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Abstract. We study the limiting behavior of the discrete spectra associated to the
principal congruence subgroups of a reductive group over a number field. While this
problem is well understood in the cocompact case (i.e. when the group is anisotropic
modulo the center), we treat groups of unbounded rank. For the groups GL(n) we are
able to show that the spectra converge to the Plancherel measure (the limit multiplicity
property), and in general we obtain a substantial reduction of the problem. Our main tool
is the recent refinement of the spectral side of Arthur’s trace formula obtained in [27, 25],
which allows us to show that for GL(n) the contribution of the continuous spectrum is
negligible in the limit.
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1. Introduction

Let G be an algebraically connected linear semisimple Lie group with a fixed choice of
Haar measure. Since the group G is of type I, we can write unitary representations of G
on separable Hilbert spaces as direct integrals (with multiplicities) over the unitary dual
Π(G), the set of isomorphism classes of irreducible unitary representations of G with the
Fell topology (cf. [23]). An important case is the regular representation of G×G on L2(G),
which can be decomposed as the direct integral of the tensor products π ⊗ π∗ against the
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Plancherel measure µpl on Π(G). The support of the Plancherel measure is called the
tempered dual Π(G)temp ⊂ Π(G).

Other basic objects of interest are the regular representations RΓ of G on L2(Γ\G) for
lattices Γ in G. We will focus on the discrete part L2

disc(Γ\G) of L2(Γ\G), namely the sum
of all irreducible subrepresentations, and we denote by RΓ,disc the corresponding restriction
of RΓ. For any π ∈ Π(G) let mΓ(π) be the multiplicity of π in L2(Γ\G). Thus,

mΓ(π) = dim HomG(π,RΓ) = dim HomG(π,RΓ,disc).

These multiplicities are known to be finite.1 We define the discrete spectral measure on
Π(G) with respect to Γ by

µΓ =
1

vol(Γ\G)

∑
π∈Π(G)

mΓ(π)δπ,

where δπ is the Dirac measure at π. While one cannot hope to describe the multiplicity
functions mΓ on Π(G) explicity (apart from certain special cases, for example when π
belongs to the discrete series), it is feasible and interesting to study asymptotic questions.
The limit multiplicity problem concerns the asymptotic behavior of µΓ as vol(Γ\G)→∞.

More explicitly, let Γ1,Γ2, . . . be a sequence of lattices in G. We say that the sequence
(Γn) has the limit multiplicity property if the following two conditions are satisfied:

(1) For any Jordan measurable set A ⊂ Π(G)temp we have

µΓn(A)→ µpl(A) as n→∞.
(2) For any bounded set A ⊂ Π(G) \ Π(G)temp we have

µΓn(A)→ 0 as n→∞.
For the definition of a bounded subset of Π(G) see §2 below. Recall that a Jordan mea-
surable subset of Π(G)temp is a bounded set such that µpl(∂A) = 0, where ∂A = Ā−A◦ is
the boundary of A. The first condition can also be rephrased as

lim
n→∞

µΓn(f) = µpl(f)

for any Riemann integrable function f on Π(G)temp, or equivalently, for any compactly
supported continuous function.2

A great deal is known about the limit multiplicity problem for uniform lattices, where RΓ

decomposes discretely. The first results in this direction were proved by DeGeorge-Wallach
([17, 18]) for normal towers, i.e., descending sequences of finite index normal subgroups of
a given uniform lattice with trivial intersection. Subsequently, Delorme ([22]) completely

1At least under a weak reduction-theoretic assumption on G and Γ ([44, p. 62]), which is satisfied if
either G has no compact factors or if Γ is arithmetic (cf. [ibid., Theorem 3.3]).

2A Riemann integrable function on Π(G)temp is a bounded compactly supported function which is
continuous almost everywhere with respect to the Plancherel measure. Note here that the complement
of a closed subset of Plancherel measure zero in the topological space Π(G)temp is homeomorphic to a
countable union of Euclidean spaces of bounded dimensions, and that under this homeomorphism the
Plancherel density is given by a continuous function. The same is true in the case of p-adic reductive
groups considered below.
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resolved the limit multiplicity problem for this case in the affirmative. Recently, there has
been big progress in proving limit multiplicity for much more general sequences of uniform
lattices ([1]). In particular, families of non-commensurable lattices were considered for the
first time.

In the case of non-compact quotients Γ\G, where the spectrum also contains a contin-
uous part, much less is known. Here, the limit multiplicity problem has been solved for
normal towers of arithmetic lattices and discrete series L-packets A ⊂ Π(G) (with regular
parameters) by Rohlfs-Speh ([46]). Building on this work, the case of singleton sets A
and normal towers of congruence subgroups has been solved by Savin ([49], cf. also [52]).
Earlier results on the discrete series had been obtained by DeGeorge ([19]) and Barbasch-
Moscovici ([10]) for groups of real rank one, and by Clozel ([15]) for general groups (but
with a weaker statement). The limit multiplicity problem for the entire unitary dual has
been solved for the standard congruence subgroups of SL2(Z) in [47] (cf. [28, p. 173], [21,
§5]). In this case, a refined quantitative version of the limit multiplicity property for the
non-tempered spectrum of the subgroups Γ0(N) has been proven by Iwaniec ([29]).3 A
partial result for certain normal towers of congruence arithmetic lattices defined by groups
of Q-rank one has been shown in [21]. Finally, generalizations to the distribution of Hecke
eigenvalues have been obtained in [48] and [50].

In this paper we embark upon a general analysis of the case of non-compact quotients.
We consider the entire unitary dual and groups of unbounded rank. The main problem is
to show that the contribution of the continuous spectrum is negligible in the limit. This
was known up to now only in the case of GL(2) (or implicitly in the very special situation
considered in [46] and [49]). Our approach is based on a careful study of the spectral side
of Arthur’s trace formula in the recent form given in [27, 25]. As we shall see, this form is
crucial for the analysis. Our results are unconditional only for the groups GL(n), but we
obtain a substantial reduction of the problem in the general case.

Before stating our main result we shift to an adelic setting which allows one to incorporate
Hecke operators into the picture (i.e., to consider the equidistribution of Hecke eigenvalues).
Thus, let now G be a reductive group defined over a number field F and S a finite set
of places of F containing the set S∞ of all archimedean places. As usual, G(FS)1 denotes
the kernel of the homomorphisms |χ| : G(FS) → R>0 where χ ranges over the F -rational
characters of G and |·| denotes the normalized absolute value on F ∗S . Similarly, we define a
subgroup G(A)1 of G(A). Fix a Haar measure on G(A). For any open compact subgroup

K of G(AS) let µK = µG,SK be the measure on Π(G(FS)1) given by

µK =
1

vol(G(F )\G(A)1/K)

∑
π∈Π(G(FS)1)

dim HomG(FS)1(π, L2(G(F )\G(A)1/K)) δπ

=
vol(K)

vol(G(F )\G(A)1)

∑
π∈Πdisc(G(A))

mπ dim(πS)K δπS .

3Recall that by Selberg’s eigenvalue conjecture the non-tempered spectrum should consist only of the
trivial representation in this case.
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We say that a collection K of open compact subgroups of G(AS) has the limit multiplicity
property if µK → µpl for K ∈ K in the sense that

(1) for any Jordan measurable subset A ⊂ Π(G(FS)1)temp we have µK(A) → µpl(A),
K ∈ K, and,

(2) for any bounded subset A ⊂ Π(G(FS)1) \ Π(G(FS)1)temp we have µK(A) → 0,
K ∈ K.

Here, we write for example µK(A) → µpl(A) to mean that for every ε > 0 there are only
finitely many subgroups K ∈ K such that |µK(A) − µpl(A)| ≥ ε. We can again rephrase
the first condition by saying that for any Riemann integrable function f on Π(G(FS)1)temp

we have

µK(f)→ µpl(f), K ∈ K.
We remark that when G satisfies the strong approximation property with respect to S∞

(which is equivalent to G being semisimple and simply connected and G(F∞) having no
compact factors), we have

G(F )\G(A)/K ' ΓK\G(F∞)

for the lattice ΓK = G(F ) ∩ K in the connected semisimple Lie group G(F∞). So, the
previous setup for the collection of lattices ΓK , K ranging over the open compact subgroups
of G(Afin), is contained in the current one. A similar connection can be made for general
G, where however a single subgroup K will correspond to a finite set of lattices in G(F∞).

An important step in the analysis of the limit multiplicity problem is to reduce it to a
question about the trace formula. This is non-trivial not the least because of the compli-
cated nature of the unitary dual. This step was carried out by Delorme in the case where
S consists of the archimedean places ([22]). His argument was subsequently extended by
Sauvageot to the general case ([48]), where he also axiomatized the essential property as
a “density principle” (see §2 below). Using the result of Sauvageot, we can recast the
limit multiplicity problem as follows. Let H(G(FS)1) be the algebra of smooth, compactly

supported bi-KS-finite functions on G(FS)1. For any h ∈ H(G(FS)1) let ĥ be the function

on Π(G(FS)1) given by ĥ(π) = tr π(h). Note that we have

µK(ĥ) =
1

vol(G(F )\G(A)1)
trRdisc(h⊗ 1K)

and

µpl(ĥ) = h(1).

Then we have the following theorem.

Theorem 1 (Sauvageot). Suppose that the collection K has the property that for any
function h ∈ H(G(FS)1) we have

(1) µK(ĥ)→ h(1), K ∈ K.

Then limit multiplicity holds for K.
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We will recall how to obtain this result from Sauvageot’s density principle in §2.
Given this reduction, it is natural to attack assertion (1) via the trace formula. In

the cocompact case (i.e., when G/Z(G) is anisotropic over F ) one can use the Selberg
trace formula. In the general case we use Arthur’s (non-invariant) trace formula which
expresses a certain distribution h 7→ J(h) on C∞c (G(A)1) geometrically and spectrally
([9, 3, 5, 6, 7, 8]). The distribution J depends on the choice of a maximal F -split torus
T0 of G and a suitable maximal compact subgroup K = KSKS of G(A) (cf. §3 below).
The main terms on the geometric side are the elliptic orbital integrals, most notably the
contribution vol(G(F )\G(A)1)h(1) of the identity element. The main term on the spectral
side is trRdisc(h).

The relation (1) can now be broken down into the following two statements:

(2) For any h ∈ H(G(FS)1) we have J(h⊗ 1K)− trRdisc(h⊗ 1K)→ 0,

and,

(3) for any h ∈ H(G(FS)1) we have J(h⊗ 1K)→ vol(G(F )\G(A)1)h(1).

We call these relations the spectral and geometric limit properties, respectively.
The spectral limit property is trivial in the cocompact case, since then J(h) = trRdisc(h).

Also, for a tower K of normal subgroups K of KS it is easy to see that for every h ∈
H(G(FS)1) we have in fact J(h⊗ 1K) = vol(G(F )\G(A)1)h(1) for almost all K ∈ K. This
is Sauvageot’s proof of the limit multiplicity property in this case.

In general both properties are nontrivial. We consider only the simplest collection of
normal subgroups of KS, namely the principal congruence subgroups KS(n) of KS for
non-zero ideals n of oF prime to S (see §4). In this case, the geometric limit property is a
consequence of Arthur’s analysis of the unipotent contribution to the trace formula in [7]
(see §5, in particular Corollary 1). The main task is to prove the spectral limit property for
this collection of subgroups. We are able to do this unconditionally for the groups GL(n),
and consequently obtain the following main result.

Theorem 2. Limit multiplicity holds for G = GL(n) over a number field F and the
collection of all principal congruence subgroups KS(n) of KS.

The key input for our approach to the spectral limit property is the refinement of the
spectral expansion of Arthur’s trace formula established in [27] (cf. Theorem 4 below). This
result enables us to set up an inductive argument which relies on two conjectural properties,
one global and one local, which we call (TWN) (tempered winding numbers) and (BD)
(bounded degree), respectively. They are stated in §4 and are expected to hold for any
reductive group G over a number field. Theorem 2 is proved for any group G satisfying
these properties (Theorem 7). The global property (TWN) is a uniform estimate on the
winding number of the normalizing scalars of the intertwining operators in the co-rank
one case. For GL(n) this property follows from known results about the Rankin-Selberg
L-functions (Proposition 1). In order to describe the local property (BD), recall that in the
non-archimedean case the matrix coefficients of the local intertwining operators are rational
functions of q−s, where q is the cardinality of the residue field, and that the degrees of the
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denominators are bounded in terms of G only. Property (BD) gives an upper bound on
the degree of the numerator in terms of the level. This property was studied in [26], where
among other things it was proved for the groups G = GL(n). The import of property
(BD) is that it yields a good bound for integrals of logarithmic derivatives of normalized
intertwining operators (Proposition 2). The archimedean analogue of property (BD) (for
general groups) had been established in [40, Appendix].

A technical feature of our proof is that the induction over the Levi subgroups of G does
not work with the spectral limit property itself. Instead, what we prove by induction
in §7 is that the collection of measures {µG,S∞K(n) } is polynomially bounded in the sense of

Definition 3, a property that already shows up in Delorme’s work ([22]). This property is
analyzed in §6, where we prove Proposition 6, a result on real reductive Lie groups which
generalizes a part of Delorme’s argument, and is (like Delorme’s work) based on the Paley-

Wiener theorem of Clozel-Delorme ([16]). Once we have that the collections {µM,S∞
KM (n)} are

polynomially bounded for all proper Levi subgroups M of G, we can deduce the spectral
limit property for G (Corollary 3). The key technical estimate of §7, which is based on the
refined spectral expansion and the bounds on intertwining operators of §4, is Lemma 10.

Remark 1. It follows from the classification of the discrete spectrum of GL(n) by Mœglin-
Waldspurger ([38]) that the non-cuspidal discrete spectrum consists entirely of non-tem-
pered representations. Therefore, at least for GL(n) the limit multiplicity property holds
for the cuspidal spectrum as well. Once again, we expect that the same is true for other
groups.

We end this introduction with a few remarks on possible extensions of Theorems 2 and
7. For general sequences (Γn) of distinct irreducible lattices in a semisimple Lie group G,
there is an obvious obstruction to the limit multiplicity property, namely the possibility
that infinitely many lattices Γn contain a non-trivial subgroup ∆ of the center of G, which
forces the corresponding representations RΓn to be ∆-invariant. By passing to the quotient
G/∆, we can assume that this is not the case. But even taking this trivial obstruction into
account, the limit multiplicity property does not hold for arbitrary families. For instance,
for G = SL2(R) we can find a descending sequence of finite index normal subgroups Γn
of Γ = SL2(Z) such that for all n the multiplicity in L2(Γn\G) of either one of the two
lowest discrete series representations of G (or equivalently, the genus of the corresponding
Riemann surface) is equal to one ([43]). Similarly, one can find a descending sequence of
normal subgroups Γn of SL2(Z) such that the limiting measure of the sequence (µΓn) has
a strictly positive density on the entire complementary spectrum Π(G) \ Π(G)temp ([45]).
Note that in these examples the intersection of the finite index subgroups Γn is a non-
central normal subgroup of Γ of infinite index, which accounts for the failure of the limit
multiplicity property.4 By Margulis’s normal subgroup theorem such subgroups do not

4More precisely, in these examples the analog of the geometric limit property (3) fails. It follows from
[46] (or alternatively by direct calculation) that the limit multiplicity property holds for the discrete series
of SL2(R) and arbitrary normal towers of subgroups of SL2(Z), i.e., when the intersection of the normal
subgroups is trivial.
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exist for irreducible lattices Γ in semisimple Lie groups G of real rank at least two and
without compact factors ([37, p. 4, Theorem 4’], cf. also [ibid., IX.6.14]). (The paper [1]
is a major outgrowth of the Margulis normal subgroup theorem.) One expects that for
irreducible arithmetic lattices the limit multiplicity property holds at least for any sequence
of distinct congruence subgroups not containing non-trivial central elements. In the adelic
setting, let G be a reductive group defined over a number field F such that the derived
group G′ of G is F -simple and simply connected. Then we expect the limit multiplicity
property to be true for any collection K of open subgroups of a maximal compact subgroup
KS of G(AS) for which no infinite subset has constant intersection with G′(AS) or contains
a non-trivial central element of G(F ). For this, a good understanding of the structure of
these subgroups seems to be necessary to deal with both the geometric and the spectral
sides. We hope to return to this problem in a future paper.

We thank the Centre Interfacultaire Bernoulli, Lausanne, and the Max Planck Institute
for Mathematics, Bonn, where a part of this paper was worked out.

2. Sauvageot’s density principle

In this section we recall the results of Sauvageot ([48]) and the proof of Theorem 1,
providing a close link between the limit multiplicity problem and the trace formula. Recall
that a subset A ⊂ Π(G(FS)1) is bounded, if the Casimir eigenvalues λπ∞ of the elements
π ∈ A are bounded and if in addition there exist a finite set F ⊂ Π(K∞) and an open
compact subgroup K ⊂ G(FS−S∞) such that every π ∈ A contains a K∞-type in F and a
non-trivial K-fixed vector.

The main result of [48] (Corollaire 6.2 and Théorème 7.3) is the following.5

Theorem 3 (Sauvageot). Let ε > 0 be arbitrary.

(1) For any bounded set A ⊂ Π(G(FS)1) \ Πtemp(G(FS)1) there exists h ∈ H(G(FS)1)
such that
(a) ĥ(π) ≥ 0 for all π ∈ Π(G(FS)1),

(b) ĥ(π) ≥ 1 for all π ∈ A,
(c) h(1) < ε.

(2) For any Riemann-integrable function f on Πtemp(G(FS)1) there exist h1, h2 ∈ H(G(FS)1)
such that
(a) |f(π)− ĥ1(π)| ≤ ĥ2(π) for all π ∈ Π(G(FS)1),
(b) h2(1) < ε.

As in [48], this result easily implies Theorem 1. We recall the argument. Let A ⊂
Π(G(FS)1) \ Πtemp(G(FS)1) be a bounded set. For any ε > 0 let h ∈ H(G(FS)1) be as in

the first part of Theorem 3. By assumption we have |µK(ĥ)− h(1)| < ε for all but finitely
many K ∈ K. For all such K we have

µK(A) ≤ µK(ĥ) ≤ |µK(ĥ)− h(1)|+ h(1) < 2ε.

5See the appendix of [50] for important corrections.
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Similarly, let f be a Riemann-integrable function on Πtemp(G(FS)1). For any ε > 0 let
h1 and h2 be as in the second part of Theorem 3. By assumption, for all but finitely many
K ∈ K we have |µK(ĥi)− hi(1)| < ε, i = 1, 2. Then,

|µK(f)− µpl(f)| ≤ |µK(f)− µK(ĥ1)|+ |µK(ĥ1)− h1(1)|+ |h1(1)− µpl(f)|
≤ |µK(ĥ1)− h1(1)|+ µK(ĥ2) + h2(1)

≤ |µK(ĥ1)− h1(1)|+ |µK(ĥ2)− h2(1)|+ 2h2(1) < 4ε.

Theorem 1 follows.

3. Review of the trace formula

In this section we recall Arthur’s trace formula, and in particular the refinement of the
spectral expansion obtained in [27].

3.1. Notation. We will mostly use the notation of [27]. As before, G is a reductive group
defined over a number field F and A is the ring of adeles of F . For a finite place v of F
let qv be the cardinality of the residue field of v. As above, we fix a maximal compact
subgroup K =

∏
v Kv = K∞Kfin of G(A) = G(F∞)G(Afin).

Let θ be the Cartan involution of G(F∞) defining K∞. It induces a Cartan decomposition
g = LieG(F∞) = p⊕ k with k = Lie K∞. We fix an invariant bilinear form B on g which is
positive definite on p and negative definite on k. This choice defines a Casimir operator Ω
on G(F∞), and we denote the Casimir eigenvalue of any π ∈ Π(G(F∞)) by λπ. Similarly,
we obtain a Casimir operator ΩK∞ on K∞ and write λτ for the Casimir eigenvalue of a
representation τ ∈ Π(K∞) (cf. [11, §2.3]). The form B induces a Euclidean scalar product
(X, Y ) = −B(X, θ(Y )) on g and all its subspaces. For τ ∈ Π(K∞) we define ‖τ‖ as in [14,
§2.2] (cf. also §6 below).

We fix a maximal F -split torus T0 of G and let M0 be its centralizer, which is a minimal
Levi subgroup defined over F . We assume that the maximal compact subgroup K ⊂ G(A)
is admissible with respect to M0 ([4, §1]). Denote by A0 the identity component of T0(R),
which is viewed as a subgroup of T0(A) via the diagonal embedding of R into F∞.

We write L for the (finite) set of Levi subgroups containing M0, i.e., the set of centralizers
of subtori of T0. Let W0 = NG(F )(T0)/M0 be the Weyl group of (G, T0), where NG(F )(H)
is the normalizer of H in G(F ). For any s ∈ W0 we choose a representative ws ∈ G(F ).
Note that W0 acts on L by sM = wsMw−1

s .
Let now M ∈ L. We write TM for the split part of the identity component of the center

of M . Set AM = A0 ∩ TM(R) and W (M) = NG(F )(M)/M , which can be identified with a
subgroup of W0. Denote by a∗M the R-vector space spanned by the lattice X∗(M) of F -
rational characters of M and let a∗M,C = a∗M ⊗R C be its complexification. We write aM for
the dual space of a∗M , which is spanned by the co-characters of TM . Let HM : M(A)→ aM
be the homomorphism given by

e〈χ,HM (m)〉 = |χ(m)|A =
∏
v

|χ(mv)|v
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for any χ ∈ X∗(M) and denote by M(A)1 ⊂ M(A) the kernel of HM . Let L(M) be
the set of Levi subgroups containing M and P(M) the set of parabolic subgroups of G
with Levi part M . We also write F(M) = FG(M) =

∐
L∈L(M)P(L) for the (finite) set of

parabolic subgroups of G containing M . Note that W (M) acts on P(M) and F(M) by
sP = wsPw

−1
s . Denote by ΣM the set of reduced roots of TM on the Lie algebra of G. For

any α ∈ ΣM we denote by α∨ ∈ aM the corresponding co-root. Let L2
disc(AMM(F )\M(A))

be the discrete part of L2(AMM(F )\M(A)), i.e., the closure of the sum of all irreducible
subrepresentations of the regular representation of M(A). We denote by Πdisc(M(A)) the
countable set of equivalence classes of irreducible unitary representations of M(A) which
occur in the decomposition of L2

disc(AMM(F )\M(A)) into irreducibles.
For any L ∈ L(M) we identify a∗L with a subspace of a∗M . We denote by aLM the

annihilator of a∗L in aM . We set

L1(M) = {L ∈ L(M) : dim aLM = 1}
and

F1(M) =
⋃

L∈L1(M)

P(L).

Note that the restriction of the scalar product (·, ·) on g defined above gives aM0 the
structure of a Euclidean space. In particular, this fixes Haar measures on the spaces
aLM and their duals (aLM)∗. We follow Arthur in the corresponding normalization of Haar
measures on the groups M(A) ([9, §1]).

3.2. Intertwining operators. Now let P ∈ P(M). We write aP = aM . Let UP be the
unipotent radical of P and MP the unique L ∈ L(M) (in fact the unique L ∈ L(M0)) such
that P ∈ P(L). Denote by ΣP ⊂ a∗P the set of reduced roots of TM on the Lie algebra uP
of UP . Let ∆P be the subset of simple roots of P , which is a basis for (aGP )∗. Write a∗P,+
for the closure of the Weyl chamber of P , i.e.

a∗P,+ = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ΣP} = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ∆P}.

Denote by δP the modulus function of P (A). Let Ā2(P ) be the Hilbert space completion
of

{φ ∈ C∞(M(F )UP (A)\G(A)) : δ
− 1

2
P φ(·x) ∈ L2

disc(AMM(F )\M(A)) ∀x ∈ G(A)}
with respect to the inner product

(φ1, φ2) =

∫
AMM(F )UP (A)\G(A)

φ1(g)φ2(g) dg.

Let α ∈ ΣM . We say that two parabolic subgroups P,Q ∈ P(M) are adjacent along α,
and write P |αQ, if ΣP ∩ −ΣQ = {α}. Alternatively, P and Q are adjacent if the closure
PQ of PQ belongs to F1(M). Any R ∈ F1(M) is of the form PQ for a unique unordered
pair {P,Q} of parabolic subgroups in P(M), namely P and Q are the maximal parabolic
subgroups of R, and P |αQ with α∨ ∈ Σ∨P ∩ aRM . Switching the order of P and Q changes
α to −α.
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For any P ∈ P(M) let HP : G(A) → aP be the extension of HM to a left UP (A)- and
right K-invariant map. Denote by A2(P ) the dense subspace of Ā2(P ) consisting of its K-
and z-finite vectors, where z is the center of the universal enveloping algebra of g⊗C. That

is, A2(P ) is the space of automorphic forms φ on UP (A)M(F )\G(A) such that δ
− 1

2
P φ(·k)

is a square-integrable automorphic form on AMM(F )\M(A) for all k ∈ K. Let ρ(P, λ),
λ ∈ a∗M,C, be the induced representation of G(A) on Ā2(P ) given by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)−HP (x)〉.

It is isomorphic to Ind
G(A)
P (A)

(
L2

disc(AMM(F )\M(A))⊗ e〈λ,HM (·)〉).
For P,Q ∈ P(M) let

MQ|P (λ) : A2(P )→ A2(Q), λ ∈ a∗M,C,

be the standard intertwining operator ([6, §1]), which is the meromorphic continuation in
λ of the integral

[MQ|P (λ)φ](x) =

∫
UQ(A)∩UP (A)\UQ(A)

φ(nx)e〈λ,HP (nx)−HQ(x)〉 dn, φ ∈ A2(P ), x ∈ G(A).

These operators satisfy the following properties.

(1) MP |P (λ) ≡ Id for all P ∈ P(M) and λ ∈ a∗M,C.
(2) For any P,Q,R ∈ P(M) we have MR|P (λ) = MR|Q(λ) ◦MQ|P (λ) for all λ ∈ a∗M,C.

In particular, MQ|P (λ)−1 = MP |Q(λ).

(3) MQ|P (λ)∗ = MP |Q(−λ) for any P,Q ∈ P(M) and λ ∈ a∗M,C. In particular, MQ|P (λ)
is unitary for λ ∈ ia∗M .

(4) If P |αQ then MQ|P (λ) depends only on 〈λ, α∨〉.
For any P ∈ P(M) we have a canonical isomorphism of G(Af )× (gC, K∞)-modules

jP : Hom(π, L2(AMM(F )\M(A)))⊗ Ind
G(A)
P (A)(π)→ A2

π(P ).

This gives rise to a Hilbert space structure on Hom(π, L2(AMM(F )\M(A))) such that jP
becomes an isometry.

Suppose that P |αQ. The operator MQ|P (π, s) admits a normalization by a global factor
nα(π, s) which is a meromorphic function in s. We write

(4) MQ|P (π, s) ◦ jP = nα(π, s) · jQ ◦ (Id⊗RQ|P (π, s))

where RQ|P (π, s) = ⊗vRQ|P (πv, s) is the product of the locally defined normalized inter-
twining operators and π = ⊗vπv ([6, §6], cf. [39, (2.17)]).

3.3. The trace formula. Arthur’s trace formula gives two alternative expressions for a
distribution J on G(A)1. Note that this distribution depends on the choice of M0 and K.
For h ∈ C∞c (G(A)1), Arthur defines J(h) as the value at the point T = T0 specified in
[4, Lemma 1.1] of a polynomial JT (h) on aM0 of degree at most d0 = dim aGM0

. Here, the
polynomial JT (h) depends in addition on the choice of a parabolic subgroup P0 ∈ P(M0).
Consider the equivalence relation on G(F ) defined by γ ∼ γ′ whenever the semisimple
parts of γ and γ′ are G(F )-conjugate. Let O be the set of the resulting equivalence
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classes (which are in bijection with conjugacy classes of semisimple elements). The coarse
geometric expansion ([9]) is

(5) JT (h) =
∑
o∈O

JTo (h),

where the summands JTo (h) are again polynomials in T of degree at most d0. Write
Jo(h) = JT0

o (h), which depends only on M0 and K. Then Jo(h) = 0 if the support of h is
disjoint from all conjugacy classes of G(A) intersecting o (cf. [8, Theorem 8.1]). By [ibid.,
Lemma 9.1] (together with the descent formula of [4, §2]), for each compact set Ω ⊂ G(A)1

there exists a finite subset O(Ω) ⊂ O such that for h supported in Ω only the terms with
o ∈ O(Ω) contribute to (5). In particular, the sum is always finite. When o consists of the
unipotent elements of G(F ), we write JTunip(h) for JTo (h).

We now turn to the spectral side. Let L ⊃ M be Levi subgroups in L, P ∈ P(M),
and let m = dim aGL be the co-rank of L in G. Denote by BP,L the set of m-tuples
β = (β∨1 , . . . , β

∨
m) of elements of Σ∨P whose projections to aL form a basis for aGL . For any

β = (β∨1 , . . . , β
∨
m) ∈ BP,L let vol(β) be the co-volume in aGL of the lattice spanned by β and

let

ΞL(β) = {(Q1, . . . , Qm) ∈ F1(M)m : β∨i ∈ aQiM , i = 1, . . . ,m}
= {(P1P ′1, . . . , PmP

′
m) : Pi|βiP ′i , i = 1, . . . ,m}.

For any smooth function f on a∗M and µ ∈ a∗M denote by Dµf the directional derivative
of f along µ ∈ a∗M . For a pair P1|αP2 of adjacent parabolic subgroups in P(M) write

δP1|P2(λ) = MP2|P1(λ)D$MP1|P2(λ) : A2(P2)→ A2(P2),

where $ ∈ a∗M is such that 〈$,α∨〉 = 1.6 Equivalently, writing MP1|P2(λ) = Φ(〈λ, α∨〉) for
a meromorphic function Φ of a single complex variable, we have

δP1|P2(λ) = Φ(〈λ, α∨〉)−1Φ′(〈λ, α∨〉).

For any m-tuple X = (Q1, . . . , Qm) ∈ ΞL(β) with Qi = PiP ′i , Pi|βiP ′i , denote by ∆X (P, λ)
the expression

vol(β)

m!
MP ′1|P (λ)−1δP1|P ′1(λ)MP ′1|P ′2(λ) · · · δPm−1|P ′m−1

(λ)MP ′m−1|P ′m(λ)δPm|P ′m(λ)MP ′m|P (λ).

In [27, pp. 179-180] we define a (purely combinatorial) map XL : BP,L → F1(M)m with
the property that XL(β) ∈ ΞL(β) for all β ∈ BP,L.7

For any s ∈ W (M) let Ls be the smallest Levi subgroup in L(M) containing ws. We
recall that aLs = {H ∈ aM | sH = H}. Set

ιs = |det(s− 1)aLsM
|−1.

6Note that this definition differs slightly from the definition of δP1|P2
in [27].

7The map XL depends in fact on the additional choice of a vector µ ∈ (a∗M )m which does not lie in an

explicit finite set of hyperplanes. For our purposes, the precise definition of XL is immaterial.
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For P ∈ F(M0) and s ∈ W (MP ) let M(P, s) : A2(P ) → A2(P ) be as in [6, p. 1309].
M(P, s) is a unitary operator which commutes with the operators ρ(P, λ, h) for λ ∈ ia∗Ls .
Finally, we can state the refined spectral expansion.

Theorem 4 ([27]). For any h ∈ C∞c (G(A)1) the spectral side of Arthur’s trace formula is
given by

J(h) =
∑
[M ]

Jspec,M(h),

M ranging over the conjugacy classes of Levi subgroups of G (represented by members of
L), where

Jspec,M(h) =
1

|W (M)|
∑

s∈W (M)

ιs
∑

β∈BP,Ls

∫
i(aGLs )∗

tr(∆XLs (β)(P, λ)M(P, s)ρ(P, λ, h)) dλ

with P ∈ P(M) arbitrary. The operators are of trace class and the integrals are absolutely
convergent.

Note that here the term corresponding to M = G is simply Jspec,G(h) = trRdisc(h).

4. Bounds on co-rank one intertwining operators

We now introduce the key global and local properties required for the proof of the spectral
limit property, and verify that they are satisfied for the groups GL(n). These properties
will be used to provide estimates for the contribution of the continuous spectrum to the
spectral side of the trace formula.

We will use the notation A� B to mean that there exists a constant c (independent of
the parameters under consideration) such that A ≤ cB. If c depends on some parameters
(say F ) and not on others then we will write A�F B.

Fix a faithful F -rational representation ρ : G → GL(V ) and an oF -lattice Λ in the

representation space V such that the stabilizer of Λ̂ = ôF ⊗ Λ ⊂ Afin ⊗ V in G(Afin) is
the group Kfin. (Since the maximal compact subgroups of GL(Afin ⊗ V ) are precisely the
stabilizers of lattices, it is easy to see that such a lattice exists.) For any non-zero ideal n
of oF let

K(n) = {g ∈ G(Afin) : ρ(g)v ≡ v (mod nΛ̂), v ∈ Λ̂}
be the principal congruence subgroup of level n, an open normal subgroup of Kfin, and for
n prime to S let KS(n) be the corresponding open normal subgroup of KS. The groups
K(n) form a neighborhood base of the identity element in G(Afin). For an open subgroup
K of Kfin let nK be the largest ideal of oF with K(nK) ⊂ K, and define the level of K as
level(K) = N(nK), where N(n) = [oF : n] denotes the ideal norm of n. Analogously, define
level(Kv) for open subgroups Kv ⊂ Kv.

4.1. The global bound. As in [39], for any π ∈ Π(M(F∞)) we define Λπ =
√
λ2
π + λ2

τ ,

where τ is a lowest K∞-type of IndGP (π∞). (This is well-defined, because λτ is independent
of τ .) Roughly speaking, Λπ measures the size of π.
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Definition 1. We say that the group G satisfies the property (TWN) (tempered winding
number) if for any M ∈ L, M 6= G, and any finite subset F ⊂ Π(KM,∞) there exists an
integer k > 1 such that for any α ∈ ΣM and any ε > 0 we have∫

iR

∣∣∣∣n′α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−k ds�F ,ε (1 + Λπ∞)k level(KM)ε

for all open compact subgroups KM of KM,fin and π ∈ Πdisc(M(A))F ,KM .

Since the normalizing factors nα(π, s) arise from co-rank one situations, the property
(TWN) is hereditary for Levi subgroups.

Remark 2. If we fix an open compact subgroup KM , then the corresponding bound∫
iR

∣∣∣∣n′α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−k ds�KM (1 + Λπ∞)k

is the content of [39, Theorem 5.3]. So, the point of (TWN) lies in the dependence of the
bound on KM .

Remark 3. In fact, we expect that

(6)

∫ T+1

T

∣∣∣∣n′α(π, it)

nα(π, it)

∣∣∣∣ dt� 1 + log(1 + T ) + log(1 + Λπ∞) + log level(KM)

for all T ∈ R and π ∈ Πdisc(M(A))KM . This would give the following strengthening of
(TWN): ∫

iR

∣∣∣∣n′α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−2 ds� 1 + log(1 + Λπ∞) + log level(KM)

for any π ∈ Πdisc(M(A))KM .

Remark 4. If G′ is simply connected, then by [36, Lemma 1.6] (cf. also [26, Proposition 1])
we can replace level(KM) by vol(KM)−1 in the definition of (TWN) (as well as in (6)).

Proposition 1. The estimate (6) holds for G = GL(n) with an implied constant depending
only on n and F . In particular, GL(n) satisfies the property (TWN).

Proof. The proposition follows from the fact that for GL(n) the global normalizing factors
nα can be expressed in terms of Rankin-Selberg L-functions and the known properties of
these functions, which are collected and analyzed in [42, §§4,5]. Write M '

∏r
i=1 GL(ni),

where the root α is trivial on
∏

i≥3 GL(ni), and let π ' ⊗πi with representations πi ∈
Πdisc(GL(ni,A)). Let L(s, π1× π̃2) be the completed Rankin-Selberg L-function associated
to π1 and π2. It satisfies the functional equation

L(s, π1 × π̃2) = ε(
1

2
, π1 × π̃2)N(π1 × π̃2)

1
2
−sL(1− s, π̃1 × π2)

where |ε(1
2
, π1 × π̃2)| = 1 and N(π1 × π̃2) ∈ N is the conductor (including the discriminant

factor). We can then write

nα(π, s) =
L(s, π1 × π̃2)

ε(1
2
, π1 × π̃2)N(π1 × π̃2)

1
2
−sL(s+ 1, π1 × π̃2)

.
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By the proofs of [42, Proposition 4.5, 5.1], we have∫ T+1

T

∣∣∣∣n′α(π, it)

nα(π, it)

∣∣∣∣ dt� log(T + ν(π1 × π̃2))

with
ν(π1 × π̃2) = N(π1 × π̃2)(2 + c(π1 × π̃2))

and c(π1×π̃2) as in [ibid., (4.21)]. The discussion of [ibid.] shows that log(2+c(π1×π̃2))�
log(1 + Λπ∞). Also, by [13] we have logN(π1 × π̃2) � logN(π1) + logN(π2), where
N(πi) is the usual conductor of the representation πi. From the well known description of
N(πi) ([30]) it follows that π ∈ Πdisc(M(A))KM implies logN(πi) � log level(KM). This
completes the proof. �

Remark 5. For general groups G the normalizing factors are given, at least up to local
factors, by quotients of automorphic L-functions associated to the irreducible constituents
of the adjoint action of the L-group LM of M on the unipotent radical of the corresponding
parabolic subgroup of LG ([35]). To argue as above, we would need to know that these
L-functions have finitely many poles and satisfy a functional equation with the associated
conductor bounded by an arbitrary power of level(KM) for automorphic representations π ∈
Πdisc(M(A))KM . Unfortunately, finiteness of poles and the expected functional equation
are not known in general. It is possible that for classical groups these properties are within
reach. However, this may require some work.

4.2. The contribution of the normalized local intertwining operators.

Definition 2. We say that G satisfies the property (BD) (bounded degree) if there exists
a constant c (depending only on G), such that for any M ∈ L, M 6= G and adjacent
parabolic subgroups P , Q ∈ P(M), any finite place v of F , any open subgroup Kv ⊂ Kv

and any smooth irreducible representation πv of M(Fv), the degrees of the numerators of
the linear operators RQ|P (πv, s)

Kv are bounded by c logqv level(Kv) if Kv is hyperspecial,
and by c(logqv level(Kv) + 1) otherwise.

Remark 6. As in Remark 4, if G′ is simply connected then we may replace level(Kv) by
vol(Kv)

−1.

Property (BD) is discussed in detail in [26] (see especially [ibid., Proposition 3]). It is
hereditary for Levi subgroups. The main result of [26] (Theorem 1, taken together with
Proposition 3) is the following.

Theorem 5. GL(n) satisfies (BD).

The relevance of (BD) to the trace formula is the following consequence, which we will
prove in the remainder of this section.

Proposition 2. Suppose that G satisfies (BD). Let M ∈ L and P , Q ∈ P(M) be adjacent
parabolic subgroups. Then for all open subgroups K ⊂ Kfin and all τ ∈ Π(K∞) we have

(7)

∫
iR
‖RQ|P (π, s)−1R′Q|P (π, s)

∣∣
IGP (π)τ,K

‖(1 + |s|2)−1 ds� 1 + log(1 + ‖τ‖) + log level(K).
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We remark that the dependence of the bound on τ is not essential for the limit multi-
plicity problem, but it is relevant for other asymptotic problems.

Let z1, . . . , zm ∈ C (not necessarily distinct) and let b(z) = (z − z1) . . . (z − zm). Let V
be any vector space over C. By definition, a vector valued rational function on C of degree
≤ m with denominator dividing b(z) is a map A : C \ {z1, . . . , zm} → V of the form

A(z) =
1

b(z)

m∑
i=0

zivi

for some vectors v0, . . . , vm ∈ V . We omit the reference to z1, . . . , zm and b, if the precise
choice of these parameters is unimportant.

For the next two lemmas, let V be a Banach space and V ∗ its dual space. The following
lemma is a vector valued version of [27, Lemma 1], which we obtain as a consequence of a
result of Borwein and Erdélyi in approximation theory ([12]).

Lemma 1. Let S1 be the unit circle in C with the standard Lebesgue measure |dz|. Suppose
that A : C \ {z1, . . . , zm} → V , z1, . . . , zm /∈ S1, is a rational map of degree ≤ m such that
‖A(z)‖ ≤ 1 for all z ∈ S1. Then ∫

S1

‖A′(z)‖ |dz| ≤ 2πm.

Proof. Suppose that b(z) = (z − z1) . . . (z − zm) is such that b(z)A(z) is polynomial of
degree ≤ m. For any w ∈ C \ S1 let φw be the Möbius transformation φw(z) = 1−w̄z

z−w so

that |φw(z)| = 1 on S1 and

(8)

∫
S1

|φ′w(z)| |dz| = 2π.

Let φ>, φ< be the two Blaschke products

φ≷(z) =
∏

j:|zj |≷1

φzj(z).

By assumption, for any unit vector w ∈ V ∗ the function f(z) = (A(z), w) satisfies |f(z)| ≤
1 on S1 and b(z)f(z) is a polynomial of degree ≤ m. Therefore, by [12, Theorem 1] we
deduce that

|f ′(z)| ≤ max(|φ′>(z)|, |φ′<(z)|), z ∈ S1.

Thus,

‖A′(z)‖ ≤ max(|φ′>(z)|, |φ′<(z)|) ≤ |φ′>(z)|+ |φ′<(z)|, z ∈ S1.

Integrating this inequality over S1 and using (8) we obtain the lemma. �

Analogously, we have

Lemma 2. Suppose that A : C \ {z1, . . . , zm} → V is a rational map with denominator
dividing b(z) = (z − z1) . . . (z − zm) and satisfying ‖A(z)‖ ≤ 1 for all z ∈ iR. Write
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zj = uj + ivj, j = 1, . . . ,m. Then∫
iR
‖A′(z)‖ |dz|

1 + |z|2
≤ 2π

m∑
j=1

|uj|+ 1

(|uj|+ 1)2 + v2
j

≤ 2πm.

Proof. The proof is similar. For any w ∈ C let φw(z) = z+w̄
z−w . Applying [12, Theorem 4]8

we conclude as before that

‖A′(z)‖ ≤ max(|φ′>(z)|, |φ′<(z)|) ≤ |φ′>(z)|+ |φ′<(z)|, z ∈ iR,

where now

φ≷(z) =
∏

j:Re zj≷0

φzj(z).

It remains to observe that for any w = u+ iv ∈ C \ iR we have∫
iR
|φ′w(z)| |dz|

1 + |z|2
= 2π

|u|+ 1

(|u|+ 1)2 + v2
.

Indeed, we have |φ′w(z)| = 2|u|
|z−w|2 = 2|u|

u2+(t−v)2 for z = it, t ∈ R, so that∫
iR
|φ′w(z)| |dz|

1 + |z|2
=

∫
R

2|u|
(u2 + (z − v)2)(1 + z2)

dz.

By the residue theorem this is equal to

2π

(
|u|

u2 + (i− v)2
+

1

1 + (v + i|u|)2

)
=

2π

v + i(|u| − 1)

(
|u|

v − i(|u|+ 1)
+

1

v + i(|u|+ 1)

)
=

2π(|u|+ 1)

v2 + (|u|+ 1)2

as claimed. �

Proof of Proposition 2. For each finite place v of F let pv be the maximal ideal of the
ring of integers of Fv and let fv ≥ 0 be the minimum integer with Kv(p

fv
v ) ⊂ K. Then

level(K) =
∏

vNv with Nv = qfvv . Without loss of generality we may assume that K =∏
v Kv(p

fv
v ) = KvK

v. Write

R(π, s)−1R′(π, s)
∣∣
I(π)τ,K

= R∞(π∞, s)
−1R′∞(π∞, s)

∣∣
I(π∞)τ

⊗ IdI(π∞)K

+
∑
v finite

Rv(πv, s)
−1R′v(πv, s)

∣∣
I(πv)Kv

⊗ IdI(πv)τ,Kv .

Recall that the operators Rv(πv, s) are unitary for Re s = 0.
Consider first the case where v is finite. By property (BD) we have Rv(πv, s)

∣∣
I(πv)Kv

=

Av(q
−s
v ), where Av satisfies the conditions of Lemma 1 (with respect to the operator norm)

8This result is misstated on [27, p. 190].
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with m = mv � logqv Nv if Kv is hyperspecial, and mv � logqv Nv + 1 otherwise. Thus,∫
iR
‖Rv(πv, s)

−1R′v(πv, s)
∣∣
I(πv)Kv

‖ ds

1 + |s|2
=

∫
iR
‖R′v(πv, s)

∣∣
I(πv)Kv

‖ ds

1 + |s|2

≤ 2
∞∑
n=0

(1 +
4π2n2

(log qv)2
)−1

∫ 2πi
log qv

0

‖R′v(πv, s)
∣∣
I(πv)Kv

‖ ds

� (log qv)

∫ 2πi
log qv

0

‖R′v(πv, s)
∣∣
I(πv)Kv

‖ ds = (log qv)

∫
S1

‖A′v(z)‖ |dz|.

By Lemma 1, the last integral is � (log qv)(logqv Nv) = logNv, if Kv is hyperspecial, and
� 1 + logNv otherwise. Note here that the last case occurs only for v in a finite set that
depends only on Kfin.

Regarding the archimedean contribution, it follows from [40, Proposition A.2] that
R∞(π∞, s)

∣∣
I(π∞)τ

satisfies the conditions of Lemma 2 with b(s) =
∏r

j=1

∏m
k=1(s− ρj + ck),

where

• c > 0 depends only on M ,
• r and uj = Re(ρj), j = 1, . . . , r, are bounded in terms of G only,
• m� 1 + ‖τ‖.

Write ρj = uj + ivj. By Lemma 2 we infer that∫
iR
‖R∞(π∞, s)

−1R′∞(π∞, s)
∣∣
I(π∞)τ

‖(1+ |s|2)−1 ds =

∫
iR
‖R′∞(π∞, s)

∣∣
I(π∞)τ

‖(1+ |s|2)−1 ds

�
r∑
j=1

m∑
k=1

|uj − ck|+ 1

(|uj − ck|+ 1)2 + v2
j

� 1 + log(1 + ‖τ‖).

Altogether,∫
iR
‖R(π, s)−1R′(π, s)

∣∣
I(π)τ,K

‖(1 + |s|)−2 ds � 1 + log(1 + ‖τ‖) +
∑
v finite

logNv

= 1 + log(1 + ‖τ‖) + log level(K),

as required. �

5. The geometric limit property

We now study the geometric side of the trace formula and prove the geometric limit
property for the principal congruence subgroups KS(n), where S is a finite set of places
of F containing S∞. In addition to K and M0 we fix in this section a parabolic sub-
group P0 ∈ P(M0). Recall Arthur’s distribution JTunip on G(A)1, the contribution of the
unipotent elements of G(F ) to the trace formula (5), which is a polynomial in T ∈ aM0

of degree at most d0 = dim aGM0
([7]). It can be split into the contributions of the finitely

many G(F̄ )-conjugacy classes of unipotent elements of G(F ). It is well known ([ibid.,
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Corollary 4.4]) that the contribution of the unit element is simply the constant polynomial
vol(G(F )\G(A)1)h(1). Write

JTunip−{1}(h) = JTunip(h)− vol(G(F )\G(A)1)h(1), h ∈ C∞c (G(A)1).

The distribution Junip is defined as JT0
unip for a certain vector T0 ∈ aM0 depending only on G,

and analogously for Junip−{1}. We want to estimate the latter distribution for the functions
h = hS ⊗ 1KS(n).

For any compact subset Ω ⊂ G(FS)1 we write C∞Ω (G(FS)1) for the Fréchet space of all
smooth functions on G(FS)1 supported in Ω equipped with the seminorms supx∈Ω|(Xh)(x)|,
where X ranges over the left-invariant differential operators on G(F∞).

Proposition 3. For any compact subset Ω ⊂ G(FS)1 there exists a seminorm || · || on
C∞Ω (G(FS)1) such that

|Junip−{1}(hS ⊗ 1KS(n))| ≤
(1 + log N(n))d0

N(n)
||hS||

for all hS ∈ C∞Ω (G(FS)1) and all integral ideals n of oF prime to S.

Remark 7. Let G = GL(2), K(n) the standard principal congruence subgroups, and assume
for simplicity S = S∞. Then we have the explicit formula

Junip−{1}(h∞ ⊗ 1K(n)) =
vol(T (A)1/T (F ))

N(n)

(∫
F⊗R

∫
K∞

h∞(k−1 ( 1 x
0 1 ) k) log|x|∞ dk dx

+(γF − log N(n))

∫
F⊗R

∫
K∞

h∞(k−1 ( 1 x
0 1 ) k) dk dx

)
,

where γF denotes the constant term of the Laurent expansion of ζF at s = 1. This shows
that (regarding the dependency on N(n)) the estimate of Proposition 3 is best possible in
this case.

Proposition 3 will be proved below. It has the following consequence.

Corollary 1 (Geometric limit property). For any hS ∈ C∞c (G(FS)1) we have

lim
n
J(hS ⊗ 1KS(n)) = vol(G(F )\G(A)1)hS(1).

Proof. Fix hS ∈ C∞c (G(FS)1) and let ΩS ⊂ G(FS)1 be the support of hS. Then the support
of the test function hS ⊗ 1KS(n) is ΩSKS(n), which for any n is a subset of the compact

set ΩSKS, and therefore there are only finitely many classes o ∈ O that contribute to the
geometric side of the trace formula (5) for the functions hS ⊗ 1KS(n). Moreover, for a fixed
class o ∈ O different from the unipotent class, the set of all G(A)-conjugacy classes of
elements of o meets ΩSKS(n) only for at most finitely many n. Therefore, the geometric
side reduces to Junip(hS⊗1KS(n)) for all but finitely many n, and the assertion follows from
Proposition 3. �

The proof of Proposition 3 consists of a slight extension of Arthur’s arguments in [7].
The case where F = Q and n is a power of a fixed prime is in fact already covered by
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Arthur’s arguments. However, we will give a detailed account, since our setting allows also
for considerable simplifications compared to Arthur’s paper. We also remark that when
we restrict the prime divisors of n to a fixed finite set, we can appeal directly to Arthur’s
fine geometric expansion ([8]) to obtain the geometric limit property (cf. [21, Proposition
1.7]).

The first ingredient of the proof is an asymptotic formula for JTunip−{1} obtained by
Arthur. Let U ⊂ G be the unipotent variety of G, i.e., the Zariski closure of the set of
unipotent elements of G(F ). Recall that we fixed a Euclidean norm || · || on aM0 and let
d(T ) = minα∈∆0 〈α, T 〉 for T ∈ aM0 . For a parabolic subgroup P ⊃ P0 write AP = AMP

and set AP (T1) = {a ∈ AMP
: 〈α,HP (a)− T1〉 > 0, α ∈ ∆P} for T1 ∈ aM0 . As in

[9, p. 941], we fix a suitable vector T1, which depends only on G, P0 and K, such that
G(A) = U0(A)M0(A)1AP0(T1)K. Finally, recall the truncation function F (·, T ) = FG(·, T )
for T ∈ aM0 , which is the characteristic function of a compact subset of G(F )\G(A)1 ([9,
p. 941], [7, p. 1242]). By [7, Theorem 4.2] and the discussion in [ibid., §3], we have the
following estimate.

Proposition 4 (Arthur). There exist an integer k ≥ 1, left-invariant differential operators
X1, . . . , Xk on G(F∞), and positive numbers m, ε and ε0 with the following property. For
any compact set Ω ⊂ G(A)1 there exist a positive constant dΩ and a seminorm || · ||Ω on
C∞(Ω) of the form

||h||Ω = c(Ω)
k∑
i=1

sup
x∈G(A)1

|(Xih)(x)|

with c(Ω) > 0, such that for all non-zero ideals n of oF with K(n)ΩK(n) = Ω and any
bi-K(n)-invariant function h ∈ C∞(Ω) we have

(9)

∣∣∣∣∣∣JTunip−{1}(h)−
∫
G(F )\G(A)1

F (x, T )
∑

γ∈U(F ), γ 6=1

h(x−1γx) dx

∣∣∣∣∣∣ ≤ ||h||Ω N(n)me−εd(T )

for all T ∈ aM0 with ||T || ≥ dΩ and d(T ) ≥ ε0||T ||.

Here, the constant dΩ is such that the integral formula on [7, p. 1240] for the polynomial
JTunip(h) is valid for vectors T with d(T ) ≥ ε0dΩ for all h with support contained in Ω (cf. [9,
Theorem 7.1] and its proof for the existence of such a constant).

We now need to bound the truncated integral∫
G(F )\G(A)1

F (x, T )
∑

γ∈U(F ), γ 6=1

(hS ⊗ 1KS(n))(x
−1γx) dx

in terms of N(n). For any fixed value of T the integral approaches zero as N(n) → ∞ by
the dominated convergence theorem. We make this quantitative as follows.
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Lemma 3. Let ΩS ⊂ G(FS)1 be a compact set. Then there exists a constant C(ΩS),
depending only on G and ΩS, such that

(10)

∫
G(F )\G(A)1

F (x, T )
∑

γ∈G(F ), γ 6=1

|(hS ⊗ 1KS(n))(x
−1γx)| dx ≤ C(ΩS)

sup|hS|
N(n)

(1 + ||T ||)d0 .

for all bounded measurable functions hS on G(FS)1 with support contained in ΩS.

The proof of this estimate is based on an elementary estimate for a lattice-point counting
problem that we will prove first. As a preparation we need the following result from
algebraic number theory.

Lemma 4. Let F be a number field, Λ a fractional ideal of F and D ⊂ F ⊗ R a compact
set. Then there exists a positive constant C(D,Λ) such that for all positive real numbers a
and non-zero integral ideals n we have

|aD ∩ (nΛ− {0})| ≤ C(D,Λ)

N(n)
a[F :Q].

Proof. This lemma is an immediate consequence of [34, p. 102, Theorem 0], which provides

the upper bound max(1, C(D,Λ)
N(n)

a[F :Q]) for the cardinality of the intersection aD ∩ nΛ. �

Lemma 5. Let uP be the Lie algebra of the unipotent radical UP of a standard parabolic
subgroup P = MPUP of G, Λ ⊂ uP (F ) an oF -lattice and D ⊂ uP (F ⊗ R) a compact set.
Then there exists a positive constant C = C(P,D,Λ) such that for all a ∈ AP (T1) and all
non-zero integral ideals n we have

|Ad(a)D ∩ (nΛ− {0})| ≤ C

N(n)
δP (a).

Proof. Let e1, . . . , en be a basis of uP consisting of eigenvectors with respect to TM and
let α1, . . . , αn ∈ ΣP be the associated eigencharacters. Without loss of generality we can
assume that Λ =

∑
i Λiei with fractional ideals Λ1, . . . ,Λn ⊂ F and D =

∑
iDiei with

compact sets D1, . . . , Dn ⊂ F ⊗ R. Since a non-zero vector is a vector with at least one
non-zero coordinate, we can estimate

|Ad(a)D ∩ (nΛ− {0})| ≤
n∑
i=1

|αi(a)Di ∩ (nΛi − {0})|
∏
j 6=i

|αj(a)Dj ∩ nΛj| .

We now use the estimate of Lemma 4 for |αi(a)Di ∩ (nΛi − {0})|, while for the other
coordinates we use the trivial estimate |αj(a)Dj ∩ nΛj| ≤ C(Dj,Λj)αj(a)[F :Q] + 1. This
gives the desired result, since the values α(a) = e〈α,HP (a)〉, α ∈ ΣP , are bounded from
below. �

Proof of Lemma 3. By Arthur’s discussion in [7, §5], we can bound the left-hand side of
(10) by

(1 + ||T ||)d0 sup
a∈AP0

(T1)

δP0(a)−1
∑

γ∈U(F ), γ 6=1

φ(a−1γa),
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where

φ(x) =

∫
Γ

|(hS ⊗ 1KS(n))(y
−1xy)| dy

for a compact set Γ ⊂ G(A)1 and a Radon measure dy on Γ depending only on G, P0 and
K. Of course, we can assume that Γ =

∏
v Γv with Γv = Kv for all v /∈ T , where T ⊃ S∞

is a finite set of places of F . In a second step, Arthur reduces to the estimation of

(1 + ||T ||)d0

∑
P⊃P0

∑
µ∈MP (F )

sup
a1∈AP (T1)

δP (a1)−1
∑

ν∈UP (F ):µν 6=1

φµ(a−1
1 νa1),

where

φµ(u) = sup
b∈B

δP0(b)−1φ(b−1µub), u ∈ UP (A),

for a fixed compact set B ⊂ A0.
Here, for a given P we need to sum only over all µ belonging to the intersection of

MP (F ) with a compact set that depends only on ΩS, or equivalently over a finite subset
of MP (F ) that depends only on ΩS. Considering each possibility for µ separately, we see
that for all but at most finitely many n (depending on ΩS) only µ = 1 will contribute.
Furthermore, from the definition of φ1 we can estimate

φ1(u) ≤ C1(ΩS) sup|hS|1Ω′S Ad(ΓS)(KS(n))∩UP (A)(u), u ∈ UP (A),

with a constant C1(ΩS) and a compact set Ω′S ⊂ G(FS)1 that depend only on ΩS. There
exist exponents ev ≥ 0 for v /∈ S, with ev = 0 for v /∈ T , such that

Ad(Γv)(Kv(p
f
v)) ⊂ Kv(p

f−ev
v )

for f ≥ ev. Write n =
∏

v/∈S p
fv
v . We conclude that Ad(ΓS)(KS(n)) ⊂

∏
v/∈S Lv,fv , where

for v /∈ S and f ≥ 0 we set Lv,f = Ad(Γv)(Kv) in case f < ev (which implies v ∈ T ) and
Lv,f = Kv(p

f−ev
v ), otherwise. Identify the unipotent radical UP with its Lie algebra uP

via the exponential map. Then everything reduces to an application of Lemma 5 (with n
replaced by n′ =

∏
v: fv≥ev p

fv−ev
v ). �

To finish the argument we follow Arthur’s interpolation argument in [7, pp. 1252-1254].
We formulate the precise technical statement in the following lemma, which is a slight
variant of [5, Lemma 5.2]. The proof is omitted.

Lemma 6. Let a0 be a Euclidean vector space with norm || · ||, ∆0 a set of linearly inde-
pendent elements of a∗0, d0 ≥ 0 an integer and ε0 > 0. Then there exists a constant a with
the following property. For polynomials q on a0 of degree ≤ d0 and real numbers A > 0,
B > 1 with

|q(T )| ≤ A(1 + ||T ||)d0

for all vectors T ∈ a0 with 〈α, T 〉 ≥ max(ε0||T ||, B), α ∈ ∆0, we have

|q(T )| ≤ aABd0(1 + ||T ||)d0

for any T ∈ a0.
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Proof of Proposition 3. Write N = N(n). Given hS ∈ C∞c (G(FS)1) with support contained
in a compact set ΩS ⊂ G(FS)1, we combine (9) and Lemma 3 to obtain

|JTunip−{1}(hS ⊗ 1KS(n))| ≤ ||hS||ΩS
(
Nme−εd(T ) +N−1(1 + ||T ||)d0

)
for all T ∈ a0 with ||T || ≥ dΩS and d(T ) ≥ ε0||T ||, where || · ||ΩS is a suitable seminorm on
C∞(ΩS). This implies

|JTunip−{1}(hS ⊗ 1KS(n))| ≤ 2||hS||ΩSN−1(1 + ||T ||)d0

for all T ∈ a0 with ||T || ≥ max(dΩS ,
m+1
εε0

logN) and d(T ) ≥ ε0||T ||. Applying Lemma 6 to

the polynomial JTunip−{1}(hS ⊗ 1KS(n)) and the point T0 ∈ a0, we obtain the assertion. �

Remark 8. An alternative proof of Corollary 1 might be given by replacing U(F ) by G(F )
in the arguments above and using [2, p. 267, Theorem 1].

For use in a planned future paper, we note that the arguments above actually yield the
following extension of Proposition 3.

Proposition 5. There exists a seminorm || · || on C∞c (G(FS)1) such that

|Junip−{1}(hS ⊗ hS)| ≤ (1 + log N(n))d0

N(n′)
||hS||

for all hS ∈ C∞c (G(FS)1), all pairs of integral ideals n and n′ of oF prime to S with n′ a
divisor of n, and all bi-KS(n)-invariant functions hS on KS(n′) with |hS| ≤ 1.

6. Polynomially bounded collections of measures

As a preparation for our proof of the spectral limit property, we prove in this section a
proposition on real reductive Lie groups, which extends an argument of Delorme in [22].
Let temporarily G∞ be the group of real points of a connected reductive group defined
over R, or, slightly more generally, the quotient of such a group by a connected subgroup
of its center. In the end, we will apply the results to G∞ = G(F∞)1, of course. Let
K∞ be a maximal compact subgroup of G∞ and θ the associated Cartan involution. We
now consider Levi subgroups M and parabolic subgroups P defined over R. All Levi
subgroups are supposed to be θ-stable. Factor each Levi subgroup M as a direct product
M = AMM

1, where AM is the largest central subgroup of M isomorphic to a power of
R>0, and let aM = LieAM . We identify representations of M1 with representations of
M on which AM acts trivially. Fix a minimal θ-stable Levi subgroup M0. As in §3.1,
we fix an invariant bilinear form B on LieG∞, which induces Euclidean norms on all its
subspaces and therefore Hermitian norms on the spaces a∗M,C. Then for each r > 0 we define
H(G∞)r as the subspace of H(G∞) of functions with support contained in the compact set
K∞ exp({x ∈ aM0 : ‖x‖ ≤ r})K∞.

For any k ≥ 0 let

‖f‖k =
∑
Xi

‖f ? Xi‖L1(G∞) =
∑
Xi

‖Xi ? f‖L1(G∞)
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where Xi ranges over a basis of U(LieG∞ ⊗ C)≤k, with the usual filtration.
Let Irr(G∞) be the set of all irreducible admissible representations of G∞ up to infin-

itesimal equivalence. The unitary dual Π(G∞) can be viewed as a subset of Irr(G∞) in
a natural way. For π ∈ Irr(G∞) denote its infinitesimal character by χπ and its Casimir
eigenvalue (which depends only on χπ) by λπ. For any µ ∈ Π(K∞) let Irr(G∞)µ be the set
of irreducible representations containing µ as a K∞-type. More generally, for any subset
F of Π(K∞) we write Irr(G∞)F = ∪τ∈F Irr(G∞)τ . We call a subset F ⊂ Π(K∞) saturated,
if for each µ ∈ F all µ′ ∈ Π(K∞) with ‖µ′‖ ≤ ‖µ‖ are also contained in F . Recall that
here ‖·‖ is defined as in [14, §2.2]. More precisely, let K0

∞ be the connected component of
the identity of K∞. Then ‖µ‖ = ‖χµ + 2ρ‖2, where χµ denotes the highest weight of any
irreducible constituent of µ|K0

∞ with respect to a maximal torus of K0
∞ (and the choice of

a system of positive roots), and ρ is as usual one half times the corresponding sum of all
positive roots.

We writeD for the set of all conjugacy classes of pairs (M, δ) consisting of a Levi subgroup
M of G∞ and a discrete series representation δ of M1. For any δ ∈ D let Irr(G∞)δ be the
set of all irreducible representations which arise by the Langlands quotient construction
from the irreducible constituents of ILM(δ) for Levi subgroups L ⊃ M . Here, ILM denotes
(unitary) induction from an arbitrary parabolic subgroup of L with Levi subgroup M to
L. We then have a disjoint decomposition

Irr(G∞) =
∐
δ∈D

Irr(G∞)δ

and consequently

Π(G∞) =
∐
δ∈D

Π(G∞)δ.

For π ∈ Irr(G∞) we write δ(π) for the unique element δ ∈ D with π ∈ Irr(G∞)δ. We
introduce a partial order on D as in [14, §2.3], using the lowest K∞-types of IGM(δ): δ ≺ δ′

if and only if ‖µ‖ < ‖µ′‖ for lowest K∞-types µ and µ′ of IGM(δ) and IGM ′(δ
′), respectively.

When F ⊂ Π(K∞) is saturated, we have Irr(G∞)F = ∪δ∈DF Irr(G∞)δ, where DF is the
set of all δ ∈ D with Irr(G∞)δ ∩ Irr(G∞)F 6= ∅. For δ ∈ D we let F(δ) be the finite
saturated set of all µ′ ∈ Π(K∞) with ‖µ′‖ ≤ ‖µ‖ for a lowest K∞-type µ of IGM(δ).

Proposition 6. Let M be a set of Borel measures on Π(G∞). Then the following conditions
on M are equivalent:

(1) For all δ ∈ D there exist positive constants Nδ and Cδ such that

µ({π ∈ Π(G∞)δ : |λπ| ≤ R}) ≤ Cδ(1 +R)Nδ

for all µ ∈M and R > 0.
(2) There exists r > 0 such that for each finite set F ⊂ Π(K∞) the supremum supµ∈M|µ(f̂)|

is a continuous seminorm on H(G∞)r,F .

(3) For each r > 0 and each finite set F ⊂ Π(K∞) the supremum supµ∈M|µ(f̂)| is a
continuous seminorm on H(G∞)r,F .
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(4) For each finite set F ⊂ Π(K∞) there exists an integer k = k(F) with supµ∈M µ(gk,F) <
∞, where gk,F is the non-negative function on Π(G∞) defined by

gk,F(π) = (1 + |λπ|)−k

for π ∈ Π(G∞)F , and gk,F(π) = 0, otherwise.

Definition 3. We call a collection M of measures satisfying the equivalent conditions of
Proposition 6 polynomially bounded.

For the proof, we first need to recall the classification of tempered and admissible repre-
sentations of G∞, as well as the Paley-Wiener theorem. We first recall Vogan’s classification
of irreducible admissible representations. For (M, δ) as above, and λ ∈ a∗M,C, consider the
induced representation πδ,λ (with respect to any parabolic subgroup containing M as a
Levi subgroup). Its semi-simplification depends only on the K∞-conjugacy class of the
triple (M, δ, λ). Vogan defines the R-group Rδ of δ, a finite group of exponent two, as well

as its subgroup Rδ,λ. The dual group R̂δ acts simply transitively on the set A(δ) of lowest
K∞-types of πδ,λ. We then have a decomposition of the representation πδ,λ as a direct
sum of |Rδ,λ| many representations πδ,λ(µ), where µ is an orbit of R⊥δ,λ in A(δ) ([51, 6.5.10,
6.5.11]):

πδ,λ =
⊕

µ∈A(δ)/R⊥δ,λ

πδ,λ(µ).

We call the πδ,λ(µ) the basic representations. Each basic representation πδ,λ(µ) has a
unique irreducible subquotient π̄δ,λ(µ) containing a K∞-type in the orbit µ. Alternatively,
this subquotient can also be constructed as a Langlands quotient ([51, 6.6.14, 6.6.15]).
This construction sets up a bijection π̄δ,λ(µ) = π 7→ σπ = πδ,λ(µ) between infinitesimal
equivalence classes of irreducible admissible representations π and basic representations
σπ, where the latter are interpreted as elements of the Grothendieck group of admissible
representations ([51, 6.5.13]). By definition, the parametrization is compatible with the
disjoint decomposition of Irr(G∞) according to the elements of D.

The distributions trσπ for π ∈ Irr(G∞) form a basis of the Grothendieck group of
admissible representations. More precisely, we have the following relations expressing the
characters of irreducible representations π ∈ Irr(G∞) in terms of the characters of basic
representations:

(11) trπ(φ) = tr σπ(φ) +
∑

π′:δ(π)≺δ(π′), χπ=χπ′

n(π, π′) trσπ′(φ)

with certain integers n(π, π′) ([51, 6.6.7]). Note that here the sum on the right-hand side
is finite. For our purposes, all we need to know about the integers n(π, π′) is the following
uniform boundedness property ([22, Proposition 2.2]).

Lemma 7 (Vogan). For each group G∞ there exists a constant nG∞ such that

(12)
∑

π′:δ(π)≺δ(π′), χπ=χπ′

|n(π, π′)| ≤ nG∞
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for all π ∈ Irr(G∞).

For the Paley-Wiener theorem, we need to group the basic representations into series
of induced representations, which gives a slightly different parametrization. We use the
concept of a non-degenerate limit of discrete series introduced in [32, 33]. Let δ ∈ D with
representative (M, δ). Whenever L is a Levi subgroup containing M and ILM(δ) decomposes
as a sum of non-degenerate limit of discrete series representations δ′ of L1, we call the
resulting pairs (L, δ′) affiliated with the class δ ([16, Définition 2]). These representations
are precisely those irreducible constituents of the representations ILM(δ) for L ⊃M , which
are not itself irreducibly induced from any smaller Levi subgroup. The Levi subgroups
L ⊃ M appearing here are those for which a∗L is the fixed space of a∗M under one of the
subgroups Rδ,λ ⊂ Rδ.

We can then rewrite any representation πδ,λ(µ) in the form πδ′,λ for M ⊂ L, λ ∈ a∗L,C ⊂
a∗M,C, and (L, δ′) affiliated with D, such that the intermediate induction to the largest Levi
subgroup LReλ with Reλ ∈ a∗LReλ

is irreducible (and tempered). (To see this, combine [51,
6.6.14, 6.6.15] with [16, (2.1), (2.2)].) Note that the tempered dual of G∞ can either be
parametrized as the set of all basic representations πδ,λ(µ) with Reλ = 0 (which are always
irreducible), or as the set of all irreducible induced representations πδ′,λ, Reλ = 0, where
δ′ is a non-degenerate limit of discrete series.

Recall the definition of the Paley-Wiener space PW(a)r, r > 0, of a Euclidean vector
space a. It is the space of all entire functions F on the complexified dual a∗C such that the
Paley-Wiener norms

‖F‖r,n = sup
λ∈a∗C

(1 + ‖λ‖)ne−r‖Reλ‖|F (λ)|, n ≥ 0,

are finite. The Paley-Wiener norms give PW(a)r the structure of a Fréchet space and
the Fourier transform is a topological isomorphism between C∞({x ∈ a : ‖x‖ ≤ r}) and
PW(a)r.

Now let δ ∈ D. Consider the finite set D′(δ) of all pairs (M, δ), where M is a standard
Levi subgroup of G∞, δ ∈ Π(M1) a non-degenerate limit of discrete series, and (M, δ) is
affiliated with δ. The Paley-Wiener space PWr,δ is then defined as the space of all elements
F = (F(M,δ)) ∈

∏
(M,δ)∈D′(δ)PW(aM)r fulfilling the following conditions:

(1) Whenever the triples (M, δ, λ) and (M ′, δ′, λ′) are conjugate by an element of K∞,
we have F(M ′,δ′)(λ

′) = F(M,δ)(λ).
(2) Whenever for M ⊂M ′ we have a decomposition

IM
′

M (δM) =
m⊕
i=1

δ
(i)
M ′

with (M, δM), (M ′, δ
(i)
M ′) ∈ D′(δ), the corresponding identity

F(M,δM )(λ) =
m∑
i=1

F
(M ′,δ

(i)

M′ )
(λ), λ ∈ a∗M ′,C ⊂ a∗M,C,

holds.
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For any finite set F ⊂ Π(K∞) the space PWr,F is defined as
∏

δ∈DF PWr,δ. These Paley-
Wiener spaces have in a natural way the structure of Fréchet spaces, and we define for
each n ≥ 0 the Paley-Wiener norm ‖F‖r,n of F ∈ PWr,F to be the maximum of the
norms ‖F(M,δ)‖r,n, where (M, δ) ∈ D′(δ), δ ∈ DF . (Cf. [16, Appendice C] for a concrete
combinatorial description of these spaces.)

We can now quote the Paley-Wiener theorem of Clozel-Delorme ([16, Théorème 1,
Théorème 1’]).

Theorem 6 (Clozel-Delorme). For any finite saturated set F ⊂ Π(K∞) and any r > 0
the natural continuous map of Fréchet spaces Tr,F : H(G∞)r,F → PWr,F given by f 7→
(trπδ,λ(f)) is surjective.

Remark 9. By the open mapping theorem, a continuous surjection of Fréchet spaces is
automatically open. This applies to the surjections Tr,F of Theorem 6. In concrete terms,
this means that not only for every F ∈ PWr,F there exists φ ∈ H(G∞)r,F with Tr,F(φ) = F ,
but that the following stronger statement is true. Given an integer k ≥ 0, for every
F ∈ PWr,F there exists a preimage φ ∈ H(G∞)r,F of F under Tr,F , which satisfies ‖φ‖k ≤
c(r,F , k)‖F‖r,n(r,F ,k), where c(r,F , k) and n(r,F , k) depend only on r,F and k.

We now turn to the proof of Proposition 6, which is an extension of an argument of
Delorme (cf. the proof of [22, Proposition 3.3]). As in [ibid.], the proof is based on the
existence of certain test functions onG∞, however, in comparison to Delorme’s argument we
also need to bound the seminorms of these functions. We therefore recall the construction
in some detail. The first elementary lemma ([24, Lemma 6.3]) asserts the existence of
functions with certain properties of the Fourier transform.

Lemma 8 (Duistermaat-Kolk-Varadarajan). Let a be a real vector space, W a finite
Coxeter group acting on a and r > 0. Then for any t ≥ 1 there exists a function
h(t, ·) ∈ C∞({x ∈ a : ‖x‖ ≤ r})W such that its Fourier transform ĥ(t, ·) ∈ PW(a)Wr
has the following properties.

(1) ĥ(t, λ) is non-negative real for all λ ∈ a∗C for which there exists an element w ∈ W
with w(λ) = −λ̄.

(2) |ĥ(t, λ)| ≥ 1 for all λ ∈ a∗C with ‖λ‖ ≤ t.
(3) For all m ≥ 0 there exists a positive constant c(m) such that the Paley-Wiener

norm ‖ĥ(t, ·)‖r,m is bounded by c(m)tm.
(4) For all a > 0 and m ≥ 0 there exists a positive constant c(m, a) with

|ĥ(t, λ)| ≤ c(m, a)
tm

(1 + ‖Imλ‖)m

for all λ ∈ a∗C with ‖Reλ‖ ≤ a.

The following lemma is a strengthening of [22, Proposition 3.2] (we have added the third
assertion).

Lemma 9. Let δ ∈ D with representative (M, δ), k ≥ 0 an integer and t ≥ 1. Then there

exist a function φt,kδ ∈ Hr,F(δ)(G∞) and an integer rk ≥ 0 with the properties that



LIMIT MULTIPLICITIES 27

(1) trσπ(φt,kδ ) = 0 for all π ∈ Irr(G∞) with δ(π) 6= δ.

(2) trσ(φt,kδ ) = [Rδ : Rδ,λ]ĥ(t, λ) for all basic representations σ = πδ,λ(µ), λ ∈ a∗M,C,

µ ∈ A(δ).

(3) ‖φt,kδ ‖k ≤ trk .

Proof. We apply the Paley-Wiener theorem to the following element F t = F t
(M ′,δ′) of

PWr,F , where F = F(δ). Note that since M is a cuspidal Levi subgroup, the Weyl
group W (AM) = NK(AM)/CK(AM) is a finite Coxeter group ([31]). Apply Lemma 8 to

the vector space aM and the group W (A) to obtain functions ĥ(t, ·) ∈ PW(aM)
W (A)
r . Set

F t
(M ′,δ′)(λ) = 0 whenever (M ′, δ′) is not affiliated with δ. On the other hand, if (M ′, δ′) is

affiliated with δ, then we have a decomposition IM
′

M (δ) = ⊕Si=1δ
′
i, where δ′1 = δ′ and S is

a divisor of |Rδ|. We then set F t
(M ′,δ′)(λ) = |Rδ|

S
ĥ(t, λ). By the W (A)-invariance of ĥ(t, ·)

and the transitivity of induction, this indeed defines an element F t of PWr,F . Moreover,
by the third assertion of Lemma 8, every Paley-Wiener norm of F t is bounded by a power
of t. The Paley-Wiener theorem (Theorem 6) and Remark 9 provide for each k ≥ 0 a

preimage φt,kδ ∈ Hr,F(G∞) which by construction satisfies the first and third properties.

Writing πδ,λ(µ) ' πδ′,λ as above, we see that it also satisfies the second property. �

Corollary 2. The test functions φt,kδ ∈ Hr,F(G∞) have the following additional properties:

(1) trσπ(φt,kδ ) ≥ 1 for all π ∈ Π(G∞)δ with |λπ| ≤ t2 − cδ, where cδ is a constant
depending only on δ.

(2) For all m ≥ 0 there exists a constant Cδ,m, depending only on δ and m, such that

0 ≤ trσπ(φt,kδ ) ≤ Cδ,m
t2m

(1 + |λπ|)m

for all π ∈ Π(G∞)δ.

Proof. Let π̄δ,λ ' π ∈ Π(G∞) and σπ = πδ,λ(µ). Since π is unitary, we need to have

w(λ) = −λ̄ for an element w ∈ W (A)δ ([22, (2.1)]). By Lemma 9, the trace trσπ(φt,kδ ) is

an integer multiple of ĥ(t, λ). By the first property of Lemma 8, it is therefore nonnegative
real.

Furthermore, the Casimir eigenvalue of π can be computed as λπ = −‖Imλ‖2+‖Reλ‖2−
‖χδ‖2−cM for a constant cM (cf. [11, §3.2, (2)]). Again by unitarity, we have ‖Reλ‖ ≤ ‖ρP‖,
where ρP is half the sum of the positive roots of a parabolic P with Levi subgroup M ([22,
(2.2)]). Therefore, we obtain |λπ| ≥ ‖λ‖2 − cδ for a constant cδ.

To show the first assertion, |λπ| ≤ t2 − cδ implies that ‖λ‖ ≤ t, and by the second

property of Lemma 8 we obtain ĥ(t, λ) ≥ 1. For the second assertion, we use the fourth
property of Lemma 8 and the boundedness of ‖Reλ‖ together with the fact that [Rδ : Rδ,λ]
is obviously bounded by |Rδ|. �

Proof of Proposition 6. Let M be a collection of Borel measures on Π(G∞). It is easy to
see that the fourth condition of the proposition implies the third and second conditions,
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since we can estimate |f̂(π)| ≤ ck‖f‖2kgk,F(π) for f ∈ H(G∞)F , π ∈ Π(G∞) and k ≥ 0,
with a constant ck depending only on k (and G∞).

For k ≥ 0 and δ ∈ D let gk,δ = (1 + |λπ|)−k for π ∈ Π(G∞)δ, and extend this function
by zero to all of Π(G∞).

For a given δ ∈ D, consider the following two statements:

(13) There exist nonnegative constants Cδ and Nδ such that

µ({π ∈ Π(G∞)δ : |λπ| ≤ R}) ≤ Cδ(1 +R)Nδ for all µ ∈M and R ≥ 0.

(14) There exists an integer kδ > 0 such that sup
µ∈M

µ(gk,δ) <∞.

It is easy to see that these statements are equivalent: if (13) is satisfied, then we can
bound

µ(gk,δ) ≤
∑
N≥0

µ({π ∈ Π(G∞)δ : N ≤ |λπ| ≤ N + 1})(N + 1)−k ≤ Cδ
∑
N≥0

(N + 2)Nδ

(N + 1)k
,

which is bounded independently of µ ∈M for k ≥ Nδ + 2. On the other hand, we clearly
have

(1 +R)−kµ({π ∈ Π(G∞)δ : |λπ| ≤ R}) ≤ µ(gk,δ),

which gives the other implication.
Observe now that the first condition of the proposition is just (13) for arbitrary δ.

Moreover, the fourth condition is clearly equivalent to (14) for arbitrary δ. Therefore, the
first and fourth conditions of the proposition are equivalent.

Therefore, it remains only to prove (13) or (14) for arbitrary δ assuming the second
condition of the proposition. We will prove them by induction on δ, i.e., for a given δ
we assume that (14) is satisfied for all δ′ ≺ δ and are going to prove (13) for δ. For

this, consider the test functions φt,kδ constructed above for t = (R + cδ)
1/2, where R ≥ 0.

By assumption, for a suitable r > 0 for each finite set F the supremum supµ∈M|µ(f̂)| is

a continuous seminorm on H(G∞)r,F . Taking f = φ̂t,kδ and using the third assertion of

Lemma 9, we obtain that for a suitable value of k all absolute values |µ(φ̂t,kδ )|, µ ∈M, can
be bounded by a polynomial in t, or equivalently by DδR

mδ for some constants Dδ and
mδ. Write

µ(φ̂t,kδ ) =

∫
trπ(φt,kδ )dµ(π).

Inserting (11) into this equation, we obtain

µ(φ̂t,kδ ) =

∫
(trσπ)(φ̂t,kδ )dµ(π) +

∫  ∑
π′:δ(π)≺δ(π′), χπ=χπ′

n(π, π′) trσπ′(φ̂
t,k
δ )

 dµ(π).
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By the first assertion of Corollary 2, the first integral provides an upper bound for the
measure of the set {π ∈ Π(G∞)δ : |λπ| ≤ R}:

µ({π ∈ Π(G∞)δ : |λπ| ≤ R}) ≤
∫

(trσπ)(φ̂t,kδ )dµ(π).

Regarding the second integral, only π′ with δ(π′) = δ can contribute, and we can estimate
their contribution using the second assertion of Corollary 2:

0 ≤ trσπ′(φ̂
t,k
δ ) ≤ Cδ,m

t2m

(1 + |λπ′ |)m
= Cδ,m

(R + cδ)
m

(1 + |λπ|)m
,

since π and π′ have the same infinitesimal character. Using (12) to bound the absolute
values of the integers n(π, π′), we obtain

µ({π ∈ Π(G∞)δ : |λπ| ≤ R}) ≤ µ(φ̂t,kδ )−
∫  ∑

π′:δ(π)≺δ(π′), χπ=χπ′

n(π, π′) trσπ′(φ̂
t,k
δ )

 dµ(π)

≤ µ(φ̂t,kδ ) + nG∞Cδ,m(R + cδ)
m
∑
δ′≺δ

µ(gm,δ′).

By the above, the first summand is here bounded by DδR
mδ independently of µ ∈ M,

while for suitable m the sum
∑

δ′≺δ µ(gm,δ′) is bounded independently of µ by the induction

hypothesis. We conclude that (13) holds for δ. �

We remark that the proof simplifies for the groups GL(n), since in this case the tempered
basic representations πδ,λ, Reλ = 0, are always irreducible, the R-groups are trivial and
the sets D′(δ) are therefore singletons. The Paley-Wiener space PWr,δ is then just the
space of Wδ-invariant functions in PW(aM)r, where (M, δ) is a representative of δ and Wδ

denotes the stabilizer of δ inside the Weyl group W (AM).

7. The spectral limit property

We now come back to the global situation and consider the question whether the collec-
tion of measures {µG,S∞K }K∈K on G(F∞)1 associated to a set K of open subgroups K of Kfin

is polynomially bounded. We conjecture that this is true for the set of all open subgroups
of Kfin. Note that each finite set K is known to have this property ([41]). So, as in the
case of property (TWN) considered above, the issue is to control the dependence on K.

Remark 10. Deitmar and Hoffmann ([20]) have shown unconditionally that for any G the

collection of measures {µG,S∞K(n),cusp}, where µG,S∞K(n),cusp is the analog of µG,S∞K(n) for the cuspidal

spectrum, is polynomially bounded. (In fact, they obtain a more precise statement.) How-
ever, for our argument we need to know the corresponding statement for the full discrete
spectrum.

Our results in this direction are Lemmas 11 and 12 below, which we will use to prove the
spectral limit property for principal congruence subgroups in Corollary 3, thereby finishing
our argument. Recall the spectral expansion of Theorem 4, which expresses Arthur’s
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distribution J(h) as a sum of contributions Jspec,M(h) associated to the conjugacy classes
of Levi subgroups M of G. Also recall properties (TWN) and (BD) from §4. The technical
heart of our argument is contained in the following lemma. We use freely the notation
introduced in §3.

Lemma 10. Suppose that G satisfies properties (TWN) and (BD). Furthermore, let M ∈
L, M 6= G, and assume that the set of measures {µM,S∞

KM (n)} is polynomially bounded. Let

S ⊃ S∞ be a finite set of places of F . Then for any finite set F ⊂ Π(K∞) there exists an
integer k ≥ 0 such that for any open subgroup KS ⊂ KS−S∞, for all 0 < δ < dimUP and
any s ∈ NG(M)/M , β ∈ BP,Ls and X ∈ ΞLs(β) we have

(15)

∫
i(aGLs )∗

‖∆X (P, λ)M(P, s)ρ(P, λ, h⊗ 1KS(n))‖1,A2(P ) dλ�KS ,F ,δ ‖h‖k N(n)−δ

for all h ∈ H(G(FS)1)F ,KS and all integral ideals n of oF prime to S, where ‖·‖1 denotes
the trace norm.

Proof. We argue as in [27, §5] (cf. also [39]). First note that we may omit M(P, s) in
(15), since it is a unitary operator and hence does not affect the trace norm. Let ∆ be the
operator Id−Ω+2ΩK∞ , where Ω (resp. ΩK∞) is the Casimir operator of G(F∞) (resp. K∞).
Since the groups K(n) form a neighborhood base of the identity in Kfin, we can find an
ideal n0 with KS ⊃ KS(n0). For any k > 0 we bound the left-hand side of (15) by∫

i(aGLs )∗
‖∆X (P, λ)ρ(P, λ,∆)−2k‖1,A2(P )K(n0n),F‖ρ(P, λ,∆2k ? h⊗ 1KS(n))‖ dλ

≤ vol(KS(n))‖∆2k ? h‖L1(G(FS)1)

∫
i(aGLs )∗

‖∆X (P, λ)ρ(P, λ,∆)−2k‖1,A2(P )K(n0n),F dλ.

Consider the integral on the right-hand side.9 For any π ∈ Πdisc(M(A)) and τ ∈ Π(K∞),
the operator ρ(P, λ,∆) acts by the scalar µ(π, λ, τ) = 1 +‖λ‖2−λπ + 2λτ − eP on A2

π(P )τ ,
where eP is a constant depending only on P (cf. [11, §3.2, (2)]). Since it is easy to see that
eP ≤ 0, we have

µ(π, λ, τ)2 ≥ 1

4
(1 + ‖λ‖2 + λ2

π + λ2
τ ) ≥

1

4
(1 + ‖λ‖2 + Λ2

π).

Therefore,∫
i(aGLs )∗

‖∆X (P, λ)ρ(P, λ,∆)−2k‖1,A2(P )K(n0n),F dλ ≤

∑
τ∈F

∑
π∈Πdisc(M(A))

∫
i(aGLs )∗

‖∆X (P, λ)‖1,A2
π(P )K(n0n),τµ(π, λ, τ)−2k dλ.

9In the corresponding formula [27, (5.1)] the restriction to the K0-fixed part was mistakenly omitted.



LIMIT MULTIPLICITIES 31

Estimating ‖A‖1 ≤ dimV ‖A‖ for any linear operator A on a finite-dimensional Hilbert
space V , we bound the previous expression by∑

τ∈F

∑
π∈Πdisc(M(A))

dimA2
π(P )K(n0n),τ

∫
i(aGLs )∗

‖∆X (P, λ)‖A2
π(P )K(n0n),τµ(π, λ, τ)−2k dλ

which is in turn bounded by
(16)∑

τ∈F ,
π∈Πdisc(M(A))

(1 + Λπ)−k dimA2
π(P )K(n0n),τ

∫
i(aGLs )∗

(1 + ‖λ‖)−k
m∏
i=1

‖δPi|P ′i (λ)
∣∣
A2
π(P ′i )

K(n0n),τ‖ dλ.

We first need to estimate the integral over i(aGLs)
∗. Let FM ⊂ Π(KM,∞) be the finite set

of all irreducible components of restrictions of elements of F to KM,∞. Then by Frobenius
reciprocity only those π ∈ Πdisc(M(A)) with π∞ ∈ Π(M(F∞))FM can contribute to (16).

Let β = (β∨1 , . . . , β
∨
m) and introduce the new coordinates si = 〈λ, β∨i 〉, i = 1, . . . ,m, on

(aGLs,C)∗. By (4) we can write

δPi|P ′i (λ) =
n′βi(π, si)

nβi(π, si)
Id +jP ′i ◦ (Id⊗R(π, si)

−1R′(π, si)) ◦ j−1
P ′i
.

Property (TWN) and Proposition 2 (which is based on property (BD)) together yield the
estimate

(17)

∫
i(aGLs )∗

(1 + ‖λ‖)−k
m∏
i=1

‖δPi|P ′i (λ)
∣∣
A2
π(P ′i )

K(n0n),τ‖ dλ� (1 + Λπ∞)N N(n0n)ε

for all ε > 0 and all sufficiently large N and k (possibly depending on τ).
Consider now the dimensions of the spaces of automorphic forms appearing in (16). We

have

dimA2
π(P )K(n0n),τ = mπ dim Ind

G(A)
P (A)(π)K(n0n),τ

= mπ dim Ind
G(F∞)
P (F∞)(π∞)τ dim Ind

G(Afin)
P (Afin)(πfin)K(n0n),

where

mπ = dim Hom(π, L2
disc(AMM(F )\M(A))).

Note that here the factor dim Ind
G(F∞)
P (F∞)(π∞)τ is bounded by (dim τ)2. Since K(n0n) is a

normal subgroup of Kfin, we have

dim Ind
G(Afin)
P (Afin)(πfin)K(n0n) = [Kfin : (Kfin ∩ P (Afin))K(n0n)] dimπ

KM (n0n)
fin .

Using the factorization Kfin ∩ P (Afin) = (Kfin ∩M(Afin))(Kfin ∩ U(Afin)), we can rewrite
this as

dim Ind
G(Afin)
P (Afin)(πfin)K(n0n) = vol(K(n0n))−1[Kfin ∩ U(Afin) : K(n0n) ∩ U(Afin)]−1

vol(KM(n0n)) dimπ
KM (n0n)
fin .
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Identifying U with its Lie algebra u via the exponential map, it is easy to see that

[Kfin ∩ U(Afin) : K(n0n) ∩ U(Afin)]−1 ≤ C N(n0n)− dimU

for a constant C depending only on G.
Putting things together, we obtain for (15) the bound

C(n0,F , ε)‖h‖4k N(n)ε−dimU vol(KM(n0n))
∑

π∈Πdisc(M(A))FM

(1 + |λπ∞|)−kmπ dimπ
KM (n0n)
fin

for sufficiently large k. By assumption, the set of measures {µM,S∞
KM (n0n)} is polynomially

bounded. Therefore the fourth condition of Proposition 6 yields the existence of an integer
k, depending only on FM , such that

µM,S∞
KM (n0n)(gk,FM ) =

vol(KM(n0n))

vol(M(F )\M(A)1)

∑
π∈Πdisc(M(A))FM

(1 + |λπ∞|)−kmπ dimπ
KM (n0n)
fin

is bounded independently of n. This proves the assertion. �

Remark 11. Note that (6) yields the following improvement of (17):

(18)

∫
i(aGLs )∗

m∏
i=1

(1+‖λ‖)−2m‖δPi|P ′i (λ)
∣∣
A2
π(P ′i )

K(n0n),τ‖ dλ� (1+log(1+Λπ∞)+log N(n0n))m.

This implies a slightly improved version of Lemma 10, in which the expression N(n)−δ is
replaced by (1 + log N(n))m N(n)− dimUP .

We are now in a position to prove that for M ∈ L the collection of measures {µM,S∞
KM (n)}

on Π(M(F∞)1) is polynomially bounded.10

Lemma 11. Let G be anisotropic modulo the center. Then the collection of measures
{µG,S∞K }, where K ranges over the open subgroups of Kfin, is polynomially bounded.

Proof. In this case, the trace formula for a test function h ∈ C∞c (G(F∞)1) can be written
as

vol(G(F )\G(A)1)µG,S∞K (ĥ) =
∑
[γ]

vol(G(F )γ\G(A)1
γ)

∫
G(A)γ\G(A)

(h⊗ 1K)(g−1γg)dg,

where summation is over the conjugacy classes of G(F ). Clearly, for all h with support
contained in a fixed set Ω∞ ⊂ G(F∞)1, we can bound the absolute value of the right hand
side by ∑

[γ]

vol(G(F )γ\G(A)1
γ)

∫
G(A)γ\G(A)

(1Ω∞Kfin
)(g−1γg)dg

 sup|h|

independently of K. Therefore, sup|µG,S∞K (ĥ)| is a continuous seminorm on every space
H(G(F∞)1)r,F , and by Proposition 6 we obtain the assertion. �

10Variants of Lemma 11 have been previously established in [22, Proposition 3.3] and [20].
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Lemma 12. Suppose that G satisfies (TWN) and (BD). Then for each M ∈ L the col-

lection of measures {µM,S∞
KM (n)}, n ranging over the integral ideals of oF , is polynomially

bounded.

Proof. We do induction over the semisimple rank of M , using Lemma 11 as the base. For
the induction step, we can assume the assertion for all groups in L\{G} and have the task
to establish it for G itself. Fix r > 0 and apply the trace formula to h ⊗ 1K(n), where
h ∈ H(G(F∞)1)r,F . By Theorem 4, we have

vol(G(F )\G(A)1)µG,S∞K(n) (ĥ) = J(h⊗ 1K(n))−
∑

[M ],M 6=G

Jspec,M(h⊗ 1K(n)).

Now, for each single choice of n the absolute value |J(h⊗1K(n))| is a continuous seminorm
by Arthur ([9]). Moreover, as in the proof of Corollary 1, for all n outside of a finite set
depending only on r we have J(h ⊗ 1K(n)) = Junip(h ⊗ 1K(n)). Therefore it follows from
our analysis of the geometric side in Proposition 3 that supn|J(h⊗ 1K(n))| is a continuous
seminorm onH(G(F∞)1)r,F . By Theorem 4, for each M 6= G the absolute value |Jspec,M(h⊗
1K(n))| is (up to a constant depending only on G) bounded by a finite sum of integrals
of the form (15). Applying Lemma 10 (with S = S∞), we see that the spectral terms
supn|Jspec,M(h⊗ 1K(n))| are also continuous seminorms on H(G(F∞)1)r,F . By Proposition

6, we conclude that the collection {µG,S∞K(n) } is polynomially bounded. �

As before, let S be a finite set of places containing S∞.

Corollary 3 (Spectral limit property). Suppose that G satisfies (TWN) and (BD). Then
we have the spectral limit property for the set of subgroups KS(n), where n ranges over the
integral ideals of oF prime to S.

Proof. From Lemma 12 we get that for each M ∈ L the collection of measures {µM,S∞
KM (n)}

is polynomially bounded. Therefore we can apply Theorem 4 and Lemma 10 again to
conclude that for each h ∈ H(G(FS)1) we have

Jspec,M(h⊗ 1KS(n))→ 0

for all M 6= G and therefore

J(h⊗ 1KS(n))− trRdisc(h⊗ 1KS(n))→ 0,

which is the spectral limit property. �

Theorem 7. Suppose that G satisfies (TWN) and (BD). Then limit multiplicity holds for
the set of subgroups KS(n), where n ranges over the integral ideals of oF prime to S.

Proof. The geometric limit property has been established in Corollary 1, and the spectral
limit property in Corollary 3. By Theorem 1, we obtain the result. �

This finishes also the proof of Theorem 2, since (TWN) and (BD) have been verified for
G = GL(n) in Proposition 1 and Theorem 5, respectively.
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Remark 12. In the situation of Theorem 7 we actually obtain the following quantitative
statement: for any finite set F ⊂ Π(K∞) there exists an integer k ≥ 0 such that for any
open subgroup KS ⊂ KS−S∞ we have

(19) |µG,S
KS(n)

(ĥ)− h(1)| �KS ,F
(1 + log N(n))d0

N(n)
‖h‖k

for all h ∈ H(G(FS)1)F ,KS and all integral ideals n of oF prime to S. (Here we use that
dimUP = 1 can occur only if the derived group G′ is isogenous to SL(2), and that (6) is
known in this case.) We expect that one should be able to replace N(n) in the denominator
by N(n)dmin/2, where dmin is the dimension of the minimal unipotent orbit of G. In view
of Lemma 10 this would follow from a corresponding improvement of Proposition 3. To
deduce from (19) an estimate for |µG,S

KS(n)
(A)−µpl(A)| for subsets A ⊂ Π(G), a quantitative

version of the density principle (Theorem 3) would be necessary.
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