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Abstract. In this paper we study the analytic torsion and the L2-torsion of compact
locally symmetric manifolds. We consider the analytic torsion with respect to representa-
tions of the fundamental group which are obtained by restriction of irreducible represen-
tations of the group of isometries of the underlying symmetric space. The main purpose
is to study the asymptotic behavior of the analytic torsion with respect to sequences of
representations associated to rays of highest weights.

1. Introduction

Let G be a real, connected, semisimple Lie group without compact factors and with finite

center. Let K ⊂ G be a maximal compact subgroup. Then X̃ = G/K is a Riemannian
symmetric space of the noncompact type. Let Γ ⊂ G be a discrete, torsion free, co-compact

subgroup. Then X = Γ\X̃ is a compact oriented locally symmetric manifold. Let d =
dimX . Let τ be a finite-dimensional irreducible representation of G on a complex vector
space Vτ . Denote by Eτ the flat vector bundle over X associated to the representation
τ |Γ of Γ. By [MtM, Lemma 3.1], Eτ can be equipped with a distinguished Hermitian fiber
metric, called admissible. Let ∆p(τ) be the Laplace operator acting on Eτ -valued p-forms
on X . Denote by ζp(s; τ) the zeta function of ∆p(τ) (see [Sh]). Then the analytic torsion
TX(τ) ∈ R

+ is defined by

(1.1) log TX(τ) =
1

2

d∑

p=0

(−1)pp
d

ds
ζp(s; τ)

∣∣
s=0

(see [RS], [Mu2]). Since we have chosen distinguished metrics, we don’t indicate the metric

dependence of TX(τ). We also consider the L2-torsion T
(2)
X (τ) which is defined as in [Lo],

using the Γ-trace of the heat operators on X̃ .

The main purpose of this paper is to study the asymptotic behavior of TX(τ) and T
(2)
X (τ)

for certain sequences of representations τ of G. This problem was first studied in [Mu3]
in the context of hyperbolic 3-manifolds. The method used in this paper was based on
the study of the twisted Ruelle zeta function. In [MP] we have developed a different and
more simple method which we used to extend the results of [Mu3] to compact hyperbolic
manifolds of any dimension. In the present paper, we generalize the results of the previous
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papers to arbitrary compact locally symmetric spaces. Recently, Bismut, Ma, and Zhang
[BMZ] studied the asymptotic behavior of the analytic torsion by a different method and
in the more general context of analytic torsion forms on arbitrary compact manifolds.
Furthermore, Bergeron and Venkatesh [BV] studied the asymptotic behavior of the analytic
torsion if the flat bundle is kept fixed, but the discrete group varies in a tower {ΓN}N∈N of
normal subgroups of finite index of Γ. They used this to study the growth of the torsion
subgroup in the cohomology of arithmetic groups. In [MaM] the results of [Mu3] have
been used to study the growth of the torsion in the cohomology of arithmetic hyperbolic 3-
manifolds, if the lattice is kept fixed and the flat bundle varies. The results of the present
paper will be used to study the growth of the torsion in the cohomology of arithmetic
groups in higher rank cases.

Now we explain our results in more detail. Let δ(X̃) = rankC(G) − rankC(K). Occa-
sionally we will denote this number by δ(G). Let g be the Lie algebra of G. Let GC

denote the simply connected complex Lie group corresponding to the complexification gC
of g. We assume that G equals the analytic subgroup of GC corresponding to g. Then
the irreducible finite dimensional complex representations of G can be identified with the
irreducible holomorphic representations of GC. Let h ⊂ g be a fundamental Cartan subal-
gebra. Fix positive roots ∆+(gC, hC). Let θ : g → g be the Cartan involution. For a highest
weight λ ∈ h∗

C
let τλ be the irreducible representation of G with highest weight λ. Then

we denote by λθ ∈ h∗
C
the highest weight of τλ ◦ θ, where we regard θ as an involution on

G. Our main result is the following theorem.

Theorem 1.1. (i) Let X̃ be even dimensional or let δ(X̃) 6= 1. Then TX(τ) = 1 for all
finite-dimensional representations τ of G.

(ii)Let X̃ be odd-dimensional with δ(X̃) = 1. Let λ ∈ h∗
C
be a highest weight with λθ 6= λ.

For m ∈ N let τλ(m) be the irreducible representation of G with highest weight mλ. There

exist constants c > 0 and CX̃ 6= 0, which depends on X̃, and a polynomial Pλ(m), which
depends on λ, such that

log TX(τλ(m)) = CX̃ vol(X) · Pλ(m) +O
(
e−cm

)

as m → ∞. Furthermore, there is a constant Cλ > 0 such that

Pλ(m) = Cλ ·m dim(τλ(m)) +Rλ(m),

where Rλ(m) is a polynomial whose degree equals the degree of the polynomial dim(τλ(m)).

The coefficient of the highest order term of the polynomial Pλ(m) can be determined
using Weyl’s dimension formula. Our main result can be also stated as follows. There

exists a constant C = C(X̃, λ) 6= 0, which depends on X̃ and λ, such that

(1.2) log TX(τλ(m)) = C vol(X) ·m dim(τλ(m)) +O (dim(τλ(m)))

as m → ∞.
Part (i) of Theorem 1.1 extends a result of Moscovici and Stanton [MS1] who showed that

TX(ρ) = 1, if δ(X̃) ≥ 2 and ρ is a unitary representation of Γ. Part (ii) is a consequence
of the following two propositions. The first one shows that the asymptotic behavior of the
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analytic torsion with respect to the representations τλ(m) is determined by the asymptotic
behavior of the L2-torsion.

Proposition 1.2. Let X̃ be odd-dimensional with δ(X̃) = 1. Let λ ∈ h∗
C
be a highest

weight. Assume that λθ 6= λ. For m ∈ N let τλ(m) be the irreducible representation of G
with highest weight mλ. Then there exists c > 0 such that

log TX(τλ(m)) = log T
(2)
X (τλ(m)) +O

(
e−cm

)

for all m ∈ N.

The second result on which part (ii) of Theorem 1.1 relies is the computation of the
L2-torsion. The computation is based on the Plancherel formula. It gives

Proposition 1.3. Let the assumptions be as in Proposition 1.2. There exists a constant

CX̃ , which depends on X̃, and a polynomial Pλ(m), which depends on λ, such that

(1.3) log T
(2)
X (τλ(m)) = CX̃ vol(X) · Pλ(m), m ∈ N.

Moreover there is a constant Cλ > 0 such that

(1.4) Pλ(m) = Cλ ·m · dim(τλ(m)) +O (dim(τλ(m))

as m → ∞.

If we consider one of the odd-dimensional irreducible symmetric spaces X̃ with δ(X̃) = 1
and choose λ to be a fundamental weight, the statements can be made more explicit.

Let X̃ = Spin(p, q)/(Spin(p)× Spin(q)), p, q odd, and X̃ = G/K. Let n := (p+ q− 2)/2.
There are two fundamental weight ω±

f,n which are not invariant under θ (see (6.45)). One

has ω−
f,n = (ω+

f,n)θ. By equation (6.51), it suffices to consider the weight ω+
f,n. For m ∈ N

let τ(m) be the representation with highest weight mω+
f,n. By Weyl’s dimension formula

there exists a constant C > 0 such that

(1.5) dim(τ(m)) = Cm
n(n+1)

2 +O
(
m

n(n+1)
2

−1
)

as m → ∞. Let X̃d be the compact dual of X̃. Let

(1.6) Cp,q =
(−1)

pq−1
2 2π

vol(X̃d)

(
n

p−1
2

)
.

Corollary 1.4. Let X̃ = Spin(p, q)/(Spin(p) × Spin(q)), p, q odd, and X = Γ\X̃. With
respect to the above notation we have

log TX(τ(m)) = Cp,q vol(X) ·m dim(τ(m)) +O
(
m

n(n+1)
2

)

as m → ∞.

The case p arbitrary, q = 1 was treated in [MP] and the case p = 3, q = 1 in [Mu3]. In
the latter case we have Spin(3, 1) ∼= SL(2,C). The irreducible representation of Spin(3, 1)
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with highest weight 1
2
(m,m) corresponds to the m-th symmetric power of the standard

representation SL(2,C) on C2 and we have

− log TX(τ(m)) =
1

4π
vol(X)m2 +O(m).

The remaining case is X̃ = SL(3,R)/ SO(3). There are two fundamental weights ωi, i =
1, 2. Both are non-invariant under θ. Let τi(m), i = 1, 2, be the irreducible representation
with highest weight mωi. By Weyl’s dimensiona formula one has

dim(τi(m)) =
1

2
m2 +O(m),

as m → ∞. Let X̃d be the compact dual of X̃.

Corollary 1.5. Let X̃ = SL(3,R)/ SO(3) and X = Γ\X̃. We have

log TX(τi(m)) =
4π vol(X)

9 vol(X̃d)
m dim(τi(m)) +O(m2)

as m → ∞.

Using the equality of analytic and Reidemeister torsion [Mu2], we obtain corresponding
statements for the Reidemeister torsion τX(τλ(m)). Especially we have

Corollary 1.6. Let X = Γ\X̃ be a compact odd-dimensional locally symmetric manifold

with δ(X̃) = 1. Let λ ∈ h∗
C
be a highest weight which satisfies λθ 6= λ. Let τX(τλ(m)) be

the Reidemeister torsion of X with respect to the representation τλ(m). Then vol(X) is
determined by the set {τX(τλ(m)) : m ∈ N}.
Finally we note that Bergeron and Venkatesh [BV] proved results of a similar nature, but

in a different aspect. Let δ(X̃) = 1. Let Γ ⊃ Γ1 ⊃ · · · ⊃ ΓN ⊃ · · · be a tower of subgroups
of finite index with ∩NΓN = {e}. A representation τ of G is called strongly acyclic, if

the spectrum of the Laplacians ∆p(τ) on ΓN\X̃ stays uniformly bounded away from zero.
Then for a strongly acyclic representation τ they show that there is a constant cG,τ > 0
such that

lim
N→∞

log TΓN\X̃(τ)

[Γ : ΓN ]
= cG,τ vol(Γ\X̃).

Next we explain our methods to prove Theorem 1.1. The first step is the proof of
Proposition 1.2. We follow the proof used in [MP]. For an irreducible representation τ of
G and t > 0 put

K(t, τ) :=
d∑

p=0

(−1)ppTr
(
e−t∆p(τ)

)
.

Assume that τ |Γ is acyclic, that is H∗(X,Eτ ) = 0. Then the analytic torsion is given by

(1.7) log TX(τ) :=
1

2

d

ds

(
1

Γ(s)

∫ ∞

0

ts−1K(t, τ) dt

)∣∣∣∣
s=0

.
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Now the key ingredient of the proof of Proposition 1.2 is the following lower bound for the
spectrum of the Laplacians. For every highest weight λ which satisfies λθ 6= λ, there exist
C1, C2 > 0 such that

(1.8) ∆p(τλ(m)) ≥ C1m
2 − C2, m ∈ N,

(see Corollary 7.2). Since τλ(m) is acyclic and dimX is odd, TX(τλ(m)) is metric inde-
pendent [Mu2]. Especially, it is invariant under rescaling of the metric. So we can replace
∆p(τλ(m)) by 1

m
∆p(τλ(m)). Then

log TX(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ 1

0

ts−1K

(
t

m
, τ(m)

)
dt

) ∣∣∣∣
s=0

+
1

2

∫ ∞

1

t−1K

(
t

m
, τ(m)

)
dt.

(1.9)

It follows from (1.8) and standard estimations of the heat kernel that the second term on
the right is O(e−

m
8 ) as m → ∞. To deal with the first term, we use a preliminary form of

the Selberg trace formula. It turns out that the contribution of the nontrivial conjugacy
classes to the trace formula is also exponentially decreasing in m. Finally, the identity

contribution equals log T
(2)
X (τλ(m)) up to a term, which is exponentially decreasing in m.

This implies Proposition 1.2.

To deal with the L2-torsion, we recall that for any τ , log T
(2)
X (τ) it is defined in terms

of the Γ-trace of the heat operators e−t∆̃p(τ) on the universal covering [Lo]. In our case,

e−t∆̃p(τ) is a convolution operator and its Γ-trace equals the contribution of the identity to
the spectral side of the Selberg trace formula applied to e−t∆p(τ). It follows that

log T
(2)
X (τ) = vol(X) · t(2)

X̃
(τ),

where t
(2)

X̃
(τ) depends only on X̃ and τ . To compute t

(2)

X̃
(τ) we factorize X̃ as X̃ = X̃0×X̃1,

where δ(X̃0) = 0 and X̃1 is irreducible with δ(X̃1) = 1. Let τ = τ0⊗τ1 be the corresponding

decomposition of τ . Let X̃0,d be the compact dual symmetric space of X̃0. Using a formula
similar to [Lo, Proposition 11], we get

t
(2)

X̃
(τ) = (−1)dim(X̃0)/2

χ(X̃0,d)

vol(X̃0,d)
dim(τ0) · t(2)X̃1

(τ1).

This reduces the computation of t
(2)

X̃
(τ) to the case of an odd-dimensional irreducible

symmetric space X̃ with δ(X̃) = 1. From the classification of simple Lie groups it follows

that the only possibilities for X̃ are X̃ = SL(3,R)/ SO(3) or X̃ = Spin(p, q)/(Spin(p) ×
Spin(q)), p, q odd. Using the Plancherel formula, t

(2)

X̃
(τ) can be computed explicitly for

these cases. Combined with Weyl’s dimension formula, it follows that t
(2)

X̃
(τλ(m)) is a

polynomial in m. In this way we obtain our main result.
The paper is organized as follows. In section 2 we collect some facts about representations

of reductive Lie groups. Section 3 is concerned with Bochner-Laplace operators on locally
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symmetric spaces. The main result are estimations of the heat kernel of a Bochner-Laplace
operator. In section 4 we consider the analytic torsion in general. The main result of this
section is Proposition 4.2, which establishes part (i) of Theorem 1.1. Section 5 is devoted
to the study of the L2-torsion. We reduce the study of the L2-torsion to the case of an

irreducible symmetric space X̃ with δ(X̃) = 1. This case is then treated in section 6.
Especially we establish Proposition 1.3 in this case. In section 7 we prove a lower bound
for the spectrum of the twisted Laplace operators. This is the key result for the proof of
Proposition 1.2. In the final section 8 we prove our main result, Theorem 1.1.

2. Preliminaries

In this section we summarize some facts about representations of reductive Lie groups.

2.1. Let G be a real reductive Lie group in the sense of [Kn2, p. 446]. Let K ⊂ G
be the associated maximal compact subgroup. Then G has only finitely many connected
components. Denote by G0 the component of the identity. Let g and k denote the Lie
algebras of G and K, respectively. Let g = k⊕ p be the Cartan decomposition.
We denote by Ĝ the unitary dual and by Ĝd the discrete series of G. By Rep(G) we

denote the equivalence classes of irreducible finite-dimensional representations of G.
Let Q be a standard parabolic subgroup of G [Kn2, VII.7]. Then Q has a Langlands

decomposition Q = MAN , where M is reductive and A is abelian. Q is called cuspidal if
M̂d 6= ∅. Let KM = K ∩M . Then KM is a maximal compact subgroup of M .
Let Q = MAN be cuspidal. For (ξ,Wξ) ∈ M̂d and ν ∈ a∗

C
, let

(2.1) πξ,ν = IndG
Q(ξ ⊗ eν ⊗ Id)

be the induced representation acting by the left regular representation on the Hilbert space

Hξ,ν =
{
f : G → Wξ : f(gman) = e−(iν+ρQ)(log a)ξ(m)−1f(g),

∀ m ∈ M, a ∈ A, n ∈ N, g ∈ G, f |K ∈ L2(K,Wξ)
}(2.2)

with norm given by

‖f‖2 =
∫

K

|f(k)|2Wξ
dk.

If ν ∈ a∗ , then πξ,ν is unitarily induced. Denote by Θξ,ν the global character of πξ,ν.

2.2. Next we recall some facts concerning the discrete series. Let G be a semisimple
connected Lie group without compact factors and with finite center. Let K ⊂ G be a
maximal compact subgroup. Assume that δ(G) = 0. Then G/K is even-dimensional. Let
n = dim(G/K)/2. Let t ⊂ k be a compact Cartan subalgebra of g. Let ∆(gC, tC), ∆(kC, tC)
be the corresponding roots with Weyl-groups WG, WK . Then one can regard WK as a
subgroup of WG. Let P be the weight lattice in it∗. Let 〈·, ·〉 be the inner product on
it∗ induced by the Killing form. Recall that Λ ∈ P is called regular if 〈Λ, α〉 6= 0 for all

α ∈ ∆(gC, tC). Then Ĝd is parametrized by the WK-orbits of the regular elements of P ,
where WK is the Weyl group of ∆(kC, tC), [Kn1, Theorem 12.20, Theorem 9.20]. If Λ is a

regular element of P , the corresponding discrete series will be denoted by ωΛ. For π ∈ Ĝ
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we denote by χπ the infinitesimal character of π. Let Z(gC) be the center of the universal
envelopping algebra of gC . For a regular element Λ ∈ h∗

C
let χΛ be the homomorphism of

Z(gC), defined by [Kn1, (8.32)]. By [Kn1, Theorem 9.20], the infinitesimal character of
ωΛ is given by χΛ. Fix positive roots ∆+(gC, tC) and let P+ be the corresponding set of
dominant weights. Let ρG be the half sum of the elements of ∆+(gC, tC) Then we have the
following proposition.

Proposition 2.1. Let τ ∈ Rep(G). Then for π ∈ Ĝd one has

dim (Hp(g, K;Hπ,K ⊗ Vτ )) =

{
1, χπ = χτ̌ , p = n;

0, else.

Moreover, there are exactly |WG|/|WK| distinct elements of Ĝd with infinitesimal character
χτ̌ , where τ̌ is the contragredient representation of τ .

Proof. Let Λ(τ̌) ∈ P+ be the highest weight of τ . Clearly Λ(τ̌)+ρG is regular. Thus, since
WG acts freely on the regular elements, the proposition follows from [BW, Theorem I.5.3]
and the above remarks on infinitesimal characters. �

2.3. Let Q = MAN be a standard parabolic subgroup. In general, M is neither semisim-
ple nor connected. But M is reductive in the sense of [Kn2, p. 466]. Let KM = K ∩M ,
let K0

M be the component of the identity, and let km := k ∩ m be its Lie algebra. Assume
that rank(M) = rank(KM). Then M has a nonempty discrete series, which is defined as
in [Kn1, XII,§8]. The explicit parametrization is given in [Kn1, Proposition 12.32], [Wa2,
section 8.7.1].

3. Bochner Laplace operators

Let G be a semisimple connected Lie group without compact factors and with finite

center. Let K ⊂ G be a maximal compact subgroup. Let X̃ = G/K. Let Γ be a torsion

free, cocompact discrete subgroup of G and let X = Γ\X̃.
Let ν be a finite-dimensional unitary representation of K on (Vν , 〈·, ·〉ν). Let

Ẽν := G×ν Vν

be the associated homogeneous vector bundle over X̃ . Denote by Rg : Ẽν → Ẽν the action

of g ∈ G. The inner product 〈·, ·〉ν induces a G-invariant fiber metric h̃ν on Ẽν . Let ∇̃ν be

the connection on Ẽν induced by the canonical connection on the principal K-fiber bundle

G → G/K. Then ∇̃ν is G-invariant. Let

Eν := Γ\Ẽν

be the associated locally homogeneous bundle over X . Since h̃ν and ∇̃ν are G-invariant,

they can be pushed down to a metric hν and a connection ∇ν on Eν . Let C
∞(X̃, Ẽν) resp.

C∞(X,Eν) denote the space of smooth sections of Ẽν resp. of Eν . Let

C∞(G, ν) := {f : G → Vν : f ∈ C∞, f(gk) = ν(k−1)f(g), ∀g ∈ G, ∀k ∈ K}.(3.1)
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Let L2(G, ν) be the corresponding L2-space. There is a canonical isomorphism

(3.2) A : C∞(X̃, Ẽν) ∼= C∞(G, ν)

which is defined by Af(g) = R−1
g (f(gK)). It extends to an isometry

(3.3) A : L2(X̃, Ẽν) ∼= L2(G, ν).

Let

C∞(Γ\G, ν) := {f ∈ C∞(G, ν) : f(γg) = f(g) ∀g ∈ G, ∀γ ∈ Γ}(3.4)

and let L2(Γ\G, ν) be the corresponding L2-space. The isomorphisms (3.2) and (3.3)
descend to isomorphisms

(3.5) A : C∞(X,Eν) ∼= C∞(Γ\G, ν), L2(X,Eν) ∼= L2(Γ\G, ν).

Let ∆̃ν = ∇̃ν
∗∇̃ν be the Bochner-Laplace operator of Ẽν . Since X̃ is complete, ∆̃ν with

domain the space of smooth compactly supported sections is essentially self-adjoint [LM, p.

155]. Its self-adjoint extension will be denoted by ∆̃ν too. With respect to the isomorphism
(3.2) one has

∆̃ν = −R(Ω) + ν(ΩK),(3.6)

where R denotes the right regular representation of Z(gC) on C∞(G, ν) (see [Mi1, Propo-
sition 1.1]). The heat operator

e−t∆̃ν : L2(G, ν) → L2(G, ν)

commutes with the action of G. Therefore, it is of the form

(3.7) (e−t∆̃νφ)(g) =

∫

G

Hν
t (g

−1g′)(φ(g′)) dg′

where

Hν
t : G → End(Vν)

is in C∞ ∩ L2 and satisfies the covariance property

(3.8) Hν
t (k

−1gk′) = ν(k)−1 ◦Hν
t (g) ◦ ν(k′), ∀k, k′ ∈ K, ∀g ∈ G.

It follows as in [BM, Proposition 2.4] that Hν
t belongs to all Harish-Chandra Schwartz

spaces (Cq(G)⊗ End(Vν)), q > 0.

Now let ‖Hν
t (g)‖ be the norm of Hν

t (g) in End(Vν). Let ∆̃0 be the Laplacian on functions

on X̃ and let H0
t be the associated heat kernel as above. We may use the principle of

semigroup domination to bound ‖Hν
t (g)‖ by the scalar heat kernel. Indeed we have

Proposition 3.1. Let ν ∈ K̂. Then we have

‖Hν
t (g)‖ ≤ H0

t (g)

for all t ∈ R+ and g ∈ G.
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Proof. Let Kν(t, x, y) be the kernel of e−t∆̃ν , acting in L2(X̃, Ẽν). Denote by |Kν(t, x, y)|
the norm of the homomorphism

Kν(t, x, y) ∈ Hom
(
(Ẽν)y, (Ẽν)x

)
.

It was proved in [Mu1, p. 325] that in the sense of distributions, one has
(

∂

∂t
+ ∆̃0

)
|Kν(t, x, y)| ≤ 0,

where ∆̃0 acts in the x-variable. Using (3.15) in [Mu1] one can proceed as in the proof of
Theorem 4.3 of [DL] to show that

(3.9) |Kν(t, x, y)| ≤ K0(t, x, y), t ∈ R
+, x, y ∈ X̃,

where K0(t, x, y) is the kernel of e−t∆̃0 . See also [Gu, p. 7]. Now observe that

Hν
t (g

−1g′) = R−1
g ◦Kν(t, gK, g′K) ◦Rg′ and H0

t (g
−1g′) = K0(t, gK, g′K).

Since for each x ∈ X̃ , Rg : (Ẽν)x → (Ẽν)g(x) is an isometry, the proposition follows from
(3.9). �

Now we pass to the quotient X = Γ\X̃ . Let ∆ν = ∇ν∗∇ν be the Bochner-Laplace
operator. It is essentially self-adjoint. Let RΓ be the right regular representation of Z(gC)
on C∞(Γ\G, ν). By (3.6) it follows that with respect to the isomorphism (3.5) we have

∆ν = −RΓ(Ω) + ν(ΩK).(3.10)

Let e−t∆ν be the heat semigroup of ∆ν , acting on L2(Γ\G, ν). Then e−t∆ν is represented
by the smooth kernel

Hν(t, g, g
′) :=

∑

γ∈Γ

Hν
t (g

−1γg′).(3.11)

The convergence of the series in (3.11) can be established, for example, using Proposition
3.1 and the methods from the proof of Proposition 3.2 below. Put

hν
t (g) := trHν

t (g), g ∈ G,(3.12)

where tr : End(Vν) → C is the matrix trace. Then the trace of the heat operator e−t∆ν is
given by

Tr(e−t∆ν ) =

∫

Γ\G

trHν(t, g, g) dġ =

∫

Γ\G

∑

γ∈Γ

hν
t (g

−1γg)dġ.(3.13)

Using results of Donnelly we now prove an estimate for the heat kernel H0
t of the Laplacian

∆̃0 acting on C∞(X̃).
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Proposition 3.2. There exist constants C0 and c0 such that for every t ∈ (0, 1] and every
g ∈ G one has

∑

γ∈Γ
γ 6=1

H0
t (g

−1γg) ≤ C0e
−c0/t.

Proof. For x, y ∈ X̃ let ρ(x, y) denote the geodesic distance of x, y. Since K(t, gK, g′K) =

H0
t (g

−1g′) is the kernel of e−t∆̃0 , it follows from [Do1, Theorem 3.3] that there exists a
constant C1 such that for every g ∈ G and every t ∈ (0, 1] one has

H0
t (g) ≤ C1t

− d
2 exp

(
−ρ2(gK, 1K)

4t

)
.(3.14)

Let x ∈ X̃ and let BR(x) be the metric ball around x of radius R. Let h > 0 be the
topological entropy of the geodesic flow of X (see [Ma]). There exists C2 > 0 such that

volBR(x) ≤ C2e
hR, R > 0(3.15)

[Ma]. Since Γ is cocompact and torsion-free, there exists an ǫ > 0 such that Bǫ(x) ∩
γBǫ(x) = ∅ for every γ ∈ Γ− {1} and every x ∈ X̃ . Thus for every x ∈ X̃ the union over
all γBǫ(x), where γ ∈ Γ is such that ρ(x, γx) ≤ R is disjoint and is contained in BR+ǫ(x).

Using (3.15) it follows that there exists a constant C3 such that for every x ∈ X̃ one has

#{γ ∈ Γ: ρ(x, γx) ≤ R} ≤ C3e
hR.

Hence there exists a constant C4 > 0 such that for every x ∈ X̃ one has
∑

γ∈Γ
γ 6=1

e−
ρ2(γx,x)

8 ≤ C4.(3.16)

Now let

c1 := inf{ρ(x, γx) : γ ∈ Γ− {1}, x ∈ X̃}.
We have c1 > 0. Using (3.14) and (3.16), it follows that there are constants c0 > 0 and
C0 > 0 such that for every g ∈ G and 0 < t ≤ 1 we have

∑

γ∈Γ
γ 6=1

H0
t (g

−1γg) ≤ C1t
− d

2 e−c21/(8t)
∑

γ∈Γ
γ 6=1

e−ρ2(γgK,gK)/8 ≤ C0e
−c0/t.

�

4. The analytic torsion

Let τ be an irreducible finite-dimensional representation of G on Vτ . Let Eτ be the flat

vector bundle over X associated to the restriction of τ to Γ. Let Ẽτ be the homogeneous

vector bundle associated to τ |K and let Eτ := Γ\Ẽτ . There is a canonical isomorphism

(4.1) Eτ ∼= Eτ
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[MtM, Proposition 3.1]. By [MtM, Lemma 3.1], there exists an inner product 〈·, ·〉 on Vτ

such that

(1) 〈τ(Y )u, v〉 = −〈u, τ(Y )v〉 for all Y ∈ k, u, v ∈ Vτ

(2) 〈τ(Y )u, v〉 = 〈u, τ(Y )v〉 for all Y ∈ p, u, v ∈ Vτ .

Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Since τ |K is unitary with respect to this inner product, it induces a metric
on Eτ , and by (4.1) on Eτ , which we also call admissible. Let Λp(Eτ ) = ΛpT ∗(X) ⊗ Eτ .
Let

νp(τ) := ΛpAd∗⊗τ : K → GL(Λpp∗ ⊗ Vτ ).(4.2)

Then there is a canonical isomorphism

Λp(Eτ ) ∼= Γ\(G×νp(τ) Λ
pp∗ ⊗ Vτ ).(4.3)

of locally homogeneous vector bundles. Let Λp(X,Eτ ) be the space of smooth Eτ -valued
p-forms on X . The isomorphism (4.3) induces an isomorphism

Λp(X,Eτ ) ∼= C∞(Γ\G, νp(τ)),(4.4)

where the latter space is defined as in (3.4). A corresponding isomorphism also holds for the
spaces of L2-sections. Let ∆p(τ) be the Hodge-Laplacian on Λp(X,Eτ ) with respect to the
admissible metric in Eτ . By [MtM, (6.9)] it follows that with respect to the isomorphism
(4.4) one has

∆p(τ)f = −RΓ(Ω)f + τ(Ω) Id f, f ∈ C∞(Γ\G, νp(τ)).(4.5)

Let

K(t, τ) :=
d∑

p=1

(−1)ppTr(e−t∆p(τ)).(4.6)

and

(4.7) h(τ) :=
d∑

p=1

(−1)pp dimHp(X,Eτ ).

Then K(t, τ)− h(τ) decays exponentially as t → ∞ and it follows from (1.1) that

log TX(τ) =
1

2

d

ds

(
1

Γ(s)

∫ ∞

0

ts−1(K(t, τ)− h(τ)) dt

) ∣∣∣∣
s=0

,(4.8)

where the right hand side is defined near s = 0 by analytic continuation of the Mellin trans-

form. Let Ẽνp(τ) := G×νp(τ) Λ
pp∗⊗ Vτ and let ∆̃p(τ) be the lift of ∆p(τ) to C∞(X̃, Ẽνp(τ)).

Then again it follows from [MtM, (6.9)] that on C∞(G, νp(τ)) one has

∆̃p(τ) = −R(Ω) + τ(Ω) Id .(4.9)
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Let e−t∆̃p(τ) be the corresponding heat semigroup on L2(G, νp(τ)). It is a smoothing oper-
ator which commutes with the action of G. Therefore, it is of the form

(
e−t∆̃p(τ)φ

)
(g) =

∫

G

Hτ,p
t (g−1g′)φ(g′) dg′, φ ∈ L2(G, νp(τ), g ∈ G,

where the kernel

Hτ,p
t : G → End(Λpp∗ ⊗ Vτ )(4.10)

belongs to C∞ ∩ L2 and satisfies the covariance property

(4.11) Hτ,p
t (k−1gk′) = νp(τ)(k)

−1Hτ,p
t (g)νp(τ)(k

′)

with respect to the representation (4.2). Moreover, for all q > 0 we have

(4.12) Hτ,p
t ∈ (Cq(G)⊗ End(Λpp∗ ⊗ Vτ ))

K×K,

where Cq(G) denotes Harish-Chandra’s Lq-Schwartz space. The proof is similar to the
proof of Proposition 2.4 in [BM]. Now we come to the heat kernel of ∆p(τ). First the
integral kernel of e−t∆p(τ), regarded as an operator in L2(Γ\G, νp(τ)), is given by

Hτ,p(t; g, g′) :=
∑

γ∈Γ

Hτ,p
t (g−1γg′),(4.13)

As in section 3 this series converges absolutely and locally uniformly. Therefore the trace
of the heat operator e−t∆p(τ) is given by

Tr
(
e−t∆p(τ)

)
=

∫

Γ\G

trHτ,p(t; g, g) dġ,

where tr denotes the trace tr : End(Vν) → C. Let

hτ,p
t (g) := trHτ,p

t (g).(4.14)

Using (4.13) we obtain

(4.15) Tr
(
e−t∆p(τ)

)
=

∫

Γ\G

∑

γ∈Γ

hτ,p
t (g−1γg) dġ.

Put

(4.16) kτ
t =

d∑

p=1

(−1)pp hτ,p
t .

Then it follows that

(4.17) K(t, τ) =

∫

Γ\G

∑

γ∈Γ

kτ
t (g

−1γg) dġ.

Let RΓ be the right regular representation of G on L2(Γ\G). Then (4.17) can be written
as

(4.18) K(t, τ) = TrRΓ(k
τ
t ).
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We shall now compute the Fourier transform of kτ
t . To begin with let π be an admissible

unitary representation of G on a Hilbert space Hπ. Set

π̃(Hτ,p
t ) =

∫

G

π(g)⊗Hτ,p
t (g) dg.

This defines a bounded operator on Hπ ⊗ Λpp∗ ⊗ Vτ . As in [BM, pp. 160-161] it follows
from (4.11) that relative to the splitting

Hπ ⊗ Λpp∗ ⊗ Vτ = (Hπ ⊗ Λpp∗ ⊗ Vτ )
K ⊕

[
(Hπ ⊗ Λpp∗ ⊗ Vτ )

K
]⊥

,

π̃(Hτ,p
t ) has the form

π̃(Hτ,p
t ) =

(
π(Hτ,p

t ) 0
0 0

)

with π(Hτ,p
t ) acting on (Hπ ⊗ Λpp∗ ⊗ Vτ )

K . Using (4.9) it follows as in [BM, Corollary 2.2]
that

(4.19) π(Hτ,p
t ) = et(π(Ω)−τ(Ω)) Id

on (Hπ ⊗ Λpp∗ ⊗ Vτ )
K . Let {ξn}n∈N and {ej}mj=1 be orthonormal bases ofHπ and Λpp∗⊗Vτ ,

respectively. Then we have

Tr π̃(Hτ,p
t ) =

∞∑

n=1

m∑

j=1

〈π̃(Hτ,p
t )(ξn ⊗ ej), (ξn ⊗ ej)〉

=
∞∑

n=1

m∑

j=1

∫

G

〈π(g)ξn, ξn〉〈Hτ,p
t (g)ej, ej〉 dg

=

∞∑

n=1

∫

G

hτ,p
t (g)〈π(g)ξn, ξn〉 dg

= Tr π(hτ,p
t ).

(4.20)

Let π ∈ Ĝ and let Θπ denote its character. Then it follows from (4.16), (4.19) and (4.20)
that

(4.21) Θπ(k
τ
t ) = et(π(Ω)−τ(Ω))

d∑

p=1

(−1)pp · dim(Hπ ⊗ Λpp∗ ⊗ Vτ )
K .

Now we consider the case of a principle series representation. Let Q be a standard cuspidal
parabolic subgroup. Let Q = MAN be the Langlands decomposition of Q. Denote by a

the Lie algebra of A. Let KM = K ∩ M . Let (ξ,Wξ) be a discrete series representation
of M and let ν ∈ a∗

C
. Let πξ,ν be the induced representation and let Θξ,ν be the global

character of πξ,ν (see section 2).

Proposition 4.1. Let Y ∈ a be a unit vector and let pY be the orthogonal complement of
Y in p. Then

(i) Θξ,ν(k
τ
t ) = et(πξ,ν (Ω)−τ(Ω)) dim

(
Wξ ⊗ (Λoddp∗Y − Λevp∗Y )⊗ Vτ

)KM ,
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(ii) Θξ,ν(k
τ
t ) = 0 if dim aq ≥ 2.

Proof. By Frobenius reciprocity [Kn1, p. 208] and (4.21) we get

Θξ,ν(k
τ
t ) = et(πξ,ν (Ω)−τ(Ω))

d∑

p=1

(−1)pp dim (Wξ ⊗ Λpp∗ ⊗ Vτ )
KM .

Now

p∗ = RY ∗ ⊕ p∗Y

as KM -module. Therefore, in the Grothendieck ring of KM we have

d∑

p=1

(−1)ppΛpp∗ =
d∑

p=1

(−1)pp[Λpp∗Y ⊕ Λp−1p∗Y ]
K

=

d∑

p=1

(−1)ppΛpp∗Y +

d−1∑

p=0

(−1)p+1(p+ 1)Λpp∗Y

=
d∑

p=0

(−1)p+1Λpp∗Y .

(4.22)

Tensoring with Wξ and Vτ and taking KM -invariants, we obtain (i).
To prove (ii), suppose that there is a nonzero H ∈ a ∩ pY . Since M centralizes H ,

ε(H) + i(H) is a KM intertwining operator between Λevp∗Y and Λoddp∗Y , and non-trivial
since H 6= 0. Hence Λevp∗Y and Λoddp∗Y are equivalent as KM -modules and (ii) follows. �

Proposition 4.2. Assume that δ(X̃) ≥ 2 or that X̃ is even-dimensional. Then TX(τ) = 1
for all finite-dimensional irreducible representations τ of G.

Proof. Let

RΓ =
⊕

π∈Ĝ

mΓ(π)π

be the decomposition of the right regular representation RΓ of G on L2(Γ\G), see [Wa1,
section 1]. Then by (4.18) we have

K(t, τ) =
∑

π∈Ĝ

mΓ(π)Θπ(k
τ
t ).(4.23)

The series on the right hand side is absolutely convergent. First assume that δ(X) ≥
2. By [De, section 2.2] the Grothendieck group of all admissible representations of G is
generated by the representations πξ,λ , where πξ,λ is associated to some standard cuspidal
parabolic subgroup Q of G as in (2.1). Since δ(X) ≥ 2 one has Θξ,λ(k

τ
t ) = 0 for every such

representation by Proposition 4.1. Thus one has Θπ(k
τ
t ) = 0 for every irreducible unitary

representation of G. By (4.23) it follows that K(t, τ) = 0. Let h(τ) be as in (4.7). Since
K(t, τ)−h(τ) decays exponentially as t → ∞, it follows that K(t, τ)−h(τ) = 0 and using
(4.8), the first statement follows.
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Now assume that d = dim X̃ is even. Note that as K-modules we have

Λpp∗ ∼= Λd−pp∗, p = 0, . . . , d.

Since d is even, it follows that in the representation ring R(K) we have the following
equality

d∑

p=0

(−1)ppΛpp∗ =
d

2

d∑

p=0

(−1)pΛpp∗.

Let (π,Hπ) ∈ Ĝ. Then it follows from (4.21) that

Θπ(k
τ
t ) =

d

2
et(π(Ω)−τ(Ω)

d∑

p=0

(−1)p dim(Hπ ⊗ Λpp∗ ⊗ Vτ )
K .

Let Hπ,K be the subspace of Hπ consisting of all smooth K-finite vectors. Then

(Hπ,K ⊗ Λpp∗ ⊗ Vτ )
K = (Hπ ⊗ Λpp∗ ⊗ Vτ )

K .

Thus the (g, K)-cohomology H∗(g, K;Hπ,K ⊗ Vτ ) is computed from the Lie algebra co-
homology complex ([Hπ ⊗ Λpp∗ ⊗ Vτ ]

K , d) (see [BW]). Using the Poincaré principle we
get

(4.24) Θπ(k
τ
t ) =

d

2
et(π(Ω)−τ(Ω)

d∑

p=0

(−1)p dimHp(g, K;Hπ,K ⊗ Vτ ).

Now by [BW, II.3.1, I.5.3] we have

(4.25) Hp(g, K;Hπ,K ⊗ Vτ ) =

{
[Hπ ⊗ Λpp∗ ⊗ Vτ ]

K , π(Ω) = τ(Ω);

0, π(Ω) 6= τ(Ω).

Hence for every π ∈ Ĝ one has Θπ(k
τ
t ) ∈ Z and Θπ(k

τ
t ) is independent of t > 0. Thus by

(4.23), K(t, τ) is independent of t > 0. Let h(τ) be defined by (4.7). Then K(t, τ)−h(τ) =
O(e−ct) as t → ∞. Hence K(t, τ) = h(τ). By (4.8) it follows that TX(τ) = 1. �

5. L2-torsion

In this section we study the L2-torsion T
(2)
X (τ). For its definition we refer to [Lo]. Actually,

in [Lo] only the case of the trivial representation τ0 has been discussed. However the
extension to a nontrivial τ is straight forward. The definition is based on the Γ-trace of the

heat operator e−t∆̃p(τ) on the universal covering X̃ (see [Lo]). For our purposes, it suffices

to introduce the L2-torsion for representations τ on X̃ which satisfy τθ 6∼= τ .
Let hτ,p

t be the function defined by (4.14). By homogeneity it follows that in our case the
Γ-trace is given by

(5.1) TrΓ

(
e−t∆̃p(τ)

)
= vol(X)hτ,p

t (1).
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In order to define the L2-torsion we need to know the asymptotic behavior of hτ,p
t (1) as

t → 0 and t → ∞. First we consider the behavior as t → 0. Using (4.15) we have

(5.2) vol(X)hτ,p
t (1) = Tr

(
e−t∆p(τ)

)
−
∫

Γ\G

∑

γ∈Γ−{1}

hτ,p
t (g−1γg) dġ.

To deal with the second term on the right, we consider the representation νp(τ) of K which
is defined by (4.2), and for p = 0, . . . , n we put

(5.3) Ep(τ) := τ(Ω) Id−νp(τ)(ΩK),

which we regard as endomorphism of Λpp∗⊗Vτ . It defines endomorphisms of ΛpT ∗(X̃)⊗Ẽτ

and of ΛpT ∗(X)⊗Eτ . By (3.6) and (4.9) for the Bochner-Laplace operator ∆̃νp(τ) and the

Hodge-Laplace operator ∆̃p(τ) on the bundle Ẽνp(τ) we have

(5.4) ∆̃p(τ) = ∆̃νp(τ) + Ep(τ).

Similarly, by (3.10) and (4.5) for the corresponding operators on Eνp(τ) we have

(5.5) ∆p(τ) = ∆νp(τ) + Ep(τ).

Let νp(τ) = ⊕σ∈K̂m(σ)σ be the decomposition of νp(τ) into irreducible representations.
This induces a corresponding decomposition of the homogeneous vector bundle

Ẽνp(τ) =
⊕

σ∈K̂

m(σ)Ẽσ.

With respect to this decomposition we have

(5.6) Ep(τ) =
⊕

σ∈K̂

m(σ) (τ(Ω)− σ(ΩK)) IdVσ
,

where σ(ΩK) is the Casimir eigenvalue of σ and Vσ is the representation space of σ, and

(5.7) ∆̃νp(τ) =
⊕

σ∈K̂

m(σ)∆̃σ.

This shows that ∆̃νp(τ)(τ) commutes with Ep(τ). Let H
νp(τ)
t be the kernel of e−t∆̃νp(τ) and

let Hτ,p
t be the kernel of e−t∆̃p(τ). Using (5.4) we get

(5.8) Hτ,p
t (g) = e−tEp(τ) ◦Hνp(τ)

t (g), g ∈ G.

Let c ∈ R be such that Ep(τ) ≥ c. By Proposition 3.1 it follows that

(5.9) ‖Hτ,p
t (g)‖ ≤ e−ctH0

t (g), t ∈ R
+, g ∈ G.

Taking the trace in End(Λpp∗ ⊗ Vτ ) we get

(5.10)
∑

γ∈Γ−{1}

|hτ,p
t (g−1γg)| ≤

(
d
p

)
dim(τ)e−ct

∑

γ∈Γ−{1}

H0
t (g

−1γg), t ∈ R
+, g ∈ G.
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Thus by Proposition 3.2 there exist C1, c1 > 0 such that

(5.11)

∫

Γ\G

∑

γ∈Γ−{1}

|hτ,p
t (g−1γg)| dġ ≤ C1e

−c1/t

for 0 < t ≤ 1. Thus by (5.2)

hτ,p
t (1) =

1

vol(X)
Tr
(
e−t∆p(τ)

)
+O(e−c1/t)

for 0 < t ≤ 1. Using the asymptotic expansion of Tr
(
e−t∆p(τ)

)
(see [Gi]), it follows that

there is an asymptotic expansion

(5.12) hτ,p
t (1) ∼

∞∑

j=0

ajt
−d/2+j

as t → 0. To study the behavior of hτ,p
t (1) as t → ∞, we use the Plancherel theorem, which

can be applied since hτ,p
t is a K-finite Schwarz function. Let π be an admissible unitary

representation of G on a Hilbert space Hπ. It follows from (4.19) and (4.20) that

Tr π(hτ,p
t ) = et(π(Ω)−τ(Ω)) dim (Hπ ⊗ Λpp∗ ⊗ Vτ )

K .

Let Q = MAN be a standard parabolic subgroup of G. Let (ξ,Wξ) be a discrete series
representation of M . Let 〈·, 〉 denote the inner product on the real vector space a∗ induced
by the Killing form. Fix positive restricted roots of a and let ρa denote the corresponding
half-sum of these roots. Define a constant c(ξ) by

c(ξ) := −〈ρa, ρa〉+ ξ(ΩM).(5.13)

Recall that for ν ∈ a∗ one has

πξ,ν(Ω) = −〈ν, ν〉+ c(ξ).(5.14)

Then by the Plancherel theorem, [HC, Theorem 3] and (5.14) we have

hτ,p
t (1) =

∑

Q

∑

ξ∈M̂d

e−t(τ(Ω)−c(ξ))

∫

a∗
e−t‖ν‖2 dim (Hξ,ν ⊗ Λpp∗ ⊗ Vτ )

K pξ(iν) dν.

Here the outer sum is over all association classes of standard cuspidal parabolic subgroups
of G and pξ(iν), the Plancherel-density associated to πξ,ν , is of polynomial growth in ν.
Let KM = K ∩M . By Frobenius reciprocity we have

dim (Hξ,ν ⊗ Λpp∗ ⊗ Vτ )
K = dim (Wξ ⊗ Λpp∗ ⊗ Vτ )

KM .(5.15)

Thus we get

(5.16) hτ,p
t (1) =

∑

Q

∑

ξ∈M̂d

dim (Wξ ⊗ Λpp∗ ⊗ Vτ )
KM e−t(τ(Ω)−c(ξ))

∫

a∗
e−t‖ν‖2pξ(iν) dν.

The exponents of the exponential factors in front of the integrals are controlled by the
following lemma.
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Lemma 5.1. Let (τ, Vτ ) ∈ Rep(G). Assume that τ 6∼= τθ. Let Q = MAN be a cuspidal

parabolic subgroup of G. Let ξ ∈ M̂d and assume that dim (Wξ ⊗ Λpp∗ ⊗ Vτ )
KM 6= 0. Then

one has

τ(Ω)− c(ξ) > 0.

Proof. Assume that τ(Ω)− c(ξ) ≤ 0. Then by (5.14) there exists a ν0 ∈ a∗ such that

πξ,ν0(Ω) = τ(Ω).

Together with (5.15), our assumption and [BW, Proposition II.3.1] it follows that

dim (Hp(g, K;Hξ,ν0,K ⊗ Vτ )) 6= 0,

where Hξ,ν0,K are the K-finite vectors in Hξ,ν0 Since τ 6∼= τθ, this is a contradiction to the
first statement of [BW, Proposition II. 6.12]. �

Let τ ∈ Rep(G) and assume that τ satisfies τ 6∼= τθ. It follows from (5.16) and Lemma
5.1 that there exists c > 0 such that

(5.17) hτ,p
t (1) = O

(
e−ct

)

as t → ∞. Using (5.12) and (5.17) it follows from standard methods, see for example [Gi],
that the Mellin transform ∫ ∞

0

hτ,p
t (1)ts−1 dt

converges absolutely and uniformly on compact subsets of the half-plane Re(s) > d/2 and

admits a meromorphic extension to C which is holomorphic at s = 0 if d = dim(X̃) is odd
and has at most a simple pole at s = 0 for d = dim(X̃) even. Thus we can define the

L2-torsion T
(2)
X (τ) ∈ R+ by

(5.18) log T
(2)
X (τ) :=

1

2

d∑

p=1

(−1)pp
d

ds

(
1

Γ(s)

∫ ∞

0

TrΓ

(
e−t∆̃p(τ)

)
ts−1 dt

) ∣∣∣∣
s=0

,

where the right hand side is defined near s = 0 by analytic continuation. For t > 0 let

(5.19) K(2)(t, τ) :=
d∑

p=1

(−1)pphτ,p
t (1).

Put

(5.20) t
(2)

X̃
(τ) :=

1

2

d

ds

(
1

Γ(s)

∫ ∞

0

K(2)(t, τ)ts−1 dt

) ∣∣∣∣
s=0

.

Then t
(2)

X̃
(τ) depends only on the symmetric space X̃ and τ , and we have

(5.21) log T
(2)
X (τ) = vol(X) · t(2)

X̃
(τ).
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Next we establish an auxiliary result concerning the twisted Euler characteristic. We let
τ ∈ Rep(G) be arbitrary. Let Hp(X,Eτ ) := ker∆p(τ) be the space of Eτ -valued harmonic
p-forms. Let

χ(X,Eτ ) :=

d∑

p=0

(−1)p dimHp(X,Eτ )

be the twisted Euler characteristic. Furthermore, let X̃d denote the compact dual of X̃ .

Proposition 5.2. If δ(X̃) 6= 0, we have χ(X,Eτ ) = 0. If δ(X̃) = 0, one has

χ(X,Eτ ) = (−1)n vol(X)
χ(X̃d)

vol(X̃d)
dim(τ),(5.22)

where n = dim(X̃)/2.

Proof. Let π ∈ Ĝ. It follows from (4.19) and (4.21) that

d∑

p=0

(−1)pΘπ(h
p,τ
t ) = et(π(Ω)−τ(Ω))

d∑

p=0

(−1)p dim(Hπ ⊗ Λpp∗ ⊗ Vτ )
K .

Using [BW, II.3.1] and the Poincaré principle as in the proof of Proposition 4.2, we get

(5.23)
d∑

p=0

(−1)pΘπ(h
p,τ
t ) =

d∑

p=0

(−1)p dimHp(g, K;Hπ,K ⊗ Vτ ).

Now by [BW, Theorem I.5.3] it follows that if Hp(g, K;Hπ,K ⊗ Vτ ) 6= 0, then χπ = χτ̌ ,
where τ̌ is the contragredient representation of τ . By [Kn1, Corollary 10.37, Corollary 9.2]

there are only finitely many representations π ∈ Ĝ with a given infinitesimal character.
Thus if Q = MAN is a fundamental parabolic subgroup with Q 6= G and if ξ ∈ M̂d, it
follows that there are only finitely many λ ∈ a∗ such that

d∑

p=0

(−1)pΘξ,λ(h
p,τ
t ) 6= 0.(5.24)

Hence by the Plancherel-Theorem, [HC, Theorem 3] and (5.23) we get

d∑

p=0

(−1)php,τ
t (1) =

d∑

p=0

(−1)p
∑

π∈Ĝd

d(π) dimHp(g, K;Hπ,K ⊗ Vτ ),(5.25)

where Ĝd denotes the discrete series of G and d(π) denotes the formal degree of π. The
sum is finite. Let

b(2)p (X,Eτ ) := lim
t→∞

TrΓ

(
e−t∆̃p(τ)

)
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be the L2-Betti number. Using that (5.25) is independent of t and (5.1), we get

vol(X)

d∑

p=0

(−1)php,τ
t (1) =

d∑

p=0

(−1)pb(2)p (X,Eτ ) = χ(2)(X,Eτ ).(5.26)

By the Γ-index theorem of Atiyah [At] we have χ(2)(X,Eτ ) = χ(X,Eτ ). Hence by (5.25)
and (5.26) we get

(5.27) χ(X,Eτ ) = vol(X) ·
d∑

p=0

(−1)p
∑

π∈Ĝd

d(π) dimHp(g, K;Hπ,K ⊗ Vτ ).

If δ(X̃) 6= 0 then Ĝd is empty and hence, this sum equals zero, which proves the first

statement. Now assume that δ(X̃) = 0. Then X̃ is even-dimensional. Let dim(X̃) = 2n.
We keep the notation from section 2.2. By [Ol, Corollary 5.2] for Λ′ = w(Λ(τ̌) + ρG),
w ∈ WG/WK one has

d(ωΛ′) =
dim(τ)

vol(X̃d)

and so together with Proposition 2.1 we get

d∑

p=0

(−1)p
∑

π∈Ĝd

d(π) dimHp(g, K;Hπ,K ⊗ Vτ ) = (−1)n
1

vol(X̃d)
#(WG/WK) dim(τ).(5.28)

Finally, by [Bo, page 175] one has

#(WG/WK) = χ(X̃d).

Applying equation (5.28), the proof of the Proposition follows. �

Remark 1. We remark that if X is Hermitian and τ is the trivial representation, then
equation (5.22) reduces to Hirzebruch’s Proportionality principle.

Now we assume that δ(X̃) = 1 and that X̃ is odd-dimensional. By the classification of

simple Lie groups we have X̃ = X̃0 × X̃1, where δ(X̃0) = 0 and X̃1 = SL(3,R)/ SO(3) or

X̃1 = Spin(p, q)/(Spin(p) × Spin(q)), p, q odd. Let X̃0 = G0/K0 and let G1 = SL(3,R),
K1 = SO(3) or G1 = Spin(p, q), K1 = Spin(p)× Spin(q), p, q odd. Let G = G0 × G1. Let
τ be a finite-dimensional irreducible representation of G and assume that τ 6∼= τθ. Then
τ = τ0 ⊗ τ1, where τi is an irreducible representation of Gi, i = 0, 1, and τ1 6∼= τ1,θ.

Proposition 5.3. Let δ(X̃) = 1 and assume that X̃ is odd-dimensional. Let X̃ = X̃0×X̃1,

where X̃1 is an odd-dimensional irreducible symmetric space with δ(X̃1) = 1. Let τ be a
finite-dimensional irreducible representation of G with τ 6∼= τθ. Then

t
(2)

X̃
(τ) = (−1)dim X̃0/2

χ(X̃0,d)

vol(X̃0,d)
dim τ0 · t(2)X̃1

(τ1).
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Proof. Let Ẽ → X̃ be the homogeneous vector bundle associated to τ |K . Similarly, let

Ẽi → X̃i be the homogeneous vector bundle associated to τi|Ki
, i = 0, 1. Then Ẽ ∼= Ẽ1⊠Ẽ2

and

Λk(X̃, Ẽ) ∼=
⊕

p+q=k

(
Λp(X̃0, Ẽ0)⊗ Λq(X̃1, Ẽ1)

)
.

With respect to this decomposition we have

∆̃k(τ) =
⊕

p+q=k

(
∆̃p(τ0)⊗ Id+ Id⊗∆̃q(τ1)

)
.

Let Hτ,k
t and Hτi,p

t , i = 0, 1, be the corresponding heat kernels. Then it follows that

Hτ,k
t = ⊕p+q=kH

τ0,p
t ⊗Hτ1,q

t . Hence for hτ,k
t = trHτ,k

t and hτi,p
t = trHτi,p

t , i = 0, 1, we have

hτ,k
t =

∑

p+q=k

hτ0,p
t · hτ1,q

t .

Using this equality, we get

d∑

k=0

(−1)kk hτ,k
t (1) =

d1∑

p=0

d2∑

q=0

(−1)p+q(p+ q) hτ1,p
t (1) · hτ2,q

t (1)

=

d1∑

p=0

(−1)p hτ1,p
t (1) ·

d2∑

q=0

(−1)qq hτ2,q
t (1)

+

d2∑

q=0

(−1)q hτ2,q
t (1) ·

d1∑

p=0

(−1)pp hτ1,p
t (1).

(5.29)

Let Γi ⊂ Gi, i = 0, 1, any cocompact, torsion free discrete subgroup. The existence of the
Γi follows from our assumptions on the Gi stated in the introduction and from results of
Borel [Bor]. Put Xi = Γi\X̃i and Ei = Γ\Ẽi. By (5.26) and the remark following it we
have

(5.30)

d∑

p=0

(−1)phτi,p
t (1) =

χ(Xi)

vol(Xi)
, i = 0, 1.

Taking the Mellin transform of (5.29) and using (5.30) and Proposition 5.2, the proposition
follows. �

6. The asymptotics of the L2-torsion for δ(X̃) = 1

In this section we study the asymptotic behaviour of the L2-torsion of an odd-dimensional
irreducible symmetric space X̃ with δ(X̃) = 1. Then we can assume that either G =
Spin(p, q), p, q odd, and K = Spin(p) × Spin(q), or G = SL3(R) and K = SO(3). To
compute the L2 torsion in these cases, we need some preparation. Let Q = MAN be a
fundamental parabolic subgroup of G, i.e. we have dim(A) = 1. Let M0 be the identity
component of M and let m be its Lie algebra. Then in our case m is always semisimple.
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Let KM := K ∩M , let K0
M be the identity component of KM and let km := k ∩ m be its

Lie algebra. Let t be a Cartan subalgebra of km. Then t is also a Cartan subalgebra of m
and of k. Moreover h := a⊕ t is a Cartan subalgebra of g.
Let ∆(gC, hC), ∆(mC, tC), ∆((km)C, tC) be the corresponding roots. Then there is a canon-

ical inclusion ∆(mC, tC) →֒ ∆(gC, hC). Fix a positive restricted root e1 ∈ a∗ and fix positive
roots ∆+(mC, tC). In this way we obtain positive roots ∆+(gC, hC). Let ρG resp. ρM be
the half sums of the elements of ∆+(gC, hC) and ∆+(mC, tC), respectively. By our choices
we have ρG|m = ρM .
Let

T := {m ∈ KM : Ad(m)|t = Id}.
Then we have

T = {k ∈ K : Ad(k)|t = Id}.
Thus T is connected. Let NKM

and NK0
M

be the normalizers of t in KM and K0
M , respec-

tively. Let WKM
:= NKM

/T and let Wkm = NK0
M
/T be the Weyl group of ∆((km)C, tC).

Moreover we let Wm be the Weyl group of ∆(mC, tC). Finally we let

W (A) := {k ∈ K : Ad(k)a = a}/KM .

The following lemma is certainly well-known and has already been used by Olbrich, [Ol,
page 15]. However, for the sake of completeness, we include a proof here.

Lemma 6.1. One has

|WKM
|

|Wkm|
· |W (A)| = 2.

Proof. By [Kn2, Proposition 7.19 (b)] one has # (M/M0) = # (KM/K0
M). Let k ∈ KM .

Then Ad(k)t is a maximal torus in km and thus there exists a k0 ∈ K0
M such that

Ad(k)t = Ad(k0)t. Hence every element of KM/K0
M has a representative in NKM

and
thus there are canonical isomorphisms KM/K0

M
∼= NKM

/NK0
M

∼= WKM
/Wkm . In other

words |WKM
|/|Wkm| equals the number of components of M . Let ap be a maximal abelian

subspace of p containing a, let ∆ap be the corresponding restricted roots and let W (∆ap)
be the corresponding Weyl-group. One has W (∆ap) = NK(ap)/ZK(ap), where NK(ap) resp.
ZK(ap) are the normalizer resp. centralizer of ap in K. Moreover by [Kn2, Proposition 8.85]
each element of W (A) has a representative in NK(ap), i.e can be extended to an element of
W (∆ap) which fixes a. Now a case-by-case study easily implies that W (∆ap) contains such
an element which is non-trivial if and only if G = Spin(p, 1). In this case M is connected.
In all other cases, M has exactly two components. This proves the Lemma. �

Let H1 ∈ a with e1(H1) = 1. Then we normalize the Killing form B by 1/B(H1, H1). We
let ‖·‖ be the corresponding norm on the real vector-space it∗ ⊕ a∗. Let Ω be the Casimir
element with respect to the normalized Killing form. Then for τ ∈ Rep(G) with highest
weight Λ(τ) we have

τ(Ω) = ‖Λ(τ) + ρG‖2 − ‖ρG‖2 .(6.31)
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The restriction of the normalized Killing form to m is non-degenerate and Ad-invariant.
Let ΩM be the corresponding Casimir element. For σ ∈ Rep(M0) with highest weight
Λ(σ) ∈ it∗ we define

c(σ) := ‖Λ(σ) + ρM‖2 − ‖ρG‖2 .(6.32)

Then one has c(σ) = χσ(ΩM)− ‖ρG|a‖2 and thus one has

c(σ) = c(σ̌)(6.33)

for every σ ∈ Rep(M0). Let Wg := W (gC, hC) be the Weyl group of ∆(gC, hC) and for
w ∈ Wg let ℓ(w) be its length with respect to the simple roots defined by ∆+(gC, hC).
Finally let

W 1 := {w ∈ Wg : w
−1α > 0 ∀α ∈ ∆+(mC, tC)}.

The subspace n is even-dimensional and we write dim(n) = 2n. For k = 0, . . . , 2n let
Hk(n;Vτ ) be the Lie-algebra cohomology of n with coefficients in Vτ . Then theHk(n;Vτ ) are
M0A-modules and their decomposition into irreducible M0A-components can be described
by the following theorem of Kostant.

Proposition 6.2. In the sense of M0A-modules one has

Hk(n;Vτ ) ∼=
∑

w∈W 1

ℓ(w)=k

Vτ(w),

where Vτ(w) is the M0A module with highest weight w(Λ(τ) + ρG)− ρG.

Proof. See for example [Wr, Theorem 2.5.1.3]. �

Corollary 6.3. As M0A-modules we have

2n⊕

k=0

(−1)kΛkn∗ ⊗ Vτ =
⊕

w∈W 1

(−1)l(w)Vτ(w).

Proof. This follows from Proposition 6.2 and the Poincaré principle [Ko, (7.2.3)]. �

For w ∈ W 1 let στ,w ∈ Rep(M0) be the finite-dimensional irreducible representation of
M0 with highest weight

(6.34) Λ(στ,w) := w(Λ(τ) + ρG)|t − ρM ,

and let λτ,w ∈ R be such that

(6.35) w(Λ(τ) + ρG)|a = λτ,we1.

Then we have the following corollary about the Casimir eigenvalue.

Proposition 6.4. For every w ∈ W 1 one has

τ(Ω) = λ2
τ,w + c(στ,w).
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Proof. By (6.31) we have

τ(Ω) = ‖Λ(τ) + ρG‖2 − ‖ρG‖2 = ‖w(Λ(τ) + ρG)‖2 − ‖ρG‖2

= ‖λτ,we1‖2 + ‖Λ(στ,w) + ρM‖2 − ‖ρG‖2 = λ2
τ,w + c(στ,w).

�

Let kτ
t be defined by (4.16). Our next goal is to compute the Fourier transform of kτ

t . Note
that, since T is connected, it follows from [Wa2, section 6.9, section 8.7.1] that for every
discrete series representation ξ of M over Wξ there exists a discrete series representation
ξ0 of M0 over Wξ0 such that ξ is induced from ξ0. Moreover, since M0 is semisimple,
the discrete series of M0 is parametrized as in section 2.2. By [Wa2, section 8.7.1], two
discrete series representations ξ01 and ξ02 of M0 with corresponding parameters Λξ01

,Λξ02
as

in section 2.2 induce the same discrete series representation of M if and only if Λξ01
and

Λξ02
are WKM

-conjugate. For ξ ∈ M̂d and λ ∈ C we let πξ,λ := πξ,λe1, Θξ,λ := Θξ,λe1.

Proposition 6.5. Let ξ ∈ M̂d with infinitesimal character χ(ξ). Let pm := p ∩ m and let
v := 1

2
dim pm. Then for λ ∈ C one has

Θξ,λ(k
τ
t ) = (−1)v

∑

w∈W 1

χ(ξ)=χ(σ̌τ,w)

(−1)ℓ(w)+1e−t(λ2+λ2
τ,w).

Proof. One has

πξ,λ(Ω) = −λ2 + ‖Λξ‖2 − ‖ρG‖2 .

Thus if σ ∈ Rep(M0) is such that χσ = χξ one has

πξ,λ(Ω) = −λ2 + c(σ).(6.36)

Let ξ0, Λξ0 be as above. Then ξ|KM
is induced from ξ0|K0

M
and by Frobenius reciprocity

one has

[Λpp∗ ⊗Hξ ⊗ Vτ ]
K = [Λpp∗ ⊗Wξ ⊗ Vτ ]

KM = [Λpp∗ ⊗Wξ0 ⊗ Vτ ]
K0

M .

Thus by (4.19) one has

Θξ,λ(k
τ
t ) = et(πξ,λ(Ω)−τ(Ω))

d∑

p=0

(−1)pp [Λpp∗ ⊗Wξ0 ⊗ Vτ ]
K0

M .

Let pY be as in Proposition 4.1. Since dim a = 1, it follows that asK0
M modules pY ∼= pm⊕n.

Using (4.22), it follows that as K0
M modules we have

d∑

p=0

(−1)ppΛpp∗ =

d∑

p=0

(−1)p+1Λp(p∗m ⊕ n∗) =

2n∑

k=0

(−1)k+1
(
Λevp∗m − Λoddp∗m

)
⊗ Λkn∗.
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Thus together with Corollary 6.3 and the Poincaré principle one gets

d∑

p=0

(−1)pp [Λpp∗ ⊗Wξ0 ⊗ Vτ ]
K0

M . =
∑

w∈W 1

(−1)ℓ(w)+1
[(
Λevp∗m − Λoddp∗m

)
⊗Wξ0 ⊗ Vτ(w)

]K
M0

=
∑

w∈W 1

(−1)ℓ(w)+1χ(m, KM0 ;Wξ0 ⊗ Vτ(w)),

where χ(m, K0
M ;Wξ0 ⊗ Vτ(w)) denotes the Euler-characteristic of the (m, K0

M)-cohomology
with coefficients in the M0-module Vτ(w) ⊗Wξ0 . Thus the proposition follows from Propo-
sition 2.1, Proposition 6.4, equation (6.36) and equation (6.33). �

Next we come to the Plancherel measures. For ξ ∈ M̂d we let ξ0 ∈ M̂0
d be as above.

Fix a regular Λξ0 ∈ it∗ corresponding to ξ0 as in section 2.2 and let Λξ := Λξ0. Choose
positive roots ∆+(mC, tC; Λξ) such that Λξ is dominant with respect to these roots. Let
∆+(gC, hC; Λξ) be positive roots defined via ∆+(mC, tC; Λξ) and e1 and let ρG,Λξ

be the
half-sum of the elements of ∆+(mC, tC; Λξ). For λ ∈ R we let µξ(λ) be the Plancherel
measure of πξ,λ. Then there exists a polynomial Pξ(z) such that one has

µξ(λ) = Pξ(iλ).(6.37)

The polynomial Pξ(z) is given as follows. There exists a constant cX̃ which depends only

on X̃ such that one has

Pξ(z) = (−1)ncX̃
∏

α∈∆+(gC,hC;Λξ)

〈α,Λξ + ze1〉〈
α, ρG,Λξ

〉 ,(6.38)

[Kn1, Theorem 13.11], [Wa3, Theorem 13.5.1]. By [Ol, Lemma 5.1] and our normalizations
one has

cX̃ =
1

|W (A)| vol(X̃d)
.(6.39)

Note that Pξ(z) is an even polynomial in z. Now let w ∈ Wm. We regard Wm as a
subgroup of Wg. Then if we replace Λξ by wΛξ, we have to replace ∆+(gC, tC; Λξ) by
w∆+(gC, tC; Λξ). This implies that Pξ(z) depends only on theWm-orbit of Λξ or equivalently
on the infinitesimal character χ(ξ) of ξ. Thus if for σ ∈ Rep(M0) with highest weight Λ(σ)
we let

Pσ(z) := (−1)ncX̃
∏

α∈∆+(gC,hC)

〈α,Λ(σ) + ρM + ze1〉
〈α, ρG〉

,(6.40)

where cX̃ is as in (6.38), it follows that Pξ(λ) = Pσ(λ) if χ(σ) = χ(ξ). Putting everything
together, we obtain the following corollary.

Proposition 6.6. Let τ ∈ Rep(G) and assume that τ 6∼= τθ. Then one has

log T
(2)
X (τ) = (−1)vπ vol(X)

|Wm|
|WKM

|
∑

w∈W 1

(−1)ℓ(w)

∫ |λτ,w|

0

Pσ̌τ,w
(t)dt.
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Proof. For a given regular and integral Λ ∈ it∗ there are exactly |Wm|/|WKM
| distinct

elements of M̂d with infinitesimal character χΛ. Thus if one combines the Plancherel-
Theorem with Proposition 4.1, Proposition 6.5, equation (6.37) and the previous remarks
one obtains

kτ
t (1) = (−1)v

|Wm|
|WKM

|
∑

w∈W 1

(−1)ℓ(w)+1e−tλ2
τ,w

∫

R

e−tλ2

Pσ̌τ,w
(iλ)dλ.

We let

I(t, τ) := vol(X)kτ
t (1).

By the computations below one has |λτ,w| > 0 for every w ∈ W 1. Thus, since is Pσ(λ) is an

even polynomial of degree 2n for each σ ∈ M̂0, for s ∈ C with Re(s) > 2n+ 1 the integral

MI(s, τ) :=

∫ ∞

0

ts−1I(t, τ)dt

exists. Moreover, by [Fr], Lemma 2 and Lemma 3, MI(s, τ) has a meromorphic continua-
tion to C which is regular at 0 and if MI(τ) denotes its value at 0 one has

MI(τ) = 2π vol(X)(−1)v
|Wm|
|WKM

|
∑

w∈W 1

(−1)ℓ(w)

∫ |λτ,w|

0

Pσ̌τ,w
(λ) dλ.

By definition one has

log T
(2)
X (τ) =

1

2
MI(τ)

and the proposition follows. �

Now let G = Spin(p, q), p, q odd, p = 2p1 + 1, q = 2q1 + 1. Let n := p1 + q1. Let

K = Spin(p)× Spin(q) and X̃ = G/K. Then dim(X̃) = pq. The normalized Killing form
is given by

〈X, Y 〉 := 1

2n− 2
B(X, Y ).

We equip X̃ with the Riemannian metric defined by the restriction of 〈·, ·〉 to p. We have
m ∼= so(p− 1, q − 1). We realize the fundamental Cartan subalgebra as follows. Let

H1 := Ep,p+1 + Ep+1,p.(6.41)

Then we put

a = RH1.

Moreover we let

(6.42) Hi :=

{√
−1(E2i−3,2i−2 − E2i−2,2i−3), 2 ≤ i ≤ p1 + 1√
−1(E2i−1,2i − E2i,2i−1) p1 + 1 < i ≤ n + 1.
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Then

t :=

n+1⊕

i=2

√
−1Hi

is a Cartan subalgebra of m and

h := a⊕ t

is a Cartan subalgebra of g. Define ei ∈ h∗
C
, i = 1, . . . , n+ 1, by

ei(Hj) = δi,j, 1 ≤ i, j ≤ n+ 1.

Then the sets of roots of (gC, hC) and (mC, tC) are given by

∆(gC, hC) = {±ei ± ej , 1 ≤ i < j ≤ n + 1}
∆(mC, tC) = {±ei ± ej , 2 ≤ i < j ≤ n+ 1}.

We fix positive systems of roots by

∆+(gC, hC) := {ei + ej , i 6= j} ⊔ {ei − ej, i < j}
∆+(mC, tC) := {ei + ej, i 6= j, i, j ≥ 2} ⊔ {ei − ej , 2 ≤ i < j}.

The finite-dimensional irreducible representations τ of G are parametrized by their highest
weights

Λ(τ) =k1(τ)e1 + · · ·+ kn+1(τ)en+1, (k1(τ), . . . kn+1(τ)) ∈ Z

[
1

2

]n+1

k1(τ) ≥ k2(τ) ≥ · · · ≥ kn(τ) ≥ |kn+1(τ)| .
(6.43)

Let Λ be a highest weight and let τΛ be the associated irreducible representation of G.
Recall that we denote by Λθ the highest weight of the representation τΛ ◦ θ. If Λ is a
highest weight as in (6.43), then

Λθ = k1(τ)e1 + · · ·+ kn(τ)en − kn+1(τ)en+1.(6.44)

Thus the fundamental weights which are not invariant under θ are the weights

ω+
f,n :=

n+1∑

j=1

1

2
ej ; ω−

f,n := (ω+
f,n)θ =

n∑

j=1

1

2
ej −

1

2
en+1.(6.45)

The finite-dimensional irreducible representations σ of M0 are parametrized by their high-
est weights

Λ(σ) =k2(σ)e2 + · · ·+ kn+1(σ)en+1, (k2(σ), . . . , kn+1(σ)) ∈ Z

[
1

2

]n
,

k2(σ) ≥ k3(σ) ≥ · · · ≥ kn(σ) ≥ |kn+1(σ)| .
(6.46)

For σ ∈ Rep(M0) with highest weight Λ(σ) as in (6.46) we let w0σ ∈ Rep(M0) be the
representation with highest weight

Λ(w0σ) := k2(σ)e2 + · · ·+ kn(σ)en − kn+1(σ)en+1.
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Then for every σ ∈ Rep(M0) one has σ̌ = σ if n is even and σ̌ = w0σ if n is odd. Applying
equation (6.40) this implies that

Pσ(λ) = Pw0σ(λ) = Pσ̌(λ)(6.47)

for every σ ∈ Rep(M0).
Let τ ∈ Rep(G) with highest weight τ1e1 + · · ·+ τn+1en+1. For k = 0, . . . n let

λτ,k = τk+1 + n− k(6.48)

and let στ,k be the irreducible representation of M with highest weight

Λστ,k
:= (τ1 + 1)e2 + · · ·+ (τk + 1)ek+1 + τk+2ek+2 + · · ·+ τn+1en+1.(6.49)

Then as in [MP, section 2.7] one has

{(λτ,w, στ,w, l(w)) : w ∈ W 1} = {(λτ,k, στ,k, k) : k = 0, . . . , n}
⊔ {(−λτ,k, w0στ,k, 2n− k) : k = 0, . . . , n}.(6.50)

Combining (6.44), (6.47) and (6.50) and Proposition 6.6 it follows that

T
(2)
X (τ) = T

(2)
X (τθ)(6.51)

for each τ ∈ Rep(G). Now for p, q ∈ N we let

Cp,q =
(−1)

pq−1
2 2π

vol(X̃d)

(
p+q−2

2
p−1
2

)
.(6.52)

Then we have

Proposition 6.7. Let X̃ = Spin(p, q)/(Spin(p) × Spin(q)), p, q odd, and X = Γ\X̃. Let
Λ ∈ h∗

C
be a highest weight with Λθ 6= Λ. For m ∈ N let τΛ(m) be the irreducible repre-

sentation of Spin(p, q) with highest weight mΛ. There exists a polynomial PΛ(m) whose
coefficients depend only on Λ, such that for all m ∈ N we have

log T
(2)
X (τΛ(m)) = Cp.q vol(X)PΛ(m).

Moreover there is a constant CΛ > 0, which depends on Λ, such that

PΛ(m) = CΛ ·m dim(τΛ(m)) +O (dim(τΛ(m)))(6.53)

as m → ∞. If Λ = ω±
f,n is one of the fundamental weights that are not invariant under θ,

then CΛ = 1.

Proof. Let Λ = τ1e1 + · · ·+ τn+1en+1. By (6.44) and (6.51) we may assume that τn+1 > 0.
Put τ(m) := τΛ(m). Then

(6.54) λτ(m),k = mτk+1 + n− k, k = 0, . . . , n,

and by Proposition 6.6, (6.50) and (6.47) we have

log T
(2)
X (τ(m)) = 2π vol(X)(−1)v

|Wm|
|WKM

|

n∑

k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t) dt.
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In the hyperbolic case the term (−1)v|Wm|/|WKM
| equals 1. Therefore this equation agrees

with [MP, (5.18)]. Note that 2n = dim n. Let cX̃ be defined by (6.39) and put

PΛ(m) :=
(−1)n

cX̃

n∑

k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t) dt.(6.55)

Then it follows from (6.40) and (6.50) that PΛ is a polynomial in m whose coefficients
depend only on Λ. By definition one has

log T
(2)
X (τ(m)) = 2π vol(X)(−1)v+n |Wm|

|WKM
|cX̃PΛ(m).

So it remains to compute the constant. By (6.39) and Lemma 6.1 one has

|Wm|
|WKM

|cX̃ =
|Wm|
|Wkm|

1

2 vol(X̃d)
.

Recall that mC
∼= so(2n,C), (km)C ∼= so(2p1,C)⊕ so(2q1,C) and so by [Kn2, page 685] one

has |Wm| = n!2n−1, |Wkm | = p1!q1!2
n−2. Hence, as in [Ol, Proposition 1.3], one has

|Wm|
|Wkm|

= 2

(
p+q−2

2
p−1
2

)
.

Furthermore one has v = dim pm
2

= (p−1)(q−1)
2

and thus we get v+ n = pq−1
2

. This proves the
first part of the proposition.
To determine the highest order term of the polynomial PΛ(m), we proceed as in [MP,

Lemma 5.4] to show that

Pστ(m),k
(t) = (−1)n+kcX̃ dim(τ(m))

n∏

j=0
j 6=k

t2 − λ2
τ(m),j

λ2
τ(m),k − λ2

τ(m),j

.

Denote the product on the right by Πk(t;m). Then it follows from (6.55) that

(6.56) PΛ(m) = dim(τ(m)) ·
n∑

k=0

∫ λτ(m),k

0

Πk(t;m) dt.

To deal with the sum, we follow [BV, 5.9.1]. Put λτ(m),n+1 = 0. Then the finite sequence
λτ(m),k, k = 0, . . . , n+ 1 is strictly decreasing. For k = 0, . . . , n set

Qk(t;m) :=
k∑

j=0

Πj(t;m).

Then Qk(t;m) is the unique even polynomial of degree ≤ 2n which satisfies

(6.57) Qk(±λτ(m),j) =

{
1, if j ≤ k,

0, if n ≥ j > k.
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Moreover we have

(6.58)

n∑

k=0

∫ λτ(m),k

0

Πk(t;m) dt =

n∑

k=0

∫ λτ(m),k

λτ(m),k+1

Qk(t;m) dt.

As proved in [BV, Sect. 5.9.1], each integral on the right is positive. This can be seen
as follows. By (6.57), the polynomial Q′

k has a root in each interval [λστ(m),j+1
, λστ(m),j

],

[−λστ(m),j
,−λστ(m),j+1

] for 0 ≤ j < n, j 6= k and a root in [−λστ(m),n
, λστ(m),n

]. Since
Q′

k is of degree ≤ 2n − 1, it follows that Qk is either constant or strictly increasing on
[λστ(m),k+1

, λστ(m),k
]. Furthermore, Qn(t;m) is a polynomial of degree 2n, which is equal to

1 at 2n+ 2 pairwise distinct points. Hence Qn ≡ 1. Thus by (6.54) and (6.58) we get

(n+ 1)(mτ1 + n) = (n+ 1)λτ(m),0 ≥
n∑

k=0

(λτ(m),k − λτ(m),k+1)

≥
n∑

k=0

∫ λτ(m),k

0

Πk(t;m) dt ≥ τn+1m.(6.59)

Since PΛ(m) is a polynomial in m, it follows that there exists CΛ ≥ τn+1 > 0 such that
(6.53) holds . If Λ is one of the fundamental weights ω±

f,n, defined by (6.45), then it follows
as in [MP, Section 5] that CΛ = 1. This proves the second part of the proposition. �

Finally we turn to the case G = SL3(R), K = SO(3). We define our fundamental Cartan
subalgebra as follows. Let

H1 := diag(1, 1,−2); a := RH1.

Then we have m = sl2(R), if sl2(R) is embedded into g as an upper left block. Let

H2 :=

(
0 1
−1 0

)
, t := RT1

embedded into g as an upper left block. Then t is a Cartan subalgebra of m and

h := a⊕ t(6.60)

is a θ-stable fundamental Cartan subalgebra of g. Note that h is different from the usual
Cartan subalgebra h̃ of g which consist of all diagonal matrices of trace 0. Define f1 ∈ a∗

and f2 ∈ it∗ by

f1(H1) = 3; f2(H2) = i.

We fix f1 as a positive restricted root of a. Then we can define positive roots by

∆+(gC, hC) := {f1 − f2, f1 + f2, 2f2}; ∆+(mC, tC) = {2f2}.
Under our normalization one has

〈f1, f1〉 = 1; 〈f2, f2〉 =
1

3
; 〈f1, f2〉 = 0.(6.61)
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One easily sees that dim n = 2, hence n = 1. Moreover by [Kn2, page 485] one has
|W (A)| = 1. For k ∈ N let σk ∈ Rep(M0) be of highest weight kf2. Then it follows from
(6.40) and (6.39) that

Pσk
(z) = − 9

8 vol(X̃d)
(k + 1)

(
z2 −

(
k + 1

3

)2
)
.(6.62)

Define ei ∈ h̃∗
C
by ei(diag(t1, t2, t3)) =

∑
j δi,jtj . Then one can choose positive roots

∆+(gC, h̃C) := {e1 − e2, e1 − e3, e2 − e3}(6.63)

and there is a standard inner-automorphism Φ of gC which sends hC to h̃C and which
satisfies

Φ∗(e1 − e2) = 2f2; Φ∗(e1 − e3) = f1 + f2; Φ∗(e2 − e3) = f1 − f2.(6.64)

The fundamental weights ω̃1, ω̃2 ∈ h̃∗
C
are given by

ω̃1 =
2

3
(e1 − e2) +

1

3
(e2 − e3)

and

ω̃2 =
1

3
(e1 − e2) +

2

3
(e2 − e3).

Thus the fundamental weights ω1, ω2 ∈ h∗
C
are given by

ω1 := Φ∗(ω̃1) =
1

3
f1 + f2; ω2 := Φ∗(ω̃2) =

2

3
f1.(6.65)

If Λ is a weight, Λ = τ1ω1 + τ2ω2, τ1, τ2 ∈ N0, then a standard computation shows that

Λθ = τ2ω1 + τ1ω2.(6.66)

Now we fix τ1, τ2 ∈ N0, τ1 + τ2 > 0 and for m ∈ N we let τ(m) be the representation of G
with highest weight

Λ(τ(m)) := mτ1ω1 +mτ2ω2.(6.67)

We let W̃g be the Weyl-group of ∆(gC, h̃C). Then W̃g consists of all permutations of
e1, e2, e3. Let

W̃ 1 := (Φ∗)−1W 1 = {w ∈ W̃g : w
−1(e1 − e2) > 0}.

Then one has

{(w, ℓ(w));w ∈ W̃ 1} =

{
(Id, 0);

((
e1 e2 e3
e1 e3 e2

)
, 1

)
;

((
e1 e2 e3
e3 e1 e2

)
, 2

)}
.
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By a direct computation we get

{w(Λ(τ(m)) + ρ̃G), ℓ(w);w ∈ W̃ 1}

=

{(
2mτ1 +mτ2 + 3

3
(e1 − e2) +

mτ1 + 2mτ2 + 3

3
(e2 − e3); 0

)
,

(
2mτ1 +mτ2 + 3

3
(e1 − e2) +

mτ1 −mτ2
3

(e2 − e3); 1

)
,

(−mτ1 +mτ2
3

(e1 − e2) +
−2mτ1 −mτ2 − 3

3
(e2 − e3); 2

)}
.

(6.68)

As in [BV, 5.9.2] we introduce the following constants

A1(τ(m)) :=
mτ1 + 1

2
; A2(τ(m)) :=

mτ1 +mτ2 + 2

2
; A3(τ(m)) :=

mτ2 + 1

2
(6.69)

and

C1(τ(m)) :=
mτ1 + 2mτ2 + 3

3
; C2(τ) :=

mτ1 −mτ2
3

; C3(τ) :=
2mτ1 +mτ2 + 3

3
.(6.70)

Note that on h̃∗
C
one has ω̃1 = e1; ω̃2 = e1 + e2, since the matrices in h̃∗

C
have trace 0.

Then, combining (6.64) and (6.68), we get

{
(
Λ(στ(m),w), λτ(m),w, ℓ(w)

)
;w ∈ W 1} = {((2A1(τ(m))− 1)f2, C1(τ(m)), 0) ,

((2A2(τ(m))− 1)f2, C2(τ(m)), 1) , ((2A3(τ(m))− 1)f2,−C3(τ(m)), 2)}.
Thus if we apply (6.62) we obtain

∑

w∈W 1

(−1)ℓ(w)

∫ |λτ(m),w|

0

Pστ(m),w
(t)dt

=− 1

vol(X̃d)
CSL3(R)

3∑

k=1

(−1)k+1Ak(τ(m))

∫ |Ck(τ(m))|

0

(
9

4
t2 − Ak(τ(m))2

)
dt

=− 1

vol(X̃d)

3∑

k=1

(−1)k+1Ak(τ(m))|Ck(τ(m))|
4

(
3Ck(τ(m))2 − 4Ak(τ(m))2

)
.(6.71)

We can now prove our main result about the L2-torsion for the case G = SL3(R).

Proposition 6.8. Let X̃ = SL(3,R)/ SO(3) and X = Γ\X̃. Let Λ ∈ h∗
C
be a highest

weight with Λθ 6= Λ. For m ∈ N let τΛ(m) be the irreducible representation of SL(3,R)
with highest weight mΛ. There exists a polynomial PΛ whose coefficients depend only on Λ
such that

log T
(2)
X (τΛ(m)) =

π vol(X)

vol(X̃d)
PΛ(m).

Moreover, there exists a constant C(Λ) > 0 depending only on Λ such that

PΛ(m) = C(Λ)m dim(τΛ(m)) +O(dim(τΛ(m))),
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as m → ∞. If Λ equals one of the fundamental weights ωf,i then C(Λ) = 4/9.

Proof. There exist τ1, τ2 ∈ N0, τ1 6= τ2, such that Λ = τ1ω1 + τ2ω2. Put τ(m) := τΛ(m).
Then by Proposition 6.6, equation (6.69), (6.70) and (6.71), the first statement is proved
and it remains to consider the asymptotic behavior of the polynomial PΛ. We differ two
cases. First we assume that τ1τ2 6= 0. Then if we put

α4(τ) :=

{
− τ42

18
+

2τ31 τ2
9

+
τ21 τ

2
2

3
; τ1 ≥ τ2

− τ41
18

+
2τ32 τ1

9
+

τ21 τ
2
2

3
; τ2 ≥ τ1,

an explicit computation using equation (6.69), (6.70) and (6.71) shows that

∑

w∈W 1

(−1)ℓ(w)

∫ |λτ(m),w|

0

Pστ(m),w
(t)dt = − α4(τ)

vol(X̃d)
m4 +O(m3),

as m → ∞. Note that α4(τ) > 0 by our assumption on τ1 and τ2. Now we assume that
τ1τ2 = 0. Then if we define

α3(τ) :=
2(τ 31 + τ 32 )

9
,

an explicit computation using equation (6.69), (6.70) and (6.71) gives

∑

w∈W 1

(−1)ℓ(w)

∫ λτ(m),w

0

Pστ(m),w
(t)dt = − α3(τ)

vol(X̃d)
m3 +O(m2),

as m → ∞. For SL3(R) one has v = 1 and using Lemma 6.1 one gets |Wm|
|WKM

|
= 1. Moreover,

every element of Rep(M0) is self-dual. Thus using Proposition 6.6 we obtain

log T
(2)
X (τ(m)) = vol(X)

πα4(τ)

vol(X̃d)
m4 +O(m3)

as m → ∞, if τ1τ2 6= 0, and

log T
(2)
X (τ(m) = vol(X)

πα3(τ)

vol(X̃d)
m3 +O(m2),

as m → ∞, if τ1τ2 = 0. Now we define constants

d3(τ) :=
τ 21 τ2 + τ 22 τ1

2
; d2(τ) :=

(
4τ1τ2 + τ 21 + τ 22

2

)
.

Then by Weyl’s dimension formula one has

dim τ(m) = d3(τ)m
3 + d2(τ)m

2 +O(m),

as m → ∞. Note that d3(τ) > 0 for τ1τ2 6= 0 and that d3(τ) = 0, d2(τ) > 0 for τ1τ2 = 0.
This completes the proof of the proposition. �
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7. Lower bounds of the spectrum

In this section we assume that δ(X̃) = 1 and that X̃ is odd-dimensional. Our goal is
to establish the lower bound (1.8) for the spectrum of the Laplace operators ∆p(τλ(m)).
To this end we use (5.5), which reduces the problem to the estimation from below of the
endomorphism Ep(τλ(m)).

First we introduce some notation. Let X̃ = G/K. Recall that we assume that G ⊂ GC,
where GC is the simply connected complex Lie group with Lie algebra gC. By the classifi-

cation of simple Lie groups there is a decomposition X̃ = X̃0 × X̃1, where δ(X̃0) = 0 and

where X̃1 is an irreducible symmetric space with δ(X̃0) = 1. Since X̃0 is even-dimensional,

the dimension of X̃1 is odd. Let G = G0 × G1 be the corresponding decomposition of
G. Then δ(G0) = 0 and G1 = Spin(p, q), p, q odd, or G1 = SL(3,R). Let gi, i = 0, 1 be
the Lie algebra of Gi. Let t0 ⊂ g0 be a compact Cartan subalgebra and let h1 ⊂ g1 be a
fundamental Cartan subalgebra. Then h1 is of split rank one. Put

h := t0 ⊕ h1.

Then h is a Cartan subalgebra of split rank one. Let (τ, Vτ ) ∈ Rep(G) with highest weight
λ ∈ h∗

C
. Then λ = λ0 + λ1, where λ0 ∈ t∗0,C and λ1 ∈ h∗1,C are highest weights. Let

θ : g → g be the Cartan involution. Assume that λθ 6= λ. Then λ1 satisfies (λ1)θ 6= λ1.
Let (τi, Vτi) ∈ Rep(Gi), i = 0, 1, be the representations with highest weight λi. Then
τ ∼= τ0 ⊗ τ1. Let

gi = ki ⊕ pi

be the Cartan decomposition of gi, i = 0, 1. We may choose p such that p = p0⊕ p1. Then
we have

Λpp∗ ⊗ Vτ
∼=
⊕

r+s=p

(Λrp∗0 ⊗ Vτ0)⊗ (Λsp∗1 ⊗ Vτ1)

Let Ωi ∈ Z(gi,C), i = 1, 2, be the Casimir operator of gi. Then Ω = Ω0 ⊗ Id+ Id⊗Ω1.
Similarly, we have ΩK = Ω0,K ⊗ Id+ Id⊗Ω1,K . Set

νi,p(τi) := ΛpAd∗
pi
⊗τi : Ki → GL(Λpp∗i ⊗ Vτi), i = 0, 1.

Let

(7.1) Ei,p(τi) := τi(Ωi) Idi−νp(τi)(Ωi,K), i = 0, 1,

be the corresponding endomorphisms acting in Λpp∗i ⊗ Vτi . Then it follows that

(7.2) Ep(τ) =
⊕

r+s=p

(E0,r(τ0)⊗ Id+ Id⊗E1,s(τ1)) .

Therefore it suffices to estimate Ei,p(τi), i = 0, 1.
Let us first recall the general formula for the Casimir eigenvalues. We let g be a semisimple

real Lie algebra with Cartan decomposition g = k ⊕ p. Let t be a Cartan subalgebra of
k and let h = t ⊕ b, b ⊂ p, be a θ-stable Cartan subalgebra of g containing t. Let the
associated groups G and K be as in the introduction. Let ‖·‖ denote the norm induced
by the (suitably normalized) Killing form on the real vector space it∗ ⊕ b∗. Fix positive
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roots ∆+(gC, hC), ∆
+(kC, tC) and let ρG resp. ρK be the half sums of the positive roots.

Let τ be an irreducible finite-dimensional complex representation of G with highest weight
Λ(τ) ∈ it∗⊕b∗ and let ν be an irreducible unitary representation of K with highest weight
Λ(ν) ∈ it∗. Then we have

τ(Ω) = ‖Λ(τ) + ρG‖2 − ‖ρG‖2; ν(ΩK) = ‖Λ(ν) + ρK‖2 − ‖ρK‖2.(7.3)

We have the following general bound, which we use to deal with E0,p(τ0).

Lemma 7.1. Let λ ∈ h∗
C
be a highest weight. Given m ∈ N, let τλ(m) be the irreducible

representation with highest weight mλ. There exists C > 0 such that

Ep(τλ(m)) ≥ −Cm

for all p = 0, . . . , d and m ∈ N.

Proof. Let τ ∈ Rep(G) with highest weight Λ(τ). Let ν ′ ∈ K̂ with highest weight Λ(ν ′) ∈
it∗. Assume that [τ |K : ν ′] 6= 0. We claim that there is a weight λ of τ such that Λ(ν ′) = λ|t.
To see this, let Vτ be the space of the representation τ and let Vτ (Λ(ν

′)) be the eigenspace
of t with eigenvalue Λ(ν ′). Then Vτ (Λ(ν

′)) is invariant under h. So it decomposes into
joint eigenspaces of h. Let λ be the weight of one of these eigenspaces. Then λ|t = Λ(ν ′).
Now we note that as a weight of τ , λ belongs to the convex hull of the Weyl group orbit
of Λ(τ) (see [Ha, Theorem 7.41]). Thus we get

(7.4) ‖Λ(τ)‖ ≥ ‖λ‖ ≥ ‖λ|t‖ = ‖Λ(ν ′)‖.

Now let ν ∈ K̂ with [νp(τ) : ν] 6= 0. Then by [Kn2, Proposition 9.72] there exists ν ′ ∈ K̂
with [τ |K : ν ′] 6= 0 of highest weight Λ(ν ′) ∈ it∗ and µ ∈ it∗ which is a weight of νp such
that the highest weight Λ(ν) of ν is given by µ+ Λ(ν ′). Since Λ(τ) is dominant we have

‖Λ(τ) + ρG‖2 ≥ ‖Λ(τ)‖2 .

Thus by (7.4) we get

‖Λ(τ) + ρG‖2 − ‖Λ(ν) + ρK‖2 ≥ ‖Λ(τ)‖2 − ‖Λ(ν ′)‖2 − 2‖µ+ ρK‖ · ‖Λ(ν ′)‖ − ‖µ+ ρK‖2

≥ −2‖µ+ ρK‖ · ‖Λ(τ)‖ − ‖µ+ ρK‖2.

There is C > 0 such that ‖µ+ ρK‖ ≤ C for all weights µ of νp. Hence there is C1 > 0 such
that for all τ ∈ Rep(G) one has

(7.5) ‖Λ(τ) + ρG‖2 − ‖Λ(ν) + ρK‖2 ≥ −C1(‖Λ(τ)‖+ 1)

for all ν ∈ K̂ with [νp(τ) : ν] 6= 0. Now we apply this to τλ(m). By definition of τλ(m) we
have Λ(τλ(m)) = mλ. Using (7.5) and (7.3), the lemma follows. �

Now we turn to the estimation of E1,p(τ1). In this case we have either G1 = Spin(p, q),
p, q odd, or G = SL(3,R). We deal with these cases separately.
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7.1. The case G = Spin(p, q). Let p = 2p1 + 1, q = 2q1 + 1. Let n := p1 + q1. Let

K = Spin(p)×Spin(q) and X̃ = G/K. Then dim(X̃) = pq. We let t and h be as in section
6. Also the Killing form will be normalized as in this section. Then we have the following
lemma.

Lemma 7.2. Let Λ ∈ h∗
C
be given as Λ = k1e1+ · · ·+ kn+1en+1, k1 ≥ k2 ≥ · · · ≥ kn+1 ≥ 0.

Let Λ′ ∈ h∗
C
belong to the convex hull of the set {wΛ, w ∈ WG} and let λ ∈ it∗ be given by

λ := Λ′|t. Then one has

‖λ‖2 ≤
n∑

i=1

k2
i .

Proof. Recall that the Weyl group WG consist of permutations and even sign changes of the
e1, . . . , en+1. Thus there exist α1, . . . , αm ∈ (0, 1),

∑m
j=1 αj = 1, and for each j = 1, . . . , m

a σj ∈ Sn+1, the symmetric group, and a sequence ǫj,1, . . . , ǫj,n+1 ∈ {±1} such that

Λ′ =
m∑

j=1

αj

(
n+1∑

i=1

ǫj,ikieσj(i)

)
.

Thus one has

λ =

m∑

j=1

αj




n+1∑

i=1
σj(i)6=1

ǫj,ikieσj(i)




and so one gets

‖λ‖ ≤
m∑

j=1

αj

∥∥∥∥∥∥∥

n+1∑

i=1
σj(i)6=1

ǫj,ikieσj(i)

∥∥∥∥∥∥∥
=

m∑

j=1

αj

√√√√√
n+1∑

i=1
σj(i)6=1

k2
i ≤

m∑

j=1

αj

√√√√
n∑

i=1

k2
i =

√√√√
n∑

i=1

k2
i .

For the last inequality we used that the ki’s satisfy k1 ≥ k2 ≥ · · · ≥ kn+1. �

Now we let Λ(τ) ∈ h∗
C
be given by

Λ(τ) := τ1e1 + · · ·+ τn+1en+1, τ1 ≥ τ2 ≥ · · · ≥ τn+1 > 0.

For m ∈ N we let τ(m) be the representation of G with highest weight

Λ(τ(m)) := mΛ(τ).

Then we have the following proposition.

Proposition 7.3. There exists a constant C such that

Ep(τ(m)) ≥ m2τn+1 − Cm

for all m.
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Proof. Recall that νp(τ(m)) = τ(m)|K ⊗ νp. Let ν ∈ K̂ be such that [νp(τ(m)) : ν] 6= 0.

By [Kn2, Proposition 9.72], there exists a ν ′ ∈ K̂ with [τ(m) : ν ′] 6= 0 of highest weight
λ(ν ′) ∈ b∗

C
and a µ ∈ b∗

C
which is a weight of νp such that the highest weight λ(ν) of ν

is given by µ + λ(ν ′). As shown in the proof of Lemma 7.1, there is a weight Λ̃ ∈ h∗
C
of

τ(m) such that λ(ν ′) = Λ̃|t. By [Ha, Theorem 7.41], Λ̃ belongs to the convex hull of the
Weyl group orbit of Λ(τ(m)). Thus, applying (7.3) and Lemma 7.2, we obtain constants
C1, C2 > 0, which are independent of m, such that

ν(ΩK) = ‖λ(ν) + ρK‖2 − ‖ρK‖2 ≤ ‖λ(ν ′)‖2 + C1(1 + ‖λ(ν ′)‖) ≤ m2

(
n∑

j=1

τ 2j

)
+ C2m.

One the other hand, by (7.3) we have

τ(m)(Ω) = ‖Λ(τ(m)) + ρG‖2 − ‖ρG‖2 =
n+1∑

j=1

(mτj + n + 1− j)2 −
n+1∑

j=1

(n + 1− j)2

≥ m2
n+1∑

j=1

τ 2j .

This implies the proposition. �

7.2. The case G = SL(3,R). We use the notation of section 6. We choose the Cartan
subalgebra h ⊂ g, which is defined by (6.60). The fundamental weights ωi ∈ h∗

C
, i = 1, 2,

are given by (6.65). Let Λ ∈ h∗
C
be a highest weight. Form ∈ N let τΛ(m) be the irreducible

representation with highest weight mΛ.

Proposition 7.4. Assume that Λ satisfies Λθ 6= Λ. Then there exists CΛ > 0 such that

Ep(τΛ(m)) ≥ 1

9
m2 − CΛm

for all m ∈ N and p = 0, . . . , 5.

Proof. There exist τ1, τ2 ∈ N0 such that Λ = τ1ω1 + τ2ω2. Note that by (6.63) and (6.64)
one has ρG = f1 + f2. Then by (6.65) and (6.61) we get

τΛ(m)(Ω) = ‖mΛ + ρG‖2 − ‖ρG‖2 =
4(τ 21 + τ1τ2 + τ 22 )

9
m2 +

4(τ1 + τ2)

3
m.

Next recall that there is a natural isomorphism kC ∼= su(2)C = sl(2,C) (see [Ha, Sect. 4.9]).
Furthermore if we embed sl(2,C) into gC as an upper left block then tC is isomorphic to
a Cartan subalgebra of sl(2,C). For j ∈ N let νj denote the representation of kC with
highest weight jf2. Then we deduce from the branching law from GL3(C) to GL2(C),
[GW, Theorem 8.1.1] that

τΛ(m)|kC =

mτ1⊕

j=0

mτ2⊕

k=0

νj+k.
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If we use

νj(ΩK) =
j2

3
+

2

3
j.

and argue as in the proof of Proposition 7.3, we obtain a constant C which is independent
of τ1, τ2 and m such that for every ν ∈ K̂ with [νp(τ(m)) : ν] 6= 0 for some p one has

ν(ΩK) ≤
(m(τ1 + τ2) + C)2

3
+

2 (m(τ1 + τ2) + C)

3
.

Thus we obtain a constant CΛ such that for every m and every p one has

Ep(τΛ(m)) ≥ (τ1 − τ2)
2

9
m2 − CΛm.

By (6.66) the condition Λθ 6= Λ is equivalent to τ1 6= τ2. This proves the Proposition. �

Now we can summarize our results.

Proposition 7.5. Let δ(X̃) = 1 and assume that dim(X̃) is odd. Let λ ∈ h∗
C
be a highest

weight with λθ 6= λ. For m ∈ N let τλ(m) be the irreducible representation of G with highest
weight mλ. There exist C1, C2 > 0 such that

Ep(τλ(m)) ≥ C1m
2 − C2

for all p = 0, . . . , d and m ∈ N.

Proof. Let λ = λ0 + λ1 with λ0 ∈ t∗0,C and λ1 ∈ h∗1,C highest weights, and assume that
(λ1)θ 6= λ1. Let τi(m), i = 0, 1, be the irreducible representations of Gi with highest weight
mλi. Then τ(m) = τ0(m) ⊗ τ1(m). Let E0,p(τ0(m)) and E1,p(τ1(m)) be defined by (7.1).
By Lemma 7.1 there exists C > 0 such that

E0,p(τ0(m)) ≥ −Cm

for all p = 0, . . . , d and m ∈ N. Furthermore, by Proposition 7.3 and Proposition 7.4 there
exist C3, C4 > 0 such that

E1,p(τ1(m)) ≥ C3m
2 − C4

for all p = 0, . . . , d and m ∈ N. Combined with (7.2) the proof follows. �

Corollary 7.6. Let the assumptions be as in Proposition 7.5. There exist constants
C1, C2 > 0 such that

∆p(τλ(m)) ≥ C1m
2 − C2

for all p = 0, . . . , d and m ∈ N.

Proof. Recall that the Bochner-Laplace operator satisfies ∆νp(τ(m)) ≥ 0. Hence the corollary
follows from (5.5) and Proposition 7.5. �
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8. Proof of the main results

First assume that δ(X̃) 6= 1. If δ(X̃) = 0, then dim X̃ is even. Hence, it follows from
Proposition 4.2 that TX(τ) = 1 for all finite-dimensional irreducible representations of G,
which proves part (i) of Theorem 1.1.

Now assume that δ(X̃) = 1 and that d = dim(X) is odd. Let h ⊂ g be a fundamental
Cartan subalgebra. Let λ ∈ h∗

C
be a highest weight with λθ 6= λ. For m ∈ N let τ(m) be

the irreducible representation of G with highest weight mλ. Then τ(m) 6∼= τ(m)θ for all
m ∈ N. Hence by [BW, Theorem 6.7] we have Hp(X,Eτ(m)) = 0 for all p = 0, . . . , d. Then
by (4.8) we have

(8.1) log TX(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ ∞

0

ts−1K(t, τ(m)) dt

) ∣∣∣∣
s=0

.

Since τ(m) is acyclic and dimX is odd, TX(τ(m)) is metric independent [Mu2, Corollary
2.7]. Especially we can rescale the metric by

√
m without changing TX(τ(m)). Equivalently

we can replace ∆p(τ(m)) by 1
m
∆p(τ(m)). Using (8.1) we get

log TX(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ ∞

0

ts−1K

(
t

m
, τ(m)

)
dt

) ∣∣∣∣
s=0

.

To continue, we split the t-integral into the integral over [0, 1] and the integral over [1,∞).
This leads to

log TX(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ 1

0

ts−1K

(
t

m
, τ(m)

)
dt

) ∣∣∣∣
s=0

+
1

2

∫ ∞

1

t−1K

(
t

m
, τ(m)

)
dt.

(8.2)

We first consider the second term on the right hand side. To this end we need the following
lemma.

Lemma 8.1. Let h
τ(m), p
t be defined by (4.14) and let H0

t be the heat kernel of the Laplacian

∆̃0 on C∞(X̃). There exist m0 ∈ N and C > 0 such that for all m ≥ m0, g ∈ G, t ∈ (0,∞)
and p ∈ {0, . . . , d} one has

∣∣∣hτ(m), p
t (g)

∣∣∣ ≤ C dim(τ(m))e−tm
2

2 H0
t (g).

Proof. Let p ∈ {0, . . . , n}. Let Hνp(τ(m))
t be the kernel of e−t∆̃νp(τ(m)) and let H

τ(m), p
t be the

kernel of e−t∆̃p(τ(m)). By (5.8) we have

H
τ(m), p
t (g) = e−tEp(τ(m)) ◦Hνp(τ(m))

t (g).

Thus by Proposition 3.1 and Proposition 7.5 there exists an m0 such that for m ≥ m0 one
has

(8.3)
∥∥∥Hτ(m), p

t (g)
∥∥∥ ≤ e−tm

2

2 H0
t (g).

Taking the trace in End(Λpp∗ ⊗ Vτ(m)) for every p ∈ {0, . . . , d}, the lemma follows. �
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Using (4.17), (4.16) and Lemma 8.1, we obtain
∣∣∣∣K
(

t

m
, τ(m)

)∣∣∣∣ ≤ Ce−
m
2
t dim(τ(m))

∫

Γ\G

∑

γ∈Γ

H0
t/m(g

−1γg) dġ

= Ce−
m
2
t dim(τ(m)) Tr(e−

t
m
∆0).

Furthermore, by the heat asymptotic [Gi] we have

Tr(e−
1
m
∆0) = Cd vol(X)md/2 +O

(
m(d−1)/2

)

as m → ∞. Hence there exists C1 > 0 such that
∣∣∣∣K
(

t

m
, τ(m)

)∣∣∣∣ ≤ C1m
d/2 dim(τ(m))e−

m
2
t, t ≥ 1.

Thus we obtain ∣∣∣∣
∫ ∞

1

t−1K

(
t

m
, τ(m)

)
dt

∣∣∣∣ ≤ C2m
d/2 dim(τ(m))e−m/4.

Using Weyl’s dimension formula, it follows that

(8.4)

∫ ∞

1

t−1K

(
t

m
, τ(m)

)
dt = O

(
e−m/8

)
.

Now we turn to the first term on the right hand side of (8.2). We need to estimate
K(t, τ(m)) for 0 < t ≤ 1. To this end we use (4.17) to decompose K(t, τ(m)) into the sum
of two terms: The contribution of the identity

(8.5) I(t, τ(m)) := vol(X)k
τ(m)
t (1),

where k
τ(m)
t is defined by (4.16), and the remaining term

H(t, τ(m)) :=

∫

Γ\G

∑

γ∈Γ
γ 6=1

k
τ(m)
t (g−1γg) dġ

First we consider H(t, τ(m)). Using Proposition 8.1 and Proposition 3.2, it follows that
for every m ≥ m0 and every t ∈ (0, 1] we have

∑

γ∈Γ
γ 6=1

∣∣∣kτ(m)
t (g−1γg)

∣∣∣ ≤ Ce−tm
2

2 dim(τ(m))
∑

γ∈Γ
γ 6=1

H0
t (g

−1γg)

≤ C1 dim(τ(m))e−tm
2

2 e−c0/t.

Hence using Weyl’s dimension formula we get c1 > 0 such that
∣∣∣∣H
(

t

m
, τ(m)

)∣∣∣∣ ≤ C2e
−c1me−c1/t, 0 < t ≤ 1.
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This implies that

(8.6)
d

ds

(
1

Γ(s)

∫ 1

0

ts−1H

(
t

m
, τ(m)

)
dt

) ∣∣∣∣
s=0

=

∫ 1

0

t−1H

(
t

m
, τ(m)

)
dt = O

(
e−c1m

)

as m → ∞.
It remains to consider the contribution of the identity I(t, τ(m)). By Lemma 8.1 there

exists C > 0 such that for all m ≥ m0 and p = 0, . . . , d we have

|hτ(m),p
t (1)| ≤ C dim(τ(m))e−tm

2

2 H0
t (1).

Next we estimate H0
t (1) using the Plancherel-Theorem. Since the function H0

t (1) is K-
biinvariant, the Plancherel-Theorem for H0

t (1) reduces to the spherical Plancherel theorem
[He, Theorem 7.5]. Thus if Q = MAN is a fixed minimal standard parabolic subgroup, it
follows from (5.14) that

H0
t (1) = e−t‖ρa‖

2

∫

a∗
e−t‖ν‖2β(ν)dν,

where β(ν) is the spherical Plancherel-density. Thus there exists C1 > 0 such that
|H0

t (1)| ≤ C1 for t ≥ 1. Hence, by (4.16) we get

|kτ(m)
t (1)| ≤ C2 dim(τ(m))e−tm

2

2

for t ≥ 1 and m ≥ m0. By (8.5) and Weyl’s dimension formula it follows that there exist
C, c > 0 such that

(8.7)

∣∣∣∣∣I
(

t

m
, τ(m)

) ∣∣∣∣∣ ≤ Ce−cme−ct

for t ≥ 1 and m ≥ m0. Hence we get

d

ds

(
1

Γ(s)

∫ 1

0

ts−1I

(
t

m
, τ(m)

)
dt

) ∣∣∣∣∣
s=0

=
d

ds

(
1

Γ(s)

∫ ∞

0

ts−1I

(
t

m
, τ(m)

)
dt

) ∣∣∣∣∣
s=0

+O
(
e−cm

)

(8.8)

for m ≥ m0. To deal with the first term on the right, we note that by (5.12) and the

definition of k
τ(m)
t by (4.16), k

τ(m)
t (1) has an asymptotic expansion of the form

k
τ(m)
t (1) ∼

∞∑

j=0

cjt
−d/2+j

as t → 0. Since we are assuming that d = dim(X) is odd, the expansion has no constant
term. This implies that ∫ ∞

0

ts−1I(t, τ(m)) dt
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is holomorphic at s = 0. Therefore we get

d

ds

(
1

Γ(s)

∫ ∞

0

ts−1I

(
t

m
, τ(m)

)
dt

) ∣∣∣∣∣
s=0

=
d

ds

(
1

Γ(s)

∫ ∞

0

ts−1I (t, τ(m)) dt

) ∣∣∣∣∣
s=0

.

By definition, the right hand side equals log T
(2)
X (τ(m)), where T

(2)
X (τ(m)) is the L2-torsion.

Combined with (8.2), (8.4) and (8.6) we obtain

(8.9) log TX(τ(m)) = log T
(2)
X (τ(m)) +O

(
e−cm

)

as m → ∞. This proves Proposition 1.2. �

Combining Proposition 5.3 with Proposition 6.7 and Proposition 6.8, we obtain Propo-
sition 1.3. Together with Proposition 1.2 we obtain part (ii) of Theorem 1.1.
Corollary 1.4 follows from Proposition 6.7 and Corollary 1.5 follows from Proposition 6.8.
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