K-finite function φ : Γ\G → C which is a joint eigenfunction of the center
of the universal enveloping algebra Z(gC) and which satisfies

∫

Γ∩NP \NP

φ(nx) dn = 0

for all unipotent radicals NP of proper rational parabolic subgroups P of G, i.e., P = P (R),
where P is a rational parabolic subgroup of G. Put

L2
cus(X,Eσ) := (L2

cus(Γ\G)⊗ Vσ)
K .

Then L2
cus(X,Eσ) is contained in L2

disc(X,Eσ). The orthogonal complement L2
res(X,Eσ)

of L2
cus(X,Eσ) in L2

disc(X,Eσ) is called the residual subspace. By Langland’s theory of
Eisenstein series it follows that L2

res(X,Eσ) is spanned by iterated residues of cuspidal
Eisenstein series. By definition we have an orthogonal decomposition

L2
disc(X,Eσ) = L2

cus(X,Eσ)⊕ L2
res(X,Eσ).

Let Ndisc
Γ (λ; σ), N cus

Γ (λ; σ), and N res
Γ (λ; σ) be the counting function of the eigenvalues with

eigensections belonging to the corresponding subspace. The following results about the
growth of the counting functions hold for any lattice Γ in a real semisimple Lie group. Let
d = dimX . Donnelly [Do] has proved the following bound for the cuspidal spectrum

(2.4) lim sup
λ→∞

N cus
Γ (λ, σ)

λd/2
≤

dim(σ) vol(X)

(4π)d/2Γ
(
d
2
+ 1
) .

For the full discrete spectrum, we have at least an upper bound for the growth of the
counting function. The main result of [Mu2] states that

(2.5) Ndisc
Γ (λ, σ) ≪ (1 + λ2d).

This result implies that invariant integral operators are of trace class on the discrete sub-
space which is the starting point for the trace formula. The proof of (2.5) relies on the
description of the residual subspace in terms of iterated residues of Eisenstein series.

Let N cus
Γ (λ) be the counting function with respect to the trivial representation σ0 of K,

i.e., the counting function of the cuspidal spectrum of the Laplacian on functions. Then
Sarnak [Sa] conjectured that if rank(G/K) > 1, Weyl’s law holds for N cus

Γ (λ), which means
that equality holds in (2.4). Furthermore, one expects that the growth of the residual
spectrum is of lower order than the cuspidal spectrum.

In the meantime Sarnak’s conjecture has been verified in quite a number of cases. A.
Reznikov proved it for congruence groups in a group G of real rank one, S. Miller [Mi]
proved it for G = SL(3) and Γ = SL(3,Z), the author [Mu5] established it for G = SL(n)
and a congruence group Γ. The most general result is in the spherical case is due to
Lindenstrauss and Venkatesh [LV] who proved the following theorem.
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Theorem 2.3. Let G be a split adjoint semi-simple group over Q and let Γ ⊂ G(Q) be a
congruence subgroup. Let d = dimS. Then

(2.6) N cus

Γ (λ) ∼
vol(Γ\X̃)

(4π)d/2Γ
(
d
2
+ 1
)λd/2, λ → ∞.

The method used by Lindenstrauss and Venkatesh is based on the construction of con-
volution operators with pure cuspidal image. It avoids the delicate estimates of the contri-
butions of the Eisenstein series to the trace formula. This proves existence of many cusp
forms for these groups.

Now we consider an arbitrary K-type. To formulate our result, we need to pass to the
adelic framework. Let G be a reductive algebraic group over Q. Let A be the ring of
adèles of Q. Denote by AG the split component of the center of G and let AG(R)

0 be
the component of 1 in AG(R). Let ξ0 be the trivial character of AG(R)

0 and denote by
Π(G(A), ξ0) the set of equivalence classes of irreducible unitary representations of G(A)
whose central character is trivial onAG(R)

0. Let L2
cus(G(Q)AG(R)

0\G(A)) be the subspace
of cusp forms in L2(G(Q)AG(R)

0\G(A)). Denote by Πcus(G(A), ξ0) the subspace of all π
in Π(G(A), ξ0) which are equivalent to a subrepresentation of the regular representation
in L2

cus(G(Q)AG(R)
0\G(A)). For π ∈ Πcus(G(A), ξ0) let m(π) denote the multiplicity

with which π occurs in the space of cusp forms L2
cus(G(Q)AG(R)

0\G(A)). Let Af be the
ring of finite adèles. Any irreducible unitary representation π of G(A) can be written
as π = π∞ ⊗ πf , where π∞ and πf are irreducible unitary representations of G(R) and
G(Af), respectively. Let Hπ∞

and Hπf
denote the Hilbert space of the representation π∞

and πf , respectively. Let Kf be an open compact subgroup of G(Af). Denote by H
Kf
πf

the
subspace of Kf -invariant vectors in Hπf

. Let G(R)1 be the subgroup of all g ∈ G(R) with
| det(g)| = 1. Given π ∈ Π(G(A), ξ0), denote by λπ the Casimir eigenvalue of the restriction
of π∞ to G(R)1. For λ ≥ 0 let Πcus(G(A), ξ0)λ be the space of all π ∈ Πcus(G(A), ξ0) which
satisfy |λπ| ≤ λ. Then we have the following theorem, which is work in progress and which
is joint work with J. Matz.

Theorem 2.4. Let G be one of the following types of groups: An inner form of GL(n)
or SL(n), a quasi-split classical group, or the exceptional group G2. Let K∞ ⊂ G(R)1

be a maximal compact subgroup and let Kf ⊂ G(Af) be a congruence subgroup. Let d =
dimG(R)1/K∞. For every σ ∈ Π(K∞) we have

∑

π∈Πcus(G(A),ξ0)λ

m(π) dim
(
H

Kf
πf

)
dim

(
Hπ∞

⊗ Vσ

)K∞

∼ dim(σ)
vol(G(Q)AG(R)

0\G(A)/Kf)

(4π)d/2Γ(d/2 + 1)
λd/2.

(2.7)

as λ → ∞. Furthermore,

(2.8)
∑

π∈Πres(G(A),ξ0)λ

m(π) dim
(
H

Kf
πf

)
dim

(
Hπ∞

⊗ Vσ

)K∞

≪ λd/2−1.
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If G is semisimple and simply connected, it satisfies strong approximation. Then (2.7)
and (2.8) imply the following corollary.

Corollary 2.5. Let G be as above and assume that G is semisimple and simply connected.
Then for every σ ∈ Π(K∞) we have

(2.9) N cus
Γ (λ, σ) ∼

dim(σ) vol(Γ\X̃)

(4π)d/2Γ(d/2 + 1)
λd/2

as λ → ∞. Moreover, the residual spectrum satisfies

(2.10) N res
Γ (λ, σ) ≪ λd/2−1.

Sketch of the proof. For all details we refer to our forthcoming paper. By Karamata’s
theorem [BGV, Theorem 2.42] it follows that in order to prove (2.7), it suffices to show
that there exists an asymptotic expansion of the form

∑

π∈Πcus(G(A),ξ0)

m(π)etλπ∞ dim
(
H

Kf
πf

)
dim

(
Hπ∞

⊗ Vσ)
K∞

∼
dim(σ) vol(G(Q)\G(A)1/Kf )

(4π)d/2
t−d/2

(2.11)

as t → +0. We first establish the corresponding statement (2.7) where the sum runs
over all of Πdisc(G(A), ξ0) in place of Πcus(G(A), ξ0). To this end we apply the Arthur

trace formula as follows. We choose a certain family of test functions φ̃1
t ∈ C∞

c (G(A)1),

depending on t > 0. At the infinite place φ̃1
t is given by the function hσ

t ∈ C∞(G(R)1)

which is defined in terms of the heat kernel Hσ
t : G(R)1 → End(Vσ) of the Laplacian ∆̃σ on

X̃ by hσ
t (g) := trHσ

t (g), g ∈ G(R)1, multiplied by a certain cutoff function ϕt. At the finite

places φ̃1
t is given by the normalized characteristic function of an open compact subgroup

Kf of G(Af). Then by the non-invariant trace formula [Ar1] we have the equality

Jspec(φ̃
1
t ) = Jgeo(φ̃

1
t ), t > 0.

Then we study the asymptotic behavior of the spectral and the geometric side as t → 0.
To deal with the geometric side, we use the fine o-expansion [Ar3]

(2.12) Jgeo(f) =
∑

M∈L

∑

γ∈(M(QS))M,S

aM(S, γ)JM(γ, f),

which expresses the distribution Jgeo(f) in terms of weighted orbital integrals JM(γ, f).
Here M runs over the set of Levi subgroups L containing the Levi component M0 of the
standard minimal parabolic subgroup P0, S is a finite set of places of Q, and (M(QS))M,S is
a certain set of equivalence classes inM(QS). This reduces our problem to the investigation
of weighted orbital integrals. The key result is that

lim
t→0

td/2JM(φ̃1
t , γ) = 0,
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unless M = G and γ = 1. This follows from the analysis of the local weighted orbital

integrals carried out in [Ar2]. In fact, we show that JM(φ̃1
t , γ) has a complete asymptotic

expansion

JM(φ̃1
t , γ) ∼ t−d/2+d(γ)

∞∑

j=0

rM∑

i=0

bijt
j/2(log t)i

as t → 0, where d(γ) = dimOγ and Oγ ⊂ G(R) is the unipotent conjugacy class in G(R)
induced from M(R) along P (R). The contributions to (2.12) of the terms where M = G

and γ = 1 are easy to determine. Using the behavior of the heat kernel hσ
t (1) as t → 0, it

follows that

(2.13) Jgeo(φ̃
1
t ) ∼

dim(σ) vol(G(Q)\G(A)1/Kf)

(4π)d/2
t−d/2

as t → 0.

To deal with the spectral side we use the refined expansion of the spectral side of the

trace formula [FLM1, Corollary 1]. This allows us to replace φ̃1
t by a similar function

φ1
t ∈ C1(G(A)1) which is given as the product of the heat kernel ht at infinity and the

normalized characteristic function of Kf . The term in Jspec(φ
1
t ) corresponding to M = G

is Jspec,G(φ
1
t ) = trRdisc(φ

1
t ), which is equal to the left hand side of (2.11). If M is a proper

Levi subgroup of G, then Jspec,M(φ1
t ) is given by a finite sum of integrals [FLM1, Corollary

1], [MM1, (5.8)] and the main ingredients of the integrals are logarithmic derivatives of
intertwining operators

MQ|P (λ) : A
2(P ) → A2(Q),

where P,Q ∈ P(M) and A2(P ) and A2(Q) are the spaces of automorphic forms for P and
Q, respectively (see [Mu8, Sect. 2.2]). To deal with these integrals, we use the standard
properties of intertwining operators to reduce the problem to the case of intertwining
operators associated to pairs of adjacent parabolic subgroups. Let α ∈ ΣM be a root and
assume that P and Q are adjacent along α. For π ∈ Πdisc(M(A)) let MQ|P (π, s), s ∈ C, be
the corresponding rank one intertwining operator. It admits a global normalizing factor
nα(π, s) [Mu8, (2.2)]. These factors are meromorphic functions of finite order of s ∈ C

and satisfy the functional equation |nα(π, it)| = 1 for all t ∈ R. Using [Mu8, (2.2)], the
estimation of the spectral side can be reduced to the study of integrals involving logarithmic
derivatives of the normalizing factors and of the local intertwining operators.

In the case of G = GL(n), the normalizing factors are expressed in terms of Ranking-
Selberg L-functions [Mu5]. Using the analytic properties of Rankin-Selberg L-functions, it
follows that there exist C > 0 and T > 1 such that for π = π1 ⊗ π2, πi ∈ Πdisc(GL(ni,A)),
we have

(2.14)

∫ T+1

T

∣∣∣∣
n′
α(π, iλ)

nα(π, iλ)

∣∣∣∣ dλ ≤ C log(T + ν(π1 × π̃2)),

where ν(π1 × π̃2) = N(π1 × π̃2)(2 + c(π1 × π̃2), N(π1 × π̃2) is the conductor occurring in
the functional equation and c(π1 × π̃2) is the analytic conductor defined in [Mu5, (4.21)].
For the proof of (2.14) see [Mu5, Proposition 5.1]. For the groups listed in Theorem
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2.4 Tobias Finis and Erez Lapid [FL3] used functoriality to transfer the problem of the
estimation of the corresponding integrals to the well-understood problem for GL(n), which
implies bounds similar to (2.14). For an arbitrary reductive group G we have formulated
in [FLM2] more general conditions on the normalizing factors, called (TWN) (tempered
winding number), which are needed to prove that G has the limit multiplicity property.

Finally we have to deal with normalized intertwining operators

RQ|P (π, s) = ⊗vRQ|P (πv, s).

Since the open compact subgroup Kf of G(Af) is fixed, there are only finitely many
places v for which we have to consider RQ|P (πv, s). The key result for the estimation of
integrals involving the logarithmic derivative of RQ|P (πv, s), which is uniform in πv, is a
generalization of the classical Bernstein inequality [FLM2, Corollary 5.18].

Another problem is that for every Levi subgroup M of G we have to control the growth
of the residual spectrum. In [Mu2] a polynomial bound was obtained. However, this bound
is not sufficient for our purpose. We need a bound which is of lower order than the order
of the growth of the discrete spectrum predicted by the Weyl law. To achieve this goal
for the groups listed in Theorem 2.4 we combine the approach of [Mu2], which is based on
the study of rank one intertwining operators, with the estimations of normalizing factors
obtained in [FL3].

Combining these estimations, it follows that for every proper Levi subgroup M of G we
have

(2.15) Jspec,M(φ1
t ) = O(t−(d−1)/2)

as t → +0. This proves (2.11). As explained above, this implies Theorem 2.4.

The next problem is to estimate the remainder term in the Weyl law. So far an estimation
of the remainder term has been only obtained for the spherical spectrum, i.e., the trivial
K-type.

For X a congruence quotient of the symmetric space SL(n,R)/ SO(n) and the cuspidal
spectrum of the Laplacian on functions of X , this problem has been studied by E. Lapid
and the author in [LM]. One of the main results is the following theorem.

Theorem 2.6. Let X̃ = SL(n,R)/ SO(n) and d = dim X̃. Let Γ(N) be the principal
congruence subgroup of SL(n,Z) of level N . Then for N ≥ 3 we have

N cus

Γ(N)(λ) =
vol(Γ(N)\X̃)

(4π)d/2Γ
(
d
2
+ 1
)λd/2 +O

(
λ(d−1)/2(log λ)max(n,3)

)
, λ → ∞.

Actally, we consider not only the cuspidal spectrum of the spherical Laplacian, but the

cuspidal spectrum of the whole algebra of invariant differential operators D(X̃).

In a recent paper [FL4], Tobias Finis and Erez Lapid estimated the remainder term of
the Weyl law for the spherical cuspidal spectrum of a locally symmetric space X defined
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by a simply connected, simple Chevalley group G and a congruence subgroup of G(Q).
The main result of [FL4] is the following theorem.

Theorem 2.7. Let G be a simpy connected, simple Chevalley group. Then there exists
δ > 0 such that for any congruence sugroup Γ of G(Z) we have

N cus

Γ (λ) =
vol(X)

(4π)d/2Γ(d
2
+ 1)

λd/2 +OΓ(λ
d/2−δ), λ ≥ 1,

where X = Γ\G(R)/K and d = dimX.

This is a sharpening of the result of [LV]. It is an interesting problem to see, if one can
also estimate the remainder term for non-trivial K-types.

3. The analytic torsion

A more sophisticated spectral invariant is the analytic torsion [RS]. In the context of
locally symmetric spaces it has been used to study torsion in the cohomology of arithmetic
groups. Recall its definition.

Let X be a compact Riemannian manifold of dimension n and let ρ : π1(X) → GL(V )
a finite dimensional representation of its fundamental group. Let Eρ → X be the flat
vector bundle associated with ρ. Choose a Hermitian fiber metric in Eρ. Let ∆p(ρ) be the
Laplace operator on Eρ-valued p-forms with respect to the metrics on X and in Eρ. It
is an elliptic differential operator, which is formally self-adjoint and non-negative. Since
X is compact, ∆p(ρ) has a pure discrete spectrum consisting of sequence of eigenvalues
0 ≤ λ0 ≤ λ1 ≤ · · · → ∞ of finite multiplicity. Let

(3.1) ζp(s; ρ) :=
∑

λj>0

λ−s
j

be the zeta function of ∆p(ρ). The series converges absolutely and uniformly on compact
subsets of the half-plane Re(s) > n/2 and admits a meromorphic extension to s ∈ C, which
is holomorphic at s = 0. Then the Ray-Singer analytic torsion TX(ρ) ∈ R+ is defined by

(3.2) TX(ρ) := exp

(
1

2

n∑

p=1

(−1)pp
d

ds
ζp(s; ρ)

∣∣
s=0

)
.

It depends on the metrics on X and Eρ. However, if dim(X) is odd and ρ acyclic, which
means that H∗(X,Eρ) = 0, then TX(ρ) is independent of the metrics [Mu3]. The analytic
torsion has a topological counterpart. This is the Reidemeister torsion T top

X (ρ) (usually
it is denoted by τX(ρ)), which is defined in terms of a smooth triangulation of X [RS],
[Mu1]. It is known that for unimodular representations ρ (meaning that | det ρ(γ)| = 1 for
all γ ∈ π1(X)) one has the equality

(3.3) TX(ρ) = T top

X (ρ)
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[Ch], [Mu1]. In the general case of a non-unimodular representation the equality does not
hold, but the defect can be described [BZ].

In [BV], [MaM], [MP2], the equality (3.3) has been applied to study the growth of torsion
in the cohomology of co-compact arithmetic groups. A key result used in this context is
the approximation of L2-torsion (see [Lo], [MV] for its definition) for compact locally
symmetric spaces. This means the following. Let G be a real connected semisimple Lie
group of non-positive type, K a maximal compact subgroup of G and X̃ = G/K the
corresponding symmetric space of non-positive curvature. Let Γ ⊂ G be a co-compact
torsion free discrete subgroup. Then Γ acts on X̃ properly discontinuously and X = Γ\X̃
is a locally symmetric manifold. Let {Γj}j∈N be a sequence of normal subgroups of finite

index of Γ satisfying Γj+1 ⊂ Γj and ∩jΓj = {e}. LetXj = Γj\X̃ . This is normal covering of
X of finite index. Let τ : G → GL(V ) be a finite dimensional representation. Let ρj := τ |Γj

and let TXj
(τ) denote the analytic torsion of Xj with respect to ρj . Let θ : G → G be the

Cartan involution and put τθ := τ ◦ θ. Then in [BV] Bergeron and Venkatesh proved the
following theorem concerning the approximation of the L2-torsion.

Theorem 3.1. Assume that τ 6∼= τθ. Then

(3.4) lim
j→∞

log TXj
(τ)

[Γ : Γj]
= vol(X)t

(2)

X̃
(τ).

We note that the right hand side is the logarithm of the L2-torsion of X and τ . This is a
key result for the study of the cohomology of arithmetic groups [BV].

In view of the potential applications to the cohomology of arithmetic groups, it is very
desirable to extend Theorem 3.1 to the non-compact case. The first problem one faces
is that the corresponding Laplace operators have a nonempty continuous spectrum and
therefore, the heat operators are not trace class and the analytic torsion can not be defined
as above. This problem has been studied by Raimbault [Ra] for hyperbolic 3-manifolds
and in [MP1] for hyperbolic manifolds of any dimension.

So let G = SO0(n, 1), K = SO(n) and X̃ = G/K. Equipped with a suitably normalized

G-invariant metric, X̃ becomes isometric to the n-dimensional hyperbolic space Hn. Let

Γ ⊂ G be a torsion free lattice. Then X = Γ\X̃ is an oriented n-dimensional hyperbolic
manifold of finite volume. As above, let τ : G → GL(V ) be a finite dimensional complex
representation of G. The first step is to define a regularized trace of the heat operators
e−t∆p(τ). To this end one uses an appropriate height function to truncate X at sufficient
high level Y > Y0 to get a compact manifold X(Y ) ⊂ X with boundary ∂X(Y ), which
consists of a disjoint union of n− 1-dimensional tori. Let Kp,τ(t, x, y) be the kernel of the
heat operator e−t∆p(τ). Using the spectral resolution of ∆p(τ), it follows that there exist
α(t) ∈ R such that

∫
X(Y )

trKp,τ(t, x, x) dx − α(t) log Y has a limit as Y → ∞. Then we

define the regularized trace as

(3.5) Trreg
(
e−t∆p(τ)

)
:= lim

Y→∞

(∫

X(Y )

trKp,τ (t, x, x) dx− α(t) log Y

)
.
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We note that the regularized trace is not uniquely defined. It depends on the choice
of truncation parameters on the manifold X . However, if X0 = Γ0\H

n is given and if
truncation parameters on X0 are fixed, then every finite covering X of X0 is canonically
equipped with truncation parameters, namely one simply pulls back the height function
on X0 to a height function on X via the covering map.

Let θ be the Cartan involution of G with respect to K = SO(n). Let τθ = τ ◦θ. If τ 6∼= τθ,
it can be shown that Trreg

(
e−t∆p(τ)

)
is exponentially decreasing as t → ∞ and admits

an asymptotic expansion as t → 0. Therefore, the regularized zeta function ζreg,p(s; τ) of
∆p(τ) can be defined as in the compact case by

(3.6) ζreg,p(s; τ) :=
1

Γ(s)

∫ ∞

0

Trreg
(
e−t∆p(τ)

)
ts−1 dt.

The integral converges absolutely and uniformly on compact subsets of the half-plane
Re(s) > n/2 and admits a meromorphic extension to the whole complex plane, which
is holomorphic at s = 0. So in analogy with the compact case, the regularized analytic
torsion TX(τ) ∈ R+ can be defined by the same formula (3.2).

In even dimension the analytic torsion is rather trivial. Therefore, we assume that n =
2m + 1. Furthermore, for technical reasons we assume that every lattice Γ ⊂ G satisfies
the following condition: For every Γ-cuspidal parabolic subgroup P of G one has

(3.7) Γ ∩ P = Γ ∩NP ,

where NP denotes the unipotent radical of P . Let Γ0 be a fixed lattice in G and let
X0 = Γ0\X̃ . Let Γj , j ∈ N, be a sequence of finite index torsion free subgroups of Γ0. This
sequence is called to be cusp uniform, if the tori which arise as cross sections of the cusps
of the manifolds XJ := Γj\X̃ satisfy some uniformity condition (see [MP1, Definition 8.2]).

One of the main results of [MP1] is the following theorem which may be regarded as an
analog of Theorem 3.1 for oriented finite volume hyperbolic manifolds.

Theorem 3.2. Let Γ0 be a lattice in G and let Γi, i ∈ N, be a sequence of finite-index
normal subgroups which is cusp uniform and such that each Γi, i ≥ 1, is torsion-free and
satisfies (3.7). If limi→∞[Γ0 : Γi] = ∞ and if each γ0 ∈ Γ0 − {1} only belongs to finitely
many Γi, then for each τ with τ 6= τθ one has

lim
i→∞

log TXi
(τ)

[Γ : Γi]
= t

(2)
Hn(τ) vol(X0).(3.8)

In particular, if under the same assumptions Γi is a tower of normal subgroups, i.e. Γi+1 ⊂
Γi for each i and ∩iΓi = {1}, then (3.8) holds.

This theorem has applications to the study of the growth of torsion in the cohomology of
congruence subgroups of SO0(n, 1) [MR1]. It is based on [MR2], which establishes a relation
between analytic torsion and topological torsion similar to (3.3) with an additional defect
term which can be controlled.
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The next goal is to extend Theorem 3.2 to higher rank groups. In joint work with J.
Matz [MM3] we have defined the analytic torsion for a locally symmetric space defined
by a quasi-split reductive group G and a congruence subgroup of G(Q). For simplicity
assume that G is a connected semisimple algebraic group over Q. Assume that G is not

anisotropic. Let K∞ be a maximal compact subgroup of G(R). Put X̃ := G(R)/K∞. Let
Kf ⊂ G(A) be an open compact subgroup. Then we consider the adelic quotient

X(Kf) := G(Q)\(X̃ ×G(Af ))/Kf .

Recall that X(Kf) is the disjoint union of finitely many locally symmetric spaces Γi\X̃ ,
i = 1, ..., l. If G is simply connected, then by strong approximation we have

X(Kf) = Γ\X̃,

where Γ = (G(R) × Kf) ∩ G(Q). We will assume that Kf is need so that X(Kf) is a
manifold. Let τ : G(R) → GL(Vτ ) be a finite dimensional complex representation. Let
Eτ → X(Kf) be the associated flat vector bundle and ∆p(τ) the Laplacian on p-forms
with values in Eτ . To define the regularized trace Trreg(e

−t∆p(τ)) we proceed as above,
using Arthur’s truncation. Let Jgeo be the geometric side of the Arthur trace formula. It
turns out that

Trreg(e
−t∆p(τ)) = Jgeo(φ

τ,p
t )

for an appropriate test function φτ,p
t ∈ C∞(G(A)) which at the infinite place is given by

the heat kernel for the Laplace operators on p-forms on X̃ with values in the lifted flat

bundle Ẽτ . This is the key fact that allows us to determine the asymptotic behavior of the
regularized trace as t → 0 and t → ∞. Then we can use the analogous formula (3.6) to
define the regularized zeta function and the analytic torsion.

Now we can formulate our main result. Let n ≥ 2. Put X̃n = SL(n,R)/ SO(n).
Let Kn(N) ⊂ SL(n,Af ) be the principal congruence subgroup of level N ≥ 3. Put

Xn(N) := X(Kn(N)). Note that Xn(N) = Γ(N)\X̃n, where Γ(N) ⊂ SL(n,Z) is the
principal congruence subgroup of level N . Then J. Matz and I proved in [MM2] the fol-
lowing theorem

Theorem 3.3. Let τ ∈ Rep(SL(n,R)). Assume that τ ≇ τθ. Then for n ≥ 2 we have

lim
N→∞

log TXn(N)(τ)

vol(Xn(N))
= t

(2)

X̃n
(τ).

Moreover, if n > 4, then t
(2)

X̃n
(τ) = 0, and if n = 3, 4, then t

(2)

X̃n
(τ) > 0.

Remark 3.4. The number t
(2)

X̃
(ρ) can be defined for every finite dimensional representation

(cf. [BV, 4.4]). Moreover, it can be computed explicitly [BV, §5]. For example, for the
trivial representation τ0 of SL(n,R), n = 3, 4, one has

t
(2)

X̃3

(τ0) =
π

2 vol(X̃c
3)
, t

(2)

X̃4

(τ0) =
124π

45 vol(X̃c
4)



14 WERNER MÜLLER

[BV, 5.9.3, Example 2]. Here X̃c
j denotes the compact dual of X̃j, and the metric on X̃c

j

is the one induced from the metric on X̃j. For the second equality we used that SL(4,R)
is a double covering of SO(3, 3), and as explained at the beginning of section 5.8 in [BV],

the corresponding number for SO(3, 3) agrees with that for SO(5, 1). Finally, t
(2)

H5 (τ0) is
computed in [BV, 5.9.3, Example 1].

The next goal is to extend Theorem 3.3 to other reductive groups and use it to study the
growth of torsion in the cohomology of congreunce subgroups similar to the case hyperbolic
manifolds.
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