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Another milestone in the work of Singer is the invention of the analytic torsion [RS] which
he together with Ray introduced in 1971 as an analytic counterpart of the Reidemeister
torsion. The Reidemeister torsion (or the Reidemeister-Franz torsion) is a topological
invariant of a compact manifold M and a representation of its fundamental group π1(M),
which was introduced by Reidemeister in 1935 for 3-manifolds and generalized to higher
dimensions by Franz and de Rham. In fact, the Reidemeister torsion is defined for every
finite CW complex K and a unitary representation ρ of π1 := π1(K) on a finite dimensional
vector space Vρ. Let K̃ be the simply connected covering space of K with π1 acting on K̃ as
group of deck transformations. Consider K as being embedded as a fundamental domain
in K̃, so that K̃ is the set of translates of K under π1. In this way, the real co-chain
complex becomes an R(π1)-module. Let C∗(K; ρ) := C∗(K̃) ⊗R(π1) Vρ be the twisted co-
chain complex. In the real vector space Cq(K; ρ) one can choose a preferred base (xi⊗vj),

where xi runs through the preferred base of the R(π1)-module Cq(K̃) given by the cells
of K and vj through an orthonormal base of Vρ. A preferred base gives rise to an inner
product in C∗(K; ρ). Let δ : Cq(K; ρ) → Cq+1(K; ρ) denote the co-boundary operator
and δ∗ the adjoint operator with respect to the inner product in C∗(K; ρ). Define the
combinatorial Laplacian ∆(c) by ∆(c) = δδ∗ + δ∗δ. Assume that the cohomology H∗(K; ρ)
of the complex C∗(K; ρ) vanishes. Then ∆(c) is invertible and as shown by Ray and Singer,
the Reidemeister torsion τ(K, ρ) ∈ R+ of K and ρ is given by

(1) log τ(K, ρ) =
1

2

n∑

q=0

(−1)q+1q log det(∆(c)
q ),

where n is the dimension of the top-dimensional cells of K. This is not quite the original
definition of the Reidemeister torsion, but as shown by Ray and Singer, it is equivalent to
the original one. If H∗(K; ρ) 6= 0, one has to choose a volume form µ ∈ detH∗(K; ρ). For
any choice of µ one can define the Reidemeister torsion τM(ρ;µ) ∈ R+, which depends on
µ.

Let M be a closed Riemannian manifold and ρ an orthogonal representation of π1(M).
Let Eρ → M be the flat orthogonal vector bundle associated to ρ. Then by the Hodge de
Rham theorem, H∗(K; ρ) is identified with the space of harmonic forms with values in Eρ.
Using the global inner product on harmonic forms, we get a volume form µ. It turns out
that τK(ρ;µ) is invariant under subdivisions. Furthermore, any two smooth triangulations
of M admit a common subdivision. Thus τK(ρ;µ) is independent of the choice of K and
we write τM(ρ) := τK(ρ;µ). This is the Reidemeister torsion of M with respect to ρ and
µ ∈ detH∗(M ;Eρ).

The original interest in Reidemeister torsion came from the fact that it is not a homotopy
invariant, and so can distinguish spaces which are homotopy invariant but are not homeo-
morphic. Especially, Reidemeister used Reidemeister torsion to classify 3-dimensional lens
spaces up to homeomorphism and this was generalized by Franz to higher dimensions. The
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classification includes examples of homotopy equivalent 3-dimensional manifolds which are
not homeomorphic. Reidemeister torsion is closely related to Whitehead torsion, which is
a more sophisticated invariant of chain complexes. It is related to the concept of simple
homotopy equivalence.

Following a suggestion of Arnold Shapiro, Ray and Singer were looking for an analytic
description of the Reidemeister torsion of a closed Riemannian manifold. The inspiration
for the definition came from formula (1). Let (Λ∗(M ;Eρ), d) be the de Rham complex of
Eρ-valued differential forms on M and let ∆ := dd∗+d∗d be the Laplace operator acting in
Λ∗(M ;Eρ), where d∗ is the formal adjoint of d with respect to the inner product induced
by the Riemmanian metric g and the fibre metric in Eρ. Then the idea is to replace

C∗(K; ρ) by Λ∗(M ;Eρ) and the combinatorial Laplacian ∆
(c)
q by the Hodge Laplacian ∆q.

The problem is that ∆q is acting in an infinite dimensional space and the determinant
is not well defined. To overcome this problem, one uses the zeta function regularization.
Regarded as unbounded operator in the Hilbert space of L2-forms of degree q with values
in Eρ, ∆q is essentially self-adjoint and non-negative. Since M is compact, it follows that
∆q has a pure point spectrum consisting of eigenvalues λj ≥ 0, j ∈ N, of finite multiplicity
m(λj). Let ζq(s; ρ) :=

∑
λj>0m(λj)λ

−s
j , s ∈ C, be the spectral zeta function. As shown by

Seeley, the series converges absolutely and uniformly on compact subsets of the half plane
Re(s) > n/2, admits a meromorphic extension to C and is holomorphic at s = 0. Then
the regularized determinant of ∆q is defined by det(∆q) := exp(− d

ds
ζq(s; ρ)

∣∣
s=0

). Replacing

formally det(∆
(c)
q ) in (1) by the regularized determinant of ∆q has led Ray and Singer to

the following definition of the analytic torsion TM (ρ) ∈ R+

(2) log TM(ρ) :=
1

2

n∑

q=0

(−1)qq
d

ds
ζq(s; ρ)

∣∣
s=0

.

By its definition, TM(ρ) depends on the whole spectrum of the Laplace operators ∆q,
q = 0, ..., n, and is therefore a more sophisticated spectral invariant. Ray and Singer
proved that the analytic torsion satisfies the same formal properties as the Reidemeister
torsion, which supported their conjecture that

(3) TM(ρ) = τM(ρ)

for any orthogonal representation ρ. The Ray-Singer conjecture was eventually proved
independently by Cheeger [Ch] and Müller [Mu] (and is now often referred to as the
Cheeger-Müller theorem). The proofs of Cheeger and Müller are different, but similar
in spirit. The strategy of both proofs is to show that TM (ρ)− τM(ρ) remains invariant un-
der surgery which reduces the problem to the case of the sphere for which the equality can
be verified explicitly. The proof of Cheeger is based on analytic surgery methods. Müller
uses the Whitney approximation of the de Rham complex by the co-chain complex and
the finite element approximation of eigenvalues, which goes back to the work of Dodziuk
and Patodi.

The equality of analytic torsion and Reidemeister torsion has been extended in vari-
ous ways. Müller has shown that (3) holds for unimodular representations ρ of π1(M)
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( | det ρ(γ)| = 1 for all γ ∈ π1(M)). Recently, this result has found some interesting
applications to the study of the cohomology of arithmetic groups (see below).

Finally, Bismut and Zhang treated the general case of an arbitrary finite dimensional
representation ρ. The framework is slightly different. They work with the metrics on
detH∗(M,Eρ) induced by the analytic torsion and the Thom-Smale complex associated to
a Morse function on M . In general, an equality does not hold anymore. There appears a
defect term, which, however, can be described explicitly. The defect is a kind of obstruction
for ρ being unimodular. Bismut and Zhang gave a completely new proof, which uses the
Witten deformation of the de Rham complex associated to the Morse function.

The equivariant case was first studied by Lott and Rothenberg and then by Lück. Also
Bismut and Zhang extended their result to the equivariant case, using again the Witten
deformation of the de Rahm complex.

It is natural to try to generalize (3) to other classes of manifolds. The first obvious case
are compact manifolds with a non-empty boundary. A corresponding result was announced
by Cheeger in his paper proving the Ray-Singer conjecture. Then Lück has derived a
formula using the double of a compact Riemannian manifold M with boundary which
reduces the problem to the equivariant case. This approach requires that the metric of M
is a product near the boundary. On the analytic side one has to impose absolute or relative
boundary conditions for the Laplacians. The resulting formula comparing analytic and
Reidemeister torsion involves a correction term which is given by the Euler characteristic
χ(∂M) of the boundary. The general case, i.e., without any assumption on the behavior of
the metric near the boundary, was treated by Ma and Brüning. The boundary contribution,
which is called anomaly, is in general more complicated.

There were various attempts to generalize (3) to singular spaces. The first case are
manifolds with conical singularities. The study of analytic and topological torsion on
singular spaces with conical singularities started with work of A. Dar. She proved that on
singular spaces with isolated conical singularities, the analytic torsion is well-defined. On
the combinatorial side she used the middle intersection complex to define the intersection
Reidemeister torsion, which one expected to be equal to the analytic torsion. This turned
out not to be true. There are recent results by Albin-Rochon-Sher, Hartman-Spreafico,
and Ludwig who establish a formula relating analytic torsion and intersection torsion. This
is not an equality, but the defect term can be described explicitly.

Guided by the definition of the real analytic torsion, Ray and Singer introduced an analog
of the analytic torsion for complex manifolds. The role of the flat vector bundle is played
by a holomorphic vector bundle E → X over a compact complex manifold and the de
Rham complex is replaced by the ∂̄-complex of (0, q)-forms with values in E. The complex
analytic torsion has found important applications in arithmetic-algebraic geometry and
theoretical physics. This will be discussed in a separate section.

The equality of analytic torsion and Reidemeister torsion has recently found interesting
application in the study of the growth of torsion in the cohomology of arithmetic groups.
This idea goes back to Bergeron and Venkatesh. The origin of this kind of applications
is the following observation. Let X be a compact Riemannian manifold and let ρ be a
representation of π1(X) on a finite dimensional real vector space V . Suppose that there
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exists a lattice M ⊂ V which is invariant under π1(X). Let M be the associated local
system of finite rank free Z-modules over X . Note that M⊗Z R = Eρ. The cohomology
H∗(X ;M) of X with coefficients in M is a finitely generated abelian group. Suppose
that ρ is acyclic, i.e., H∗(X,Eρ) = 0. Then H∗(X ;M) is a finite abelian group. Denote
by |Hq(X ;M)| the order of Hq(X ;M). Then as observed by Cheeger, the Reidemeister
torsion satisfies

(4) τX(ρ) =

n∏

q=0

|Hq(X ;M)|(−1)q+1

.

Using the equality of TX(ρ) = τX(ρ), (4) provides an analytic tool to study the torsion
subgroups in the cohomology. This has been used by Bergeron and Venkatesh in the
following way. Let G be a connected semisimple algebraic group over Q and Γ ⊂ G(Q)
an arithmetic subgroup. Let G = G(R). Then Γ is a lattice in G. An example is
G = SL(n,R) and Γ = SL(n,Z). We assume that Γ is co-compact and torsion free. Let

K ⊂ G be a maximal compact subgroup and X̃ := G/K the associated Riemannian

symmetric space of non-positive curvature. Then Γ acts freely on X̃ and X := Γ\X̃
is a compact locally symmetric manifold. Consider a decreasing sequence of congruence

subgroups · · · ⊂ Γj+1 ⊂ Γj ⊂ · · · ⊂ Γ with ∩jΓj = {1}. Put Xj := Γ\X̃ , j ∈ N. Then
Xj → X is a finite covering. Let ̺ be a rational irreducible representation of G on a finite
dimensional Q-vector space VQ. Then there is a lattice M ⊂ VQ, which is invariant under
̺(Γ). Let V = VQ⊗R and ρ := ̺|Γ. Then M ⊂ V is a Γ-invariant lattice. Let TXj

(ρ) be the
analytic torsion of the covering Xj ofX with respect to ρ|Γj

. By an appropriate assumption
on the highest weight of ̺, there is a uniform spectral gap at the origin for all Laplacians on
Xj, uniformly in j ∈ N. In this case, it follows that the limit log TXj

(ρ)/ vol(Xj) as j → ∞
exists and equals a constant t

(2)

X̃
(ρ) which depends only on X̃ and ρ. In fact, vol(X) · t(2)

X̃
(ρ)

is the L2-torsion of X . Let Hq(Γj;M) be the cohomology of Γj with coefficients in the Γj-
module M . Note that Hq(Γj;M) ∼= Hq(Xj;M), where M is the local system associated
to M . Then as shown by Bergeron and Venkatesh, it follows from (4) combined with (3)

(5) lim inf
j→∞

∑

q

log |Hq(Γj ;M)|
[Γ : Γj]

≥ CG,M ,

where the sum runs over the integers q such that q + dim(X)−1
2

is odd and CG,L ≥ 0.
Moreover, if the fundamental rank rankC(G)− rankC(K) is 1, then CG,M > 0. The latter
condition is satisfied, for example, for hyperbolic manifolds and X = Γ\SL(n,R)/SO(n)
with n = 3, 4. For these cases it follows from (5) that the order of the torsion of the
cohomology grows exponentially. There is a conjecture with a more precise statement
saying that the exponential growth happens exactly in the middle degree. Müller and
Rochon extended this result to the case of finite volume hyperbolic manifolds. This includes
Bianchi subgroups ΓD = SL(2,OD) of SL(2,C), where OD is the ring of integers of the
imaginary quadratic field Q(

√
−D), D > 0, square free. The complementary case is if the
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lattice is fixed and the rank of the module M increases. This case has been studied by
Müller, Pfaff, and Rochon with analogous results on the growth of torsion.

There are other interesting developments related to real analytic torsion which, due to
the limited space, could not be discussed here.
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