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1. Introduction

Let G be a reductive algebraic group defined over a p-adic field F with residue field
Fq and G = G(F ). Fix a special maximal compact subgroup K0 of G. For a maximal
parabolic subgroup P = MU of G and a smooth irreducible representation π of M =
M(F ) we consider the family of induced representations IP (π, s), s ∈ C, which extend the
fixed K0-representation IK0

P∩K0
(π|M∩K0), and the associated intertwining operators M(s) =

MP |P (π, s) : IP (π, s)→ IP (π, s). For any open subgroup K of K0 the restriction

M(s)K : IK0
P∩K0

(π|M∩K0)
K = IP (π, s)K → IP (π, s)K = IK0

P∩K0
(π|M∩K0)

K

of M(s) to the space of K-fixed vectors is a family of linear maps between finite-dimensional
vector spaces which do not depend on s. It is well known that the matrix coefficients of the
linear operators M(s)K are rational functions of q−s, whose denominators can be controlled
explicitly (e.g. [23, IV.1.1, IV.1.2]). In particular, their degrees are bounded independently
of K and π.

What can be said about the degrees of the numerators? In this note, we study the
following conjecture, which should provide a bound of the correct order of magnitude. Let
G′ be the derived group of G and set G′ = G′(F ). Note that K ′0 = K0 ∩ G′ is a special
maximal compact subgroup of G′.
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Conjecture 1. There exist constants c > 0 and d, depending only on G, such that for any
open subgroup K ⊂ K0 the degrees of the numerators of the matrix coefficients of M(s)K

are bounded by c logq[K
′
0 : K ′] + d, where K ′ = K ∩G′.

There is also the following supplement in a global situation, where we consider a re-
ductive group G defined over a number field k and its base change to F = kv for all
non-archimedean places v of k. Let K0,v be a special maximal compact subgroup of G(kv).

Conjecture 2. In the global situation assume K0,v to be hyperspecial for almost all places
v of k. Then Conjecture 1 is true for all pairs of local groups G(kv) and K0,v with uniform
values of c and d.

It is equivalent to consider the normalized intertwining operators R(s) defined by Arthur
([1]). They differ from M(s) by a normalizing scalar which is a rational function of q−s

of degree bounded in terms of G only. If we replace M(s) by R(s) in Conjecture 1,
and in addition G is unramified and K0 hyperspecial, then we may take d = 0, since
any representation which admits a K ′0-fixed vector is a twist by a character of G/G′ of an
unramified representation of G. Similarly, we may take d = 0 in the analogue of Conjecture
2, if G′ is simply connected and we omit the finitely many places v where G(kv) is ramified
or K0,v not hyperspecial.

The main result of this paper is the following.

Theorem 1. Conjectures 1 and 2 are true for the groups G = GL(r). More precisely, the
constants c and d in Conjecture 1 depend only on r and [F : Qp].

An important motivation for our paper is provided by the analysis of limit multiplici-
ties for non-compact quotients of G(R), where in order to deal with the spectral side of
Arthur’s trace formula it is crucial to bound the degrees of the matrix coefficients of local
intertwining operators. This application (for G = GL(r)) will be discussed in another
paper. We opted to single out our conjectures and results as a separate paper, since they
may be of interest in their own right.

A natural analogue of Conjecture 1 in the archimedean case (F = R or C) has been
obtained in the appendix to [15]. To explain it, fix a maximal compact subgroup K0 of G

(it is well known to be unique up to conjugation). For any K0-module V and σ ∈ K̂0 let
V σ denote the σ-isotypic part of V . Let R(π, s) : IP (π, s) → IP (π, s) be the normalized
intertwining operators and R(π, s)σ their restrictions to linear maps between the finite-
dimensional vector spaces IP (π, s)σ and IP (π, s)σ which do not depend on s. The matrix
coefficients of the operators R(π, s) are rational functions of s ([1, Theorem 2.1]). We
denote by ‖σ‖ the norm of the highest weight vector of σ (with respect to a fixed choice of
norm on the vector space spanned by the lattice of characters of a maximal torus of K0).
Then we can formulate the following direct consequence of [15, Proposition A.2].

Theorem 2. There exists a constant c > 0, depending only on G and the norm ‖·‖, such
that for any maximal parabolic subgroup P = MU of G, any irreducible representation π
of M and any K0-type σ ∈ K̂0 the degrees of the matrix coefficients of R(π, s)σ are bounded
by c‖σ‖.
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Let us now make a few comments about the proof of Theorem 1, at the same time
outlining the partial results that we can prove for general groups G. First, by a standard
argument we can reduce to the case where π is supercuspidal. Furthermore, a result of
Lubotzky allows us to assume that K ′ is a principal congruence subgroup of G′. After
these reductions, there are two main ingredients. First, assuming the widely believed
conjecture that supercuspidal representations of G are induced from open subgroups which
are compact modulo the center,1 we can deduce a good bound for the support of matrix
coefficients of these representations (property (PSC) of Definition 1 below). This inference
is an explication of an argument which goes back to Jacquet ([11], cf. [4]). The classification
of supercuspidals needed for our argument has been proven for G = GL(r) by Bushnell
and Kutzko ([6]). It is also known in many other cases, most notably for classical groups of
odd residual characteristic ([21]) and for any group in large residual characteristic ([13]).
Therefore, property (PSC) is true in these cases.

The second part of the argument is a simple proof of the rationality of intertwining
operators for parabolic subgroups P with Abelian unipotent radical,2 which allows us to
control the degrees of the rational functions involved (Proposition 2 and Theorem 3). For
G = GL(r) this fortunately covers all cases, thereby completing the proof of Theorem 1.
The technical geometric property that is needed for our argument is explicated in Definition
2 below. It is unfortunately not satisfied for all maximal parabolics, even in the case of
classical groups (cf. Remark 5). It is conceivable that a more elaborate argument will work
in general.

We are grateful to Joseph Bernstein, Colin Bushnell, Guy Henniart and Eitan Sayag for
useful discussions. We thank the Centre Interfacultaire Bernoulli, Lausanne, and the Max
Planck Institute for Mathematics, Bonn, where a part of this paper was worked out.

2. The setup

Let F be a p-adic field with normalized absolute value |·|, ring of integers O and uni-
formizer $. Let q be the cardinality of the residue field of F .

As a rule we write X = X(F ) whenever X is a variety over F . Let G be a connected
reductive algebraic group defined over F with center Z. All algebraic subgroups that will
be considered in the sequel are implicitly assumed to be defined over F . Let G′ be the
derived group of G and for any subgroup K ⊂ G write K ′ = K∩G′. Fix a maximal F -split
torus T0 and a minimal parabolic subgroup P0 = M0U0 ⊃ T0 of G, where M0 = CG(T0)
is a minimal Levi subgroup of G. Let Φ = R(T0,G) be the set of roots of T0. The choice
of P0 fixes a set of positive roots R(T0,U0) ⊂ Φ. Let ∆0 ⊂ Φ be the corresponding subset
of simple roots. The standard maximal parabolic subgroups of G correspond bijectively to
the simple roots, and for α ∈ ∆0 we denote by Pα = MαUα the unique standard maximal
parabolic with α ∈ R(T0,U

α). We take a representative w0 ∈ G for the longest Weyl

1In fact, it suffices to assume that every supercuspidal representation is contained in such an induced
representation of finite length (cf. §3 below for more details).

2We also make the additional technical assumption that the group G is split over F .
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element. For any standard parabolic P with standard Levi decomposition P = MU we
denote by P = MU the opposite parabolic subgroup.

Fix a special maximal compact subgroup K0 of G (more precisely, the stabilizer of a spe-
cial point in the apartment associated to T0), so that we have the Iwasawa decomposition
P0K0 = G. In addition, we have the Cartan decomposition G = K0M

+
0 K0, where M+

0 is
the set of all m ∈ M0 with |α(m)| ≥ 1 for all α ∈ ∆0 ([22, §3.3]). Also, for any parabolic
subgroup P = MU with Levi subgroup M ⊃M0 we have (P ∩K0) = (M ∩K0)(U ∩K0).
Fix a faithful representation ρ : G → GL(N) such that K0 = ρ−1(GL(N,O)) and for
n = 1, 2, . . . let

Kn = ρ−1({g ∈ GL(N,O) : g ≡ 1 (mod $n)})
be the associated principal congruence subgroups of K0. Note that a more natural filtration
of K0 has been defined in terms of the Bruhat-Tits building of G′ in [17, Ch. I].

Suppose now that P = MU is a standard maximal parabolic subgroup. Let χP be the
fundamental weight of P. Some integral power of χP defines a rational character of P
trivial on U. Therefore |χP | defines a character |χP | : P → R>0 and we can extend it
uniquely to a right-K0-invariant function, still denoted by |χP |, on G. Let π = (π, Vπ)
be an irreducible (smooth) representation of M . Let δP be the modulus function of P .
Consider the family of induced representations IP (π, s), s ∈ C, of G, that extend the
K0-representation IK0

P∩K0
(π|M∩K0). Namely, IP (π, s) is the space of all smooth functions

ϕ : G → Vπ with ϕ(pg) = |χP |(p)sδP (p)1/2π(p)ϕ(g) for all p ∈ P , g ∈ G where π is
extended to P via the canonical projection P → M , and the G-action is given by right
translations. Any smooth function ϕ : K0 → Vπ with ϕ(pk) = π(p)ϕ(k) for all k ∈ P ∩K0

extends uniquely to a function ϕs ∈ IP (π, s). Let π∨ be the contragredient of π and denote
the pairing between Vπ and Vπ∨ by (·, ·). Then

(ϕ, ϕ∨) =

∫
K0

(ϕ(k), ϕ∨(k)) dk

defines a pairing between IP (π, s) and IP (π∨,−s). Fix a choice of Haar measure on U .
The intertwining operators M(s) = MP |P (π, s) : IP (π, s)→ IP (π, s), which are defined by
meromorphic continuation of the integrals

(M(s)ϕ)(g) =

∫
U

ϕ(ug) du, ϕ ∈ IP (π, s),

were first studied in this generality by Harish-Chandra. (See [23, Section IV] for a self-
contained treatment.) It is known that the matrix coefficients (M(s)ϕs, ϕ

∨
−s) for ϕ ∈

IK0
P∩K0

(π|M∩K0) and ϕ∨ ∈ IK0

P∩K0
(π∨|M∩K0) are rational functions of q−s ([loc. cit., IV.1.1])

and that the degree of the denominator is bounded in terms of G only ([loc. cit., IV.1.2],
cf. also [19, Theorems 2.2.1, 2.2.2], [20]). It is often advantageous to work instead with
the normalized intertwining operators R(s) = RP |P (π, s) : IP (s) → IP (s) defined in [1]

which differ from M(s) by a certain rational function of q−s depending on π whose degree
is bounded in terms of G only. Thus, the matrix coefficients of R(s) are also rational
functions in q−s and the degree of the denominator is bounded in terms of G.
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Let g = Lie G and fix an O-lattice Λ ⊂ g stabilized by the operators Ad(k), k ∈ K0.

Define a norm on g by ‖
∑d

i=1 tiXi‖g = max1≤i≤d|ti| for any O-basis X1, . . . , Xd of Λ. This
defines a norm ‖·‖End(g) on End(g), namely ‖A‖End(g) is the maximum of the absolute values
of the matrix coefficients of A with respect to the basis X1, . . . , Xd. For any g ∈ G we
write ‖g‖G = ‖Ad(g)‖End(g) where Ad : G → GL(g) is the adjoint representation, and for
any real number R we set B(R) = {g ∈ G : ‖g‖G ≤ qR}, which is a compact set modulo
Z. We often omit the subscript from ‖·‖ if it is clear from the context.

In the global situation of a reductive group G defined over a number field k, we need of
course to fix analogous global data that induce the local data pertaining to G(kv) for the
non-archimedean places v of k. In particular, we fix an Ok-lattice Λ ⊂ g to define the local
norms ‖·‖G(kv) via base change to Okv . Also, we obtain the representation ρv intervening
in the definition of Kn,v from a representation ρ of G defined over k. It is well known that
K0,v is then hyperspecial for almost all v.

We write A� B (or B � A) if there exists a constant c (independent of other quantities)
such that A ≤ cB.

3. Matrix coefficients of supercuspidal representations

Definition 1. We say that G has polynomially bounded support of supercuspidal matrix
coefficients (PSC) if there exist constants c and d such that for every open subgroup
K ⊂ K0 and any supercuspidal representation π of G the support of the matrix coefficients
(π(g)v, v∨), v ∈ πK , v∨ ∈ (π∨)K , is contained in B(c logq[K

′
0 : K ′] + d).

Conjecture 3. Every p-adic reductive group G has property (PSC).

A supplementary global statement for reductive groups G defined over number fields k
and the associated local groups G(kv) will be proved later (cf. Corollary 2 below).

In studying our conjectures, it is useful to restrict attention to the principal congruence
subgroups K ′n of K ′0. This is possible by the following statement which is a special case of
a result of Lubotzky ([14, Lemma 1.6]).

Proposition 1 (Lubotzky). There exists constants c0 and d0 such that any open subgroup
K of K0 contains the principal congruence subgroup K ′n of G′ for n = bc0 logq[K

′
0 : K ′]+d0c.

Moreover, if G is defined over a number field k and K0,v is hyperspecial for almost all v,
then for the pairs (G(kv), K0,v) we can take uniform values of c0 and d0 (in fact, c0 = [kv :
Qp] works for almost all v).

Note that in [14] it is assumed that G′ is simply connected, and one can then take d0 = 0.
The general case follows easily by passing to the simply connected covering group of G′.

Let L be an open subgroup of G containing Z such that L/Z is compact. We refer to
such subgroups as open compact modulo center (ocmc) for short. We say that a finite-
dimensional representation σ of L is cuspidal if for every proper parabolic subgroup P of
G with unipotent radical U we have σL∩U = 0. Here, it clearly suffices to consider only
maximal parabolic subgroups. By [4, Theorem 1 supp.], this condition is necessary (and
in fact also sufficient, by Lemma 1 below) for IndGL σ to be of finite length, in which case
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it is the direct sum of finitely many irreducible supercuspidal representations. Note that
if σ is cuspidal then its contragredient σ∨ is cuspidal as well. We say that a supercuspidal
representation π of G is induced from an ocmc, if there exists a pair (L, σ) where L is an

ocmc and σ ∈ L̂, necessarily cuspidal, such that π = IndGL σ.
It is widely believed that every irreducible supercuspidal representation π is induced

from an ocmc,3 and in fact this is known in many cases (cf. [6, 13, 21, 24], and earlier
work by Howe, Morris, Moy and others). For our purposes it suffices to know that π is a
constituent of IndGL σ for some cuspidal σ.

Lemma 1. Let L be an ocmc. Then there exists constants c, depending only on G, and
d, depending on L, such that for any cuspidal σ ∈ L̂, any open subgroup K ⊂ K0 and any
f ∈ (IndGL σ)K we have supp(f) ⊂ B(c logq[K

′
0 : K ′] + d).

Proof. Note first that the assertion is trivial if G′ is anisotropic, since G/Z is then compact.
So, we may assume that the F -rank of G′ is nonzero. By Lubotzky’s result, we may
assume without loss of generality that K ′ is a principal congruence subgroup K ′n of G′. In
particular, K ′ is normal in K0.

Let g ∈ G and write its Cartan decomposition as g = k1ak2 ∈ G with k1, k2 ∈ K0 and
a ∈M+

0 . We first show that there are constants c and d such that ‖g‖ > qcn+d implies the
existence of a standard maximal parabolic P = MU of G satisfying

(1) U ∩ k−1Lk ⊂ a(U ∩K)a−1 for all k ∈ K0.

Assume that ‖g‖ = ‖a‖ > qcn+d for some c > 0 and d which will be specified later. Note
first that there are only finitely many K0-conjugates of the group L, and that their inter-
sections with U0 generate an open compact subgroup V0(L) of U0. Using the exponential
map, we can identify U0 with its Lie algebra, which is an affine space. Fixing a choice of
a norm on U0, we let U0(n) be the lattice consisting of elements of U0 of norm bounded by
qn and set U(n) = U0(n)∩U for any standard parabolic subgroup P = MU of G. Clearly,
there exists a constant n0 = n0(L) such that V0(L) is contained in U0(n0), and therefore
the left-hand side of (1) is contained in U(n0) for all k ∈ K0.

Let β ∈ ∆0 with |β(a)| = maxα∈∆0|α(a)|. There exist constants c1 > 0 and n1

such that maxα∈∆0∪−∆0|α(b)| ≥ q−n1‖b‖c1 for any b ∈ M0. Therefore, we obtain from
|α(a)| ≥ 1, α ∈ ∆0, and ‖a‖ > qcn+d that |β(a)| > qc1cn+c1d−n1 , which implies in turn
that |α(a)| > qc1cn+c1d−n1 for all roots α ∈ R(T0,U

β). There also exists a constant n2

such that Uβ ∩ K = Uβ ∩ K ′n contains Uβ(−n − n2), which implies that a(Uβ ∩ K)a−1

contains Uβ(c1cn+ c1d− n1 − n− n2). It is therefore sufficient to take c = c−1
1 and

d = c−1
1 (n0 + n1 + n2) to obtain (1) for P = P β.

Let now π = IndGL σ. For an arbitrary element f ∈ πK set f2 = π(k2)f ∈ πK′ . For any
u ∈ U ∩K = U ∩K ′ we have

f(g) = f2(k1a) = f2(k1au) = f2(u′k1a)

3We were unable to trace back who precisely formulated the conjecture in this generality, but it certainly
goes back to the early days of the representation theory of p-adic groups.
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where u′ = k1aua
−1k−1

1 . If in addition u′ ∈ k1Uk
−1
1 ∩L, then we get f(g) = σ(u′)f2(k1a) =

σ(u′)f(g). Using (1) and the cuspidality of σ, we conclude that f(g) ∈ σk1Uk−1
1 ∩L = 0. �

Remark 1. The qualitative statement that in the situation of the lemma any element of
IndGL σ has compact support modulo the center is contained in [4, Theorem 1 supp.] in the
case G = GL(r). The argument is originally due to Jacquet ([11]).

Corollary 1. There exist constants c′ and d′ with the following property. Let L be an ocmc
of G, σ ∈ L̂ cuspidal and π = IndGL σ. Let K ⊂ K0 be open and let v ∈ πK and v∨ ∈ (π∨)K.
Then the support of (π(g)v, v∨) is contained in B(c′ logq[K

′
0 : K ′] + d′).

Proof. Clearly, if σ is a cuspidal representation of L′ and L ⊃ L′, then IndLL′ σ is a cuspidal
representation of L (cf. [4]). We can therefore assume that L is a maximal ocmc. In other
words, denoting by TG the maximal F -split torus of Z(G), L is the inverse image under the
projection G→ G/TG of a maximal compact subgroup of G/TG, which is also the group of
F -points of the algebraic group G/TG, since the first Galois cohomology of TG is trivial.
There are finitely many such subgroups L up to G-conjugation ([22, §3.2]). It follows from
the previous lemma that for suitable positive constants c and d the supports S and S∨

of v ∈ πK and v∨ ∈ (π∨)K , respectively, are both contained in B(c logq[K
′
0 : K ′] + d).

However, (π(g)v, v∨) = 0 whenever the support of π(g)v is disjoint from the support of
v∨, or equivalently whenever g 6∈ (S∨)−1S. Observing that there exists a positive constant
c1 such that B(N)−1B(N) ⊂ B(c1N) for all N > 0, we conclude that the support of the
matrix coefficient (π(g)v, v∨) is contained in B(c1c logq[K

′
0 : K ′] + c1d). �

Remark 2. The proof shows also that in the global situation of a reductive group G
defined over a number field k there exist uniform constants c and d such that the assertion
of the corollary is true for all local groups G(kv), v a non-archimedean place of k, and
maximal compact subgroups K0,v that are hyperspecial for almost all v. One only needs to
observe that every maximal compact subgroup of G/TG is conjugate to a maximal compact
subgroup L̃ containing a fixed Iwahori subgroup I ([22, §3.7]). Moreover, the index [L̃ : I]
is bounded by qN , where N does not depend on v. From this, we deduce that the constant
n0 in the proof of Lemma 1 can be bounded independently of v. The boundedness of all
other constants is clear.

Remark 3. The maximal ocmcs of GL(r, F ) are parameterized by divisors of r. If k is
a divisor of r and kl = r, then we take a sequence of O-lattices Li ⊂ F r, i ∈ Z, such
that Li+l = πLi and dimFq Li/Li+1 = k for all i. The stabilizer of the sequence Li is the
semidirect product of the cyclic group generated by an element zl of GL(r, F ) such that
zlLi = Li+1 and the parahoric of type (k, . . . , k) (cf. [8]).

Corollary 2. Assume that every supercuspidal representation of G is contained in a repre-
sentation induced from a cuspidal representation of an ocmc. Then G has property (PSC).
In particular, the following groups have property (PSC):

(1) G = GL(r, F ) ([6]),
(2) G = SL(r, F ) ([7]),
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(3) G(F ) for classical groups G, provided p 6= 2 ([21]),
(4) G(kv) for any reductive group G defined over a number field k and almost all non-

archimedean places v of k ([13]). Moreover, if in addition K0,v is a hyperspecial
maximal compact subgroup of G(kv) for almost all v, then there are uniform con-
stants c and d for which G(kv) has property (PSC) with respect to K0,v for almost
all v.

Remark 4. A general finiteness theorem of Bernstein ([2], [3], cf. also [4, p. 110]) shows
(without appealing to any classification results) that for any open subgroup K of K0 there
are up to twisting by unramified characters only finitely many supercuspidal representations
π of G with a non-trivial K-fixed vector. Therefore, there necessarily exists a number
N = N(K) such that the support of all matrix coefficients (π(g)v, v∨), v ∈ πK , v∨ ∈ (π∨)K ,
is contained in B(N). To prove property (PSC) predicted by Conjecture 3 this way, it
seems necessary to obtain an effective version of Bernstein’s stabilization theorem (cf. [5,
Theorem 1]) with a realistic bound for the exponent nK , namely a bound that is logarithmic
in [K ′0 : K ′].

4. A class of parabolic subgroups

Definition 2. We say that a maximal parabolic subgroup P is nice if there exists a positive
constant c such that for all n > 0 we have

(2) U ∩ UZ(M)B(n) ⊂

{
B(cn) ∪ Pw0Kn if w0Mw−1

0 = M,

B(cn) otherwise.

In other words, P is nice, if in a precise quantitative sense, for a compact subset Ω of G
either U ∩ UZ(M)Ω is bounded in terms of Ω, or Pw0 = P and for a small open compact
subgroup K = K(Ω) of G the set U ∩ UZ(M)Ω \ Pw0K is bounded in terms of Ω.

Our main result concerning this property is the following.

Proposition 2. Suppose that G is split and U is Abelian. Then P is nice. Moreover, if
G is defined and split over a number field k, then there is a uniform constant c > 0 such
that (2) is satisfied for all local groups G(kv) where v is a non-archimedean place of k.

The assumption that G is split is mainly for convenience and can probably be suppressed.
For the convenience of the reader, we first present a proof in the case of G = GL(r), where
we can simplify the argument by direct matrix computations. The general case will be
dealt with in Section 6 below.

Lemma 2. For G = GL(r) all maximal parabolic subgroups are nice.

Proof. To fix ideas, we define the norm of elements of G and the sets B(n) with respect to
the standard O-lattice in g spanned by the elementary matrices. With this normalization
we will obtain (2) for c = 2r. For a matrix X over F we write ‖X‖ (to be distinguished
from ‖g‖G for invertible g) for the standard norm of X, i.e., the maximum of the absolute
values of its entries.
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Let P be of type (m′,m). We may assume without loss of generality that m ≥ m′, for

otherwise we can apply the automorphism g 7→ w0
tg−1w0 of G. Let u =

(
Im′
X Im

)
and

suppose that

u =

(
λIm′ ∗

µ−1Im

)
g, λ, µ ∈ F ∗, g =

(
α β
γ δ

)
∈ B(n).

Note that ‖u‖G ≤ ‖X‖2. Modifying g by a central element (and λ and µ accordingly) we
can assume that 1 ≤ |det g| < qr. Then it is easy to see that the entries of g are bounded
by qn. Note that γ = µX and δ = µIm. In particular, we have ‖X‖ ≤ qn|µ|−1.

Suppose first that m > m′. Expanding det g as an alternating sum of products of entries
of g we see that each product contains at least one entry (in fact, at least m−m′ entries)
from δ as a factor. Thus 1 ≤ |det g| ≤ q(r−1)n|µ| which implies |µ| ≥ q−(r−1)n and therefore
‖X‖ ≤ qrn and ‖u‖G ≤ q2rn.

Suppose now that m = m′. We distinguish the two cases |µ| > q−rn and |µ| ≤ q−rn.
In the first case we conclude ‖X‖ ≤ qrn and ‖u‖G ≤ q2rn as before. Assume therefore
|µ| ≤ q−rn. The products in the expansion of det g which do not contain an entry from δ
as a factor add up to (−1)m det β det γ. Therefore,

|det g − (−1)m det βγ| ≤ |µ|q(r−1)n ≤ q−n.

On the other hand, we have |det g| ≥ 1. Therefore |det g| = |det βγ|. In particular, γ is
invertible and

|det γ|−1 = |det βγ|−1|det β| ≤ |det g|−1qmn ≤ qmn.

It follows that X is invertible and

‖X−1‖ = |µ|‖γ−1‖ ≤ |µ||det γ|−1‖γ‖m−1 ≤ |µ|q(r−1)n ≤ q−n.

Finally, the identity

u =

(
X−1 Im

X

)(
−Im

Im

)(
Im X−1

Im

)
shows that u ∈ Pw0Kn. �

Remark 5. While there are other cases of nice parabolic subgroups (for example, the
maximal parabolics of Sp(4)), unfortunately not all maximal parabolic subgroups are nice.
As an example, consider

G = Sp(6) = {g ∈ GL(6) : g

 1
1

1
−1

−1
−1

 gt =

 1
1

1
−1

−1
−1

}
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and let P be the maximal parabolic of the form P = {

( ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

)
∈ G}. The equality

 1
1

1
a 1
−a 1
−a a 1

 =

 1 −a−1

1 1 −a−1

1
1 −1

1
1

 a−1

a−1

1
1
a
a

  1
1

1
1 1
a−1 1

a−1 1 1

 1
1

1
1

−1
−1


shows that  1

1
1

a 1
−a 1
−a a 1

 ∈ U ∩ UZ(M)K0

for all a ∈ F . However, if
( ∗ ∗ ∗
∗ ∗ ∗
A B C

)
∈ Pw0Kn (with blocks of size 2×2) then ‖A−1B‖ ≤ q−n.

5. Matrix coefficients of intertwining operators

We now consider Conjectures 1 and 2 stated in the introduction, and prove some results
in this direction. In particular, we prove Theorem 1.

Definition 3. Let P be a maximal parabolic subgroup of G. We say G has polynomial
growth of matrix coefficients of intertwining operators (PIO) with respect to P , if there
exist constants c and d such that for any open subgroup K ⊂ K0 and any irreducible
representation π of M the degrees of the numerators of the linear operators MP |P (π, s)K

are bounded by c logq[K
′
0 : K ′] + d.

If this property is satisfied for all supercuspidal irreducible representations π of M , we say
that G has polynomial growth of supercuspidal matrix coefficients of intertwining operators
(PSIO) with respect to P .

Conjecture 1 amounts to the assertion that every p-adic reductive group G satisfies
property (PIO). It is easy to see that we can replace (PIO) by the weaker condition (PSIO).
More precisely, we have the following.

Lemma 3. Suppose that any Levi subgroup of G (including G itself) satisfies (PSIO).
Then G satisfies (PIO).

Proof. Let π be an irreducible representation of M . By the Jacquet subrepresentation theo-
rem, we can embed π in an induced representation IMQ∩M(σ) for a parabolic subgroup Q ⊂ P
of G with Levi subgroup L ⊂ M and an irreducible supercuspidal representation σ of L.
We need to introduce the family of induced representations IS(σ, λ), λ ∈ a∗L,C = X∗(L)⊗C,
for arbitrary parabolic subgroups S with Levi subgroup L and the associated interwining
operators MS2|S1(σ, λ) : IS1(σ, λ) → IS2(σ, λ) (cf. [23, p. 278]). The embedding of π
into IMQ∩M(σ) gives rise to an embedding of IP (π, s) into IQ(σ, sχP ), and the restriction of
MQ|Q(σ, sχP ) to IP (π, s) becomes M(π, s). We will bound the degrees of the matrix coeffi-

cients of M(σ, sχP )K . Let Q = Q0, Q1, . . . , Ql = Q be a sequence of adjacent parabolic sub-
groups from Q to Q and suppose that ∆Qi

∩∆Qi+1
= {αi}. We can decompose M(σ, sχP )

into a product of rank one intertwining operators MQi+1|Qi
(σ, s 〈χP , α∨i 〉). Therefore, it
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is enough to consider the degrees of the matrix coefficients of MQi+1|Qi
(σ, s 〈χP , α∨i 〉)K ,

i = 0, . . . , l − 1. Fix i and let R = MRNR be the parabolic subgroup generated by Qi and
Qi+1. Let Q′ = MR ∩ Qi and Q′′ = MR ∩ Qi+1. Then Q′ and Q′′ are maximal parabolic
subgroups of MR with Levi subgroup L and Q′′ = Q′. By [23, p. 284, (14)], the matrix co-
efficients of MQi+1|Qi

(σ, s 〈χP , α∨i 〉)K are given by those of MQ′|Q′(σ, s 〈χP , α∨i 〉)K∩MR . The
lemma follows. �

Theorem 3. Suppose that P = MU is a nice maximal parabolic subgroup of G and that
M satisfies property (PSC). Then G satisfies (PSIO) with respect to P .

Proof. Let π be a supercuspidal representation of M . Assume that K ′ = K ′n, n > 0, a
normal subgroup of K0. Let ϕ ∈ IK0

P∩K0
(π|M∩K0)

K′n and ϕ∨ ∈ IK0

P∩K0
(π∨|M∩K0)

K′n . This

is equivalent to ϕ(k) ∈ πM∩K
′
n and ϕ∨(k) ∈ (π∨)M∩K

′
n for all k ∈ K0. We extend these

functions to functions ϕs ∈ IP (π, s) and ϕ∨−s ∈ IP (π∨,−s). Then the matrix coefficient
(M(π, s)ϕs, ϕ

∨
−s) can be computed as

(M(π, s)ϕs, ϕ
∨
−s) =

∫
K0

((M(π, s)ϕs)(k), ϕ∨(k)) dk =

∫
U

|χP |(u)sf(u) du

with

f(u) =

∫
K0

(ϕ0(uk), ϕ∨(k)) dk.

Note that f is right U∩K ′n-invariant. Since M satisfies property (PSC), there is a constant
c1 > 0 such that the matrix coefficients (π(m)ϕ(k′), ϕ∨(k)), m ∈M , k, k′ ∈ K0, all vanish
for m 6∈ BM(c1n). Furthermore, there exists a constant c2 > 0 with BM(l) ⊂ Z(M)B(c2l)
for all l > 0. Applying the Iwasawa decomposition to u, it follows that the support of f is
contained in U ∩ UZ(M)B(c1c2n). Consider first the case where Pw0 6= P. Because P is
nice, we conclude from the above that the support of f is contained in U ∩ B(cc1c2n) for
the constant c of Definition 2. Thus, up to a constant the integral becomes a finite sum∑

u∈U∩B(cc1c2n)/U∩K′n

|χP |(u)sf(u),

which is a polynomial in q−s of degree at most − logq minU∩B(cc1c2n)|χP | � n.

We still need to consider the case Pw0 = P. Note that under the action of K0 the space
IK0

P∩K0
(π∨|M∩K0)

K′n is spanned by functions ϕ∨ with support (P ∩K0)K ′n. Assume that ϕ∨

is of this form. Clearly, there exists an integer n0 ≥ 0 such that Z(G)K ′n ⊃ Z(G)Kn+n0 .
If ϕ vanishes at w0, then it follows that f vanishes on U ∩ Pw0K

′
n ⊃ U ∩ Pw0Kn+n0 , and

we can argue as above.
In the general case, let ωs be the character ωπ|χ|s of M and consider the operator

∆a,s = ωs(a) Id−δ−
1
2

P (a)I(w−1
0 aw0, s), a ∈ Z(M),
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on IP (π, s). Then ∆a,sϕs vanishes at w0, while

(M(π, s)∆a,sϕs, ϕ
∨
−s) = ωs(a)(M(π, s)ϕs, ϕ

∨
−s)− δ

− 1
2

P (a)(M(π, s)ϕs, IP (w−1
0 a−1w0,−s)ϕ∨−s)

= (ωs(a)− ωs(w−1
0 aw0))(M(π, s)ϕs, ϕ

∨
−s).

Suppose there exists a ∈ Z(M)1 = Z(M) ∩K0 such that ωπ(a) 6= ωπ(w−1
0 aw0). Then

(M(π, s)ϕs, ϕ
∨
−s) = (ωπ(a)− ωπ(w−1

0 aw0))−1(M(π, s)∆a,sϕs, ϕ
∨
−s),

and since ∆a,sϕs ∈ IP (π, s)K
′
n , we reduce to the previous case. Otherwise, ωπω

−1
w0π
|Z(M)1 = 1

and we take an element a ∈ Z(M) which generates Z(M) modulo Z(M)1. We get

(M(π, s)ϕs, ϕ
∨
−s) = (ωπ(a)q−ms − ωπ(w−1

0 aw0)qms)−1(M(π, s)∆a,sϕs, ϕ
∨
−s)

where |χ|(a) = q−m. Now, ∆a,sϕs ∈ IP (π, s)L for L = K ′n ∩ (K ′n)w0
−1aw0 . So once again,

we reduce to the previous case. �

Remark 6. The argument also gives a simple proof of the rationality of M(π, s) for su-
percuspidal π and nice P. More precisely, it shows that M(π, s) is a polynomial in q−s if
either Pw0 6= P or ωπω

−1
w0π
|Z(M)1 6= 1. Otherwise, (ωπ(a)q−ms − ωπ(a)−1qms)M(π, s) is a

polynomial in q−s, where a and m are as above.

Remark 7. In the global situation of Conjecture 2, the proof shows that the constants
c and d appearing in the definition of property (PSIO) can be chosen independently of
the non-archimedean place v, if this is the case for the constants appearing in Definitions
1 (definition of property (PSC)) and 2. By the fourth part of Corollary 2, for property
(PSC) this uniformity statement is always satisfied after omitting finitely many places.
Uniformity of the constant in Definition 2 is satisfied in the cases covered by Proposition
2.

Proof of Theorem 1. Lemma 2 and Corollary 2 show that in the case of G = GL(r) the
conditions of Theorem 3 hold for all maximal parabolics of G. Therefore, G satisfies
property (PSIO). Lemma 3 finishes the argument. The assertion on the constants c and d
is clear. �

6. Parabolic subgroups with Abelian unipotent radical

In this section, we prove Proposition 2 in general. Parabolic subgroups with Abelian
unipotent radical and the associated action of their Levi subgroup on the radical have been
studied by Richardson, Röhrle and Steinberg ([16]). We recall their results and extend them
as necessary.

Let G be a split reductive group over F . It will be convenient to write g in terms of a
Chevalley basis ([18]). Namely, choose Xα ∈ gα, α ∈ Φ = R(T0,G), such that

[Xα, Xβ] =


Nα,βXα+β if α + β ∈ Φ,

Hα if α = −β,
0 otherwise.
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Here, the structure constants Nα,β, α, β, α+β ∈ Φ, satisfy Nα,β = ±(p+ 1), where p is the
largest integer with β − pα ∈ Φ.

Obviously, to prove Proposition 2 we can pass to the adjoint group, which is a direct
product of simple groups. Therefore suppose from now on that G is simple and adjoint, P
is maximal and U is Abelian. (Actually, the maximality of P is then automatic.) Let K0

be the stabilizer of the O-lattice spanned by the Chevalley basis, which is a hyperspecial
maximal compact subgroup of G. Let α be the simple root defining P. Write m = LieM ,
u = LieU and u = LieU , so that g = u ⊕ m ⊕ u. Denote by ΦU = R(T0,U) the roots
in u, namely the roots whose α-coefficient in the expansion with respect to ∆0 is positive.
(Since U is Abelian, this coefficient is necessarily 1.) Let ρ be the highest root. We have
α, ρ ∈ ΦU . The roots orthogonal to ρ form a parabolic root subsystem Φ1 which contains
a unique irreducible constituent Φ′1 ⊃ ΦU ∩ Φ1. If G is not simply laced, we write ρs for
the highest short root and δ = ρ− ρs = −sρρs ∈ Φ. We have ρs, 2ρs − ρ = −sρsρ ∈ ΦU .

Lemma 4. Suppose that G is not simply laced and let ρ, ρs and δ be as before. Then the
following conditions are equivalent for γ ∈ ΦU :

(1) γ + δ, γ + 2δ ∈ ΦU .
(2) γ is long and 〈δ, γ∨〉 = −1.
(3) γ is long, 〈ρ, γ∨〉 = 0 and 〈ρs, γ∨〉 = 1.
(4) γ is the highest root in Φ′1.
(5) γ = 2ρs − ρ.

Proof. The first three conditions are clearly equivalent and they hold for γ = 2ρs − ρ. It
remains to consider the Bn and the Cn case. In the Bn case ρ = 2ε1, ρs = ε1+ε2, δ = ε1−ε2,
γ = 2ε2. In the Cn case ρ = ε1 + ε2, ρs = ε1, δ = ε2, γ = ε1 − ε2. �

We fix once and for all a tuple (β1, . . . , βr) of mutually orthogonal long roots in ΦU with
r maximal. The following result is [16, Theorem 2.1].

Theorem 4 (Richardson-Röhrle-Steinberg). (1) For any 0 ≤ s ≤ r the Weyl group of
M acts transitively on the set of s-tuples of mutually orthogonal long roots in ΦU .

(2) Fix ui ∈ Uβi \ {0}. Then {
∏s

i=1 ui}rs=0 is a set of representatives for the M-orbits
in U under the conjugation action. (The integer s is called the rank of the orbit.)

The orbit corresponding to s = r is the open orbit of the M-action on U. It is the
intersection with U of the Richardson orbit associated to P. The orbit corresponding to
s = 0 is the zero orbit.

Remark 8. The possibilities (up to isogeny) for G and P have been enumerated in [16,
Remark 2.3], and the corresponding values of r are listed in [loc. cit., Table 1]. We can
explicate the orbit classification of Theorem 4 case by case.

In the cases where G = GL(m), M = GL(k)×GL(m− k), U the space of k × (m− k)
matrices, 0 < k < m, or G = Sp(2m), M = GL(m), U the space of symmetric m ×
m matrices, the notion of rank given by Theorem 4 coincides with the usual notion for
matrices. In the case G = SO(2m), M = GL(m), U the space of anti-symmetric m ×m
matrices, the rank in our sense is one-half of the rank of the matrix. In the case G = SO(m),
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M = GL(1)× SO(m− 2), U a quadratic space of dimension m− 2, the rank is one for a
non-zero isotropic vector and two for anisotropic vectors.

There are (up to automorphisms of G) two exceptional cases. For G = E6, M =
GSpin(10) and U one of the 16-dimensional half-spin representations of M, we have r = 2.
The non-zero pure spinors (i.e., the spinors in the orbit of 1, the unit element of the
exterior algebra) have rank one, and the remaining non-zero spinors have rank two. The
orbit dimensions are 0, 11 and 16, respectively (cf. [10, Proposition 2]). For G = E7,
M = GE6 and U the 27-dimensional representation of M, we have r = 3. The derived
group of M leaves a non-zero cubic form f on U invariant, and this form is unique up to
a scalar. The rank is one for the non-zero vectors in the singular locus of the hypersurface
f = 0, two for the remaining non-zero vectors with f = 0 and three for the vectors with
f 6= 0 (cf. [9]). The orbit dimensions are 0, 17, 26 and 27, respectively ([16, Table 2]).

Note that the second part of Theorem 4 does not apply to the M -orbits in U . However,
the proof of [16, Theorem 2.1] (cf. also [loc. cit., Theorem 5.3]) shows that fixing β1, . . . , βr
as above, it is still true that any M -orbit in U of rank s contains a representative of the
form

∏s
i=1 ui for some ui ∈ Uβi \ {0}. More precisely, we have

Lemma 5. Let β1, . . . , βr be as above. Then there exists a compact set ω ⊂ M with the
following property: for all X ∈ u there is m ∈ ω such that Ad(m)X is a linear combination
of Xβ1 , . . . , Xβr . If either G is simply laced or p 6= 2 then we can take ω = KM = M ∩K0.

Proof. Write X =
∑

β∈ΦU
cβ(X)Xβ. Let ρ ∈ ΦU be the highest root. We follow the

argument of [16, Proposition 2.13]. The proof is by induction on the rank of G. The
case X = 0 is trivial, so we assume that X 6= 0. The first step is to show that in the
AdKM -orbit of X we can choose X ′ such that |cβ(X ′)| ≤ D|cρ(X ′)| for all β ∈ ΦU where
D is a fixed constant which can be taken to be 1 if p 6= 2 or if G is simply laced. This is
done as follows. Let β0 ∈ ΦU be such that |cβ0(X)| is maximal. Applying a Weyl element
of M we can assume that either β0 = ρ, or β0 = ρs (in the non simply laced case). If
|cρ(X)| = |cβ0(X)| (and in particular, if G is simply laced), then we are done. Assume
that this is not the case and let δ = ρ − ρs and X ′ = Ad(uδ(t))X with t ∈ O. It follows
from Lemma 4 and the commutation relations that

cγ(X
′) =


cρ(X)± 2tcρs(X) + t2c2ρs−ρ(X) if γ = ρ

cγ(X)± tcγ−δ(X) if γ 6= ρ and γ − δ ∈ Φ

cγ(X) if γ − δ /∈ Φ

.

Therefore, we can choose t ∈ O∗ such that |cρ(X ′)| = maxβ∈ΦU
|cβ(X ′)| if p 6= 2 and

|cρ(X ′)| ≥ 1
2
|2|maxβ∈ΦU

|cβ(X ′)| if p = 2.
The second step is to clear the coefficients of all roots which are not orthogonal to ρ

by conjugating by suitable unipotent elements. This is done as in [16, p. 655] except that
our condition on X ′ guarantees that the conjugating elements are taken from KM (or at
least from a bounded set, if p = 2 and G is not simply laced). The rest of the proof (the
induction step) follows [loc. cit.]. �
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Let w = sβ1 . . . sβr . Note that the reflections sβi commute with each other, since the
roots βi are mutually orthogonal. For any β ∈ ΦU let N (β) be the multiset

N (β) =

{
{βi : 〈β, β∨i 〉 = 1} if β 6= β1, . . . , βr,

{βi, βi} if β = βi.

Thus, N (β) consists of the roots βi which are not orthogonal to β, counted with multiplicity
〈β, β∨i 〉. Note that wβ = β −

∑
N (β) for any β ∈ ΦU . Also, for any β ∈ ΦU

(3) |N (β)| =
r∑
i=1

〈β, β∨i 〉

and by [16, Lemma 2.10] we have 1 ≤ |N (β)| ≤ 2.
Suppose that β, γ ∈ ΦU are distinct and β is long. Then the following conditions are

equivalent:

(1) 〈γ, β∨〉 6= 0,
(2) 〈γ, β∨〉 = 1,
(3) γ − β ∈ Φ,
(4) γ − β = sβ(γ).

For any X ∈ u denote by DX the double commutator map

DX =
1

2
adX

∣∣
m
◦ adX

∣∣
u
∈ HomF (u, u).

Analogously, for X ∈ u we denote by DX the double commutator map

DX =
1

2
adX

∣∣
m
◦ adX

∣∣
u
∈ HomF (u, u).

Lemma 6. Let X =
∑r

i=1 tiXβi. Then

DXX−β =

{
0 if |N (β)| = 1,

titjX−wβ if N (β) = {βi, βj}.

Proof. The statement is clear if β = βi since βi − βj 6∈ Φ for all j.
Now suppose that β 6= β1, . . . , βr. Then

adX(X−β) =
∑

i:βi∈N (β)

tiXβi−β

and therefore

DX(X−β) =
1

2

∑
i,j:βi∈N (β),βi+βj−β∈ΦU

titjXβi+βj−β

Note that if βi ∈ N (β) and δ = βi + βj − β ∈ ΦU then i 6= j since βi is long. If we set
γ = βi − β = −sβiβ then δ = βj + γ and sβiδ = βj − β ∈ Φ. Thus, βj ∈ N (β) and
δ = −wβ. �

Corollary 3. For any X ∈ u we have ‖DX‖Hom(u,u) � ‖X‖2.
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Lemma 7. The following conditions are equivalent:

(1) P is conjugate to P.
(2) Pw0 = P.
(3) Pw = P.
(4) |N (β)| = 2 for all β ∈ ΦU .
(5) 1

2

∑r
i=1 β

∨
i is the fundamental coweight with respect to P.

(6) 1
2

∑r
i=1 βi is the fundamental weight with respect to P.

(7) There exists X ∈ u such that DX is invertible.

If these conditions are satisfied, then DX is invertible if and only if X belongs to the open
AdM-orbit in u.

Proof. The equivalence of the first four conditions follows from [16, Proposition 3.12]. The
equivalence of the last and the fourth condition, as well as the last assertion of the lemma
follow from Lemma 6. The equivalence between the fourth and fifth condition follows from
(3). Finally, the equivalence between the fifth and the sixth condition is immediate, since
α is a long root. �

Let H be the central element of m such that adH
∣∣
u

= 2 Idu.

Lemma 8. Suppose that Pw0 = P. Then

(1) We have H =
∑r

i=1Hβi.
(2) The open (P, P ) Bruhat cell is Pw0U .
(3) We have

Pw0U = {g ∈ G : proju ◦Ad(g)
∣∣
u

is invertible}.
(4) For any g ∈ Pw0U , the U-part in the Bruhat decomposition is given by expY where

2Y = (proju ◦Ad(g)
∣∣
u
)−1(proju(Ad(g)H)).

(5) In particular, for X ∈ u we have expX ∈ Pw0U if and only if X lies in the open

AdM-orbit, and in this case the U-part of expX is expY for Y = D
−1

X (X).

Proof. The first part follows from the previous lemma. The second part is clear. Let
C = {g ∈ G : proju ◦Ad(g)

∣∣
u

is invertible}. Clearly, C is left and right P -invariant and
w0 ∈ C. Therefore C is a union of (P, P ) double cosets and Pw0U ⊂ C. The fourth part is
also clear by direct computation. By [16, Theorem 1.1] every (P, P ) double coset intersects
U in a single M -orbit under conjugation. Thus, in order to show that C = Pw0U , it is
enough to show that C ∩ U is an M -orbit. However, C ∩ U = {expX : DX is invertible}.
Therefore, the statement follows from Lemma 7. �

Corollary 4. Let θ be the Cartan involution of G and set d = #{β ∈ ΦU : βi ∈ N (β)},
which is independent of i. If Pw0 = P then d = 2 dimU/r. For X =

∑r
i=1 tiXβi we have

det(θ ◦DX) =

{
(t1 . . . tr)

d if Pw = P,

0 otherwise.
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Remark 9. Suppose that Pw0 = P. The character
∏r

i=1 βi of T0 is trivial on M′ and
therefore extends to a rational character ψ of M. The polynomial

∑r
i=1 tiXβi 7→ t1 . . . tr

extends to an irreducible (AdM,ψ)-equivariant polynomial ∆ on u.
For n ∈ NM(T ) representing w ∈ WM and β ∈ ΦU let fn,β be the scalar so that

Ad(n)Xβ = fn,βXwβ. Clearly fnt,β = β(t)fn,β. In the simply laced case we have

∆(
∑
β∈ΦU

cβXβ) =
∑

w∈NM (T0)/T0

ψ(nw)
cwβ1
fnw,β1

. . .
cwβr
fnw,βr

where nw is any representative of w in M . The polynomial ∆ is the determinant in the
GL(m) or Sp(2m) case, the Pfaffian in the SO(4m) case, the canonical quadratic form in
the SO(m) case and the relatively invariant cubic form in the E7 case.

Corollary 5. Assume that Pw0 = P. Then

(1) The open orbit in u is the principal open set defined by det θ ◦DX .
(2) Assume that X ∈ u is in the open orbit. Then the Jacobson-Morozov parabolic

subgroup of X is P.
(3) Assume that X =

∑r
i=1 tiXβi with t1, . . . , tr 6= 0. Let X =

∑r
i=1 t

−1
i X−βi. Then

(X,H,X) is an SL(2)-triple.

Remark 10. In [12], the double commutator map has been used to obtain relatively invari-
ant polynomials in a more general situation.

Finally, we are ready to prove Proposition 2.

Proof of Proposition 2. Suppose that u ∈ U ∩ Z(M)UB(n) and write u = zub where
z ∈ Z(M), u ∈ U and b ∈ B(n). Let λ ∈ F ∗ be such that Ad(z)

∣∣
u

= λ Idu. Also write

u = expX where X ∈ u. As Ad(expX) =
∑∞

m=0
1
m!

(adX)m we have

(4) Idu− adX
∣∣
u

+DX = Ad(u−1)
∣∣
u

= Ad(b−1) Ad(zu)−1
∣∣
u

= λ−1 Ad(b−1)
∣∣
u
.

It follows that max(1, ‖DX‖) ≤ |λ|−1‖b‖ and therefore by Corollary 3 (applied to P ) that
max(1, ‖X‖)2 � |λ|−1‖b‖, or equivalently |λ|‖b‖max(1, ‖X‖) � ‖b‖2 max(1, ‖X‖)−1. We
can write (4) in the form

λAd(b) ◦DX = (Idg−∆)
∣∣
u

where ∆ = λAd(b) ◦ (Id− adX) ∈ End(g). Suppose that ‖X‖ � ‖b‖2. Then ‖∆‖ �
|λ|‖b‖max(1, ‖X‖) < 1 and therefore Id−∆ is invertible and ‖(Id−∆)−1‖ = 1. It follows

that DX is invertible and therefore by Lemma 7 we infer that Pw0 = P. Moreover, D
−1

X =

λ(Id−∆)−1 ◦ Ad(b)
∣∣
u
, and therefore ‖D−1

X ‖ ≤ |λ|‖b‖. By Lemma 8, we get u ∈ Pw0U

and the U -part in the Bruhat decomposition of u is expY for Y = D
−1

X (X). Hence
‖Y ‖ ≤ |λ|‖b‖‖X‖ � ‖X‖−1‖b‖2. This immediately implies Proposition 2. �
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