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Abstract. In this paper we consider certain families of arithmetic subgroups of SO0(p, q)
and SL3(R), respectively. We study the cohomology of such arithmetic groups with co-
efficients in arithmetically defined modules. We show that for natural sequences of such
modules the torsion in the cohomology grows exponentially.

1. Introduction

Let G be a semi-simple connected algebraic group over Q, K a maximal compact sub-

group of its group of real points G(R). Let X̃ = G(R)/K be the associated Riemann-
ian symmetric space. Let g and k be the Lie algebras of G(R) and K, respectively.

Put δ(X̃) = rank(gC) − rank(kC). Sometimes δ(X̃) is called the fundamental rank. Let

Γ ⊂ G(Q) be an arithmetic subgroup and X = Γ\X̃ the corresponding locally symmetric
space. We assume that G is anisotropic over Q, which implies that Γ is cocompact in G(R).
Let M be an arithmetic Γ-module, which means that M is a finite rank free Z-module, and
there exists an algebraic representation of G on M ⊗Z Q such that Γ preserves M . Then
the cohomology H∗(Γ,M) is a finite rank Z-module. Note that if Γ is torsion free, then

H∗(Γ,M) ∼= H∗(Γ\X̃,M), where M is the local system of free Z-modules associated to
M .

For arithmetic reasons, one expects that if δ(X̃) = 0, there is little torsion in H∗(Γ,M)

and the free part dominates the cohomology. On the other hand, if δ(X̃) = 1, one expects a
lot of torsion in the cohomology and the free part to be small. This has been substantiated
by Bergeron and Venkatesh [BV], who studied the growth of the torsion if Γ varies through a
sequence of congrunce subgroups Γn for which the injectivity radius of Γn\X̃ goes to infinity.

They showed that if δ(X̃) = 1 and M is strongly acylic, the torsion grows exponentially
proportional to the volume of Γn\X̃ . Furthermore, for compact oriented hyperbolic 3-
manifolds, in [MaMü] the growth of the torsion has been studied if Γ is fixed but the
Γ-module M grows. More precisely, let X = Γ\H3 be a compact, oriented hyperbolic
3-manifold with Γ ⊂ SL(2,C). Let Vm be the holomorphic irreducible representation of
SL(2,C) of dimension m + 1. By [BW] one has H∗(Γ, Vm) = 0. It was proved in [MaMü]
that for each even k ∈ N there exists a Γ-invariant lattice Mk ⊂ Vk. Then Hp(Γ,Mk) is a
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finite abelian group for all p , and the main result of [MaMü] is the following asymptotic
formula

(1.1) lim
k→∞

log |H2(Γ,M2k)|
k2

=
2

π
vol(X),

and the estimation

(1.2) log |Hp(Γ,M2k)| ≪ k log k, p = 1, 3.

Note that H0(Γ,M2k) = 0.
The goal of the present paper is to study the growth of the torsion if M varies, for all

compact arithmetic quotients Γ\X̃ of irreducible symmetric spaces X̃ with δ(X̃) = 1. By

the classification of simple Lie groups, the irreducible symmetric spaces with δ(X̃) = 1 are

X̃ = SO0(p, q)/ SO(p)× SO(q), for p, q odd, and X̃ = SL(3,R)/ SO(3).
The first family of arithmetic groups that we consider are cocompact arithmetic sub-

groups of SO0(p, q) that arise from quadratic forms over totally real number fields. More
precisely, let F be a totally real finite Galois extension of Q of degree d > 1. We fix an
embedding F ⊂ R. Let Q : Rp+q → R be a non-degenerate quadratic form defined over F
of signature (p, q). Assume that all non-trivial Galois conjugates of Q are positive definite.
Let G := SOQ ⊂ GLp+q be the special orthogonal group of Q, i.e., the subgroup of all
elements of determinant one leaving Q invariant. This is a connected algebraic group over
F and its group of real points G(R) is isomorphic to SO(p, q).

Let OF be the ring of algebraic integers of F , and let GOF
be the group of OF -valued

points of G. Then GOF
is a discrete cocompact subgroup of G(R). Via the isomorphism

G(R) ∼= SO(p, q), it corresponds to a discrete cocompact subgroup Γ0 of SO(p, q) (see
section 3). If we pass to an appropriate subgroup of finite index Γ ⊂ Γ0, we may assume
that Γ is torsion free and that it is containd in SO0(p, q).

Since G is only defined over F , we need to generalize the notion of an arithmetic Γ-
module. Let G′ = ResF/Q(G) be the algebraic Q-group obtained from G by restriction
of scalars. Let ∆: G → G′ be the diagonal embedding. Consider Γ as a subgroup of
GOF

. Let Γ′ = ∆(Γ). Then Γ′ ⊂ G′(Q) is an arithmetic subgroup. Let M be an arithmetic
Γ′-module. Since Γ ∼= Γ′, it becomes a Γ-module and we also call it an arithmetic Γ-module.

To state our main result, we need to introduce some notation. Let X̃d be the compact
dual symmetric space of X̃. We chose an SO0(p, q)-invariant metric on X̃ and equip X

and X̃d with the induced metrics. Assume that p, q are odd, p ≥ q, p > 1 and let
n := (p+ q)/2− 1. We let ǫ(q) := 0 for q = 1 and ǫ(q) := 1 for q > 1 and we put

(1.3) Cp,q =
(−1)

pq−1

2 2ǫ(q)π

vol(X̃d)

(
n

p−1
2

)
.

Then our first main result is the following theorem.

Theorem 1.1. Let F be a totally real Galois extension of Q of degree d > 1. Let Γ be a
torsion free cocompact arithmetic subgroup of SO0(p, q) derived from a quadratic form Q
over F as above. Then there exists a sequence of arithmetic Γ-modules Mm, m ∈ N, with
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the following properties. The rank rkZ(Mm) is a polynomial in m and there exists C > 0,
which depends only on n, such that

rkZ(Mm) = C d mdn(n+1)/2 +O(mdn(n+1)/2−1)

as m → ∞. Furthermore each cohomology group Hj(Γ,Mm) is finite and

∑

j≥0

(−1)j log
∣∣Hj(Γ,Mm)

∣∣ = −Cp,q vol(Γ\X̃)m rkZ(Mm) +O(rkZ(Mm))

as m → ∞.

Let k = (dim(X̃) + 1)/2. Then it follows from Theorem 1.1 that there exists a constant

C̃p,q > 0, which depends only on p, q, such that

(1.4) lim inf
m

∑

j≡k(2)

log |Hj(Γ,Mm)|
mdn(n+1)/2+1

≥ C̃p,q d vol(Γ\X̃).

Thus there is at least one j for which |Hj(Γ,Mm)| grows exponentially in m. Given (1.1)
and (1.2), one is tempted to pose the following conjecture.

Conjecture 1.2. Let Γ and Mm, m ∈ N, be as above. Then

lim
m→∞

log |Hj(Γ,Mm)|
mdn(n+1)/2+1

=

{
C̃p,q d vol(Γ\X̃), j = (dim(X̃) + 1)/2,

0, else.

The next case that we consider are arithmetic subgroups of SL3(R) which arise from
9-dimensional division algebras D over Q. Let o be an order in D. Then o induces an
arithmetic subgroup Γ of SL3(R) which is cocompact (see section 4). After passing to a
subgroup of finite index, we may assume that Γ is torsion-free.

Let tC be the standard complexified Cartan-subalgebra of the Lie algebra of SL3(R)
equipped with the standard ordering of the roots and let ω1, ω2 ∈ t∗C be the corresponding
fundamental weights, see (4.30). If Λ = τ1ω1 + τ2ω2 ∈ t∗C, τ1, τ2 ∈ N is a dominant weight
and τΛ is the corresponding irreducible finite-dimensional representation of SL3(R), we let
Λθ be the highest weight of τΛ ◦ θ. One has Λθ = τ2ω1 + τ1ω2. Moreover, for m ∈ N we let
τΛ(m) be the irreducible representation of SL(3,R) on a complex vector space VΛ(m) with

highest weight mΛ. We regard VΛ(m) as a real vector-space. Let X̃ = SL(3,R)/ SO(3),

let X̃d be the compact dual of X̃ and let X = Γ\X̃. We fix a G-invariant metric on X̃

which induces metrics on X and on X̃d. Then our main result for the SL3(R)-case is the
following theorem.

Theorem 1.3. Let Γ be an arithmetic subgroup of SL3(R) which arises from a 9-dimensional
division algebra over Q. Let Λ ∈ t∗C be a highest weight with Λθ 6= Λ. Then for each m
there exists a lattice MΛ(m) in VΛ(m) which is stable under Γ. Moreover, each cohomology
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group Hp(Γ,MΛ(m)) is finite and one has

5∑

p=0

(−1)p log |Hp(Γ,MΛ(m))|

= −π vol(X)

vol(X̃d)
C(Λ)m · rkZ MΛ(m) +O(rkZ MΛ(m)),

(1.5)

as m → ∞, where C(Λ) > 0 is a constant which depends only on Λ. If Λ equals one of the
fundamental weights ωf then C(Λ) = 4/9.

The rank of MΛ(m) can be computed explicitly as follows. Firstly, if Λ is equal to one
of the fundamental weights ω1 or ω2, then Λθ 6= Λ and Weyl’s dimension formula gives

rkZ MΛ(m) = dimR(VΛ(m)) =
m2

2
+O(m),

as m → ∞. Secondly, if Λ = τ1ω1 + τ2ω2, τ1, τ2 ∈ N, τ1τ2 6= 0, then the condition Λ 6= Λθ

is equivalent to τ1 6= τ2 and again by Weyl’s dimension formula one has

rkZ MΛ(m) = dimR(VΛ(m)) =
τ 21 τ1 + τ 22 τ1

2
m3 +O(m2),

as m → ∞. Let Mi,m := Mωi
(m), i = 1, 2. Then it follows that

(1.6) lim inf
m

2∑

j=0

log |H2j+1(Γ,Mi,m)|
m3

≥ 2π

9 vol(X̃d)
vol(X).

Again, by (1.1) and (1.2), one is led to the following conjecture.

Conjecture 1.4. Let Γ and Mi,m, m ∈ N, be as above. Then one has

(1.7) lim
m→∞

log |H3(Γ,Mi,m)|
m3

=
2π

9 vol(X̃d)
vol(X)

and

(1.8) log |Hj(Γ,Mi,m)| = o(m3), j 6= 3.

There are similar statements for highest weights Λ = τ1ω1 + τ2ω2 with τ1τ2 6= 0.
Next we describe our approach to prove the main results. As in [MaMü], it is based

on the study of the analytic torsion. To begin with we consider an arbitrary connected
semi-simple algebraic group G over Q. Let the notation be as at the beginning of the

introduction. Assume that δ(X̃) = 1. Choose a G-invariant Riemannian metric g on X̃ .

Assume that Γ ⊂ G(Q) is torsion free. Let X := Γ\X̃ equipped with the metric induced
by G. Then we have H∗(Γ,M) = H∗(X,M). Let V := M⊗ZR and let ρ : G(R) → GL(V )
be the representation associated to the arithmetic Γ-module M . Let E → X be the flat
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vector bundle associated to ρ|Γ. Choose a Hermitian fibre metric in E. Let TX(ρ) ∈ R+

be the analytic torsion of X and E. Recall that

(1.9) log TX(ρ) =
1

2

n∑

p=1

(−1)pp
d

ds
ζp(s; ρ)

∣∣
s=0

,

where ζp(s; ρ) is the zeta function of the Laplace operator ∆p(ρ) on E-valued p-forms and
n = dimX (see [Mü1]). Assume that ρ is acyclic, that is H∗(X,E) = 0. Then TX(ρ) is
metric independent [Mü1, Corollary 2.7] and equals the Reidemeister torsion τX(ρ) [Mü1,
Theorem 1]. Moreover, H∗(Γ,M) is a finite abelian group. Using Proposition 2.1, we get

(1.10) log TX(ρ) =
n∑

q=0

(−1)q+1 log |Hq(Γ,M)|.

This is the key equality which we apply to prove Theorems 1.1 and 1.3. In [MP] we studied
the asymptotic behavior of TX(τm) for certain sequences of irreducible representations of
G(R)0. We will apply the results of [MP] to our case. The main issue is to construct
appropriate arithmetic Γ-modules.

We start with the case of X̃ = SO0(p, q)/ SO(p) × SO(q), p, q odd. Let G = SOQ be
the special orthogonal group of a quadratic form Q over a totlally real number field F as
defined above. Then G is a connected algebraic group over F . Let G′ = ResF/Q(G) be
the algebraic Q-group obtained from G by restriction of scalars [Wei]. The group of real
points G′(R) is given by

G′(R) ∼= SO(p, q)×K1,

where K1 is the product of d − 1 copies of SO(p + q). Then we construct a sequence
ρ(m) : G′ → GL(Vm), m ∈ N, of Q-rational representations such that the irreducible
components of ρ(m)(R) : G′(R)0 → GL(Vm ⊗Q R) are of the form considered in [MP,
Theorem 1.1]. Let ∆: G → G′ be the diagonal embedding. Let Γ′ = ∆(Γ). Then Γ′ is
an arithmetic subgroup of G′(Q). Therefore, Vm contains a lattice Mm which is invariant
under ρ(m)(Γ′). Through the isomorphism Γ ∼= Γ′, Mm becomes a Γ-module. This is our
arithmetic Γ-module. By construction we have H∗(Γ,Mm) ∼= H∗(Γ′,Mm). Thus it suffices
to prove the statement of Theorem 1.1 for Γ′.

Let K ′ = SO(p)× SO(q)×K1. Then K ′ is a maximal compact subgroup of G′(R)0. Let

X̃ ′ = G′(R)0/K ′ and X ′ := Γ′\X̃ ′. Now we apply [MP, Propositions 1.2, 1.3] to determine
the asymptotic behavior of TX′(ρ(m)) as m → ∞. Finally we use (1.10) to establish
Theorem 1.1.

The proof of Theorem 1.3 uses similar arguments, which are also based on (1.10) and
[MP].

The paper is organized as follows. In section 2 we collect some facts about cohomology of
fundamental groups of manifolds with coefficients in a free Z-module. We also recall some
elementary facts about algebraic groups. In section 3 we consider arithmetic subgroups of
SO0(p, q) and prove Theorem 1.1. The prove of Theorem 1.3 is the content of the final
section 4.
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2. preliminaries

Let X be a closed connected smooth manifold of dimension d. Let Γ := π1(X, x0) be the

fundamental group of X with respect to some base point x0 and let X̃ be the correpsonding

universal covering. Thus Γ acts properly discontinuously and fixed point free on X̃ and

X = Γ\X̃ . Assume that X̃ is contractible.
Let M be a free finite-rank Z-module and let ρ be a representation of Γ on M . Let

Hq(Γ,M) be the q-th cohomology group of Γ with coefficients in M , see [Br]. These

groups can be computed as follows. Let L be a smooth triangulation of X and let L̃ be the

lift of L to a triangulation of X̃ . Let Cq(L̃;Z) be the free abelian group generated by the

q-chains of L̃, let Cq(L̃;Z) := HomZ(Cq(L̃,Z);Z) and let C∗(L̃;Z) resp. C∗(L̃;Z) be the

associated simplical chain- resp. cochain complexes. Each Cq(L̃;Z) is a free Z[Γ] module

and if one fixes an embedding of L into L̃, then the q-cells of L form a base of Cq(L̃;Z)
over Z[Γ]. Let

Cq(L,M) := Cq(L̃;Z)⊗Z[Γ] M.

Then the Cq(L,M) form again a cochain complex C∗(L,M) and the corresponding coho-
mology groups will be denoted by Hq(L,M) . There is an isomorphism

Cq(L,M) ∼= HomZ[Γ](Cq(L̃;Z),M),

which induces an isomorphism of the corresponding cochain complexes. Since L̃ is con-

tractible, the complex C∗(L̃) is a free resolution of Z over Z[Γ] and thus one has

(2.11) Hq(Γ,M) ∼= Hq(HomZ[Γ](C∗(L̃),M)) ∼= Hq(L,M).

Each cohomology group Hq(L,M) is a finitely generated abelian group. Let Hq(Γ,M)tors
be the torsion subgroup of Hq(Γ,M) and let Hq(Γ,M)free = Hq(Γ,M)/Hq(Γ,M)tors be the
free part. Then one has

Hq(Γ,M) = Hq(Γ,M)free ⊕Hq(Γ,M)tors.

Now let V := M ⊗Z C and VR := M ⊗Z R. Then V is a finite-dimensional complex
vector space, VR ⊂ V is a real structure on V and M is a lattice in VR. We regard ρ as a
representation of Γ on V . Then ρ is unimodular, i.e., | det ρ(γ)| = 1 for all γ ∈ Γ. Let

Cq(L, V ) := Cq(L̃)⊗Z[Γ] V.

The Cq(L, V )’s form a chain complex C∗(L, V ) of finite-dimensional C-vector spaces and
one has

Cq(L, V ) = Cq(L,M)⊗Z C.(2.12)

Let E := X̃ ×ρ V be the flat vector bundle over X associated to ρ. Then by the de Rham
isomorphism, the cohomology groups Hq(L, V ) of the complex C∗(L, V ) are canonically
isomorphic to the cohomology groups Hq(X,E) of the complex of E-valued differential
forms on X . By Hodge theory they are canonically isomorphic to the space of E-valued
harmonic forms for any choice of metrics on X and E, respectively.
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We assume that the bundle E is acyclic i.e. that Hq(L;V ) = Hq(X ;E) = 0 for all
q. This holds in all cases that we study in this paper. Let σq

j , j = 1, . . . , rq, be the

oriented q-simplices of L considered as a preferred basis of the Z[Γ]-module Cq(L̃;Z). Let
e1, . . . , em be a basis of M . Then {σq

j ⊗ ek : j = 1, . . . , rq, k = 1, . . . , m} is a preferred
basis of Cq(L;M) and also of Cq(L;V ). Let τX(ρ) ∈ R+ be the Reidemeister torsion with
respect to these volume elements (see [Mü1], [MaMü]). Note that τX(ρ) = |τCX(ρ)|, where
τCX(ρ) ∈ C× is the complex Reidemeister torsion. Since ρ is acyclic, τX(ρ) is a combinatorial
invariant of X and ρ which is independent of the choices that we made (see [Mü1, section
1]). Moreover, each cohomology group Hq(Γ,M) is finite, i.e., Hq(Γ,M) = Hq(Γ,M)tors
and the order |Hq(Γ,M)| of these groups is related to the Reidemeister torsion as follows.

Proposition 2.1. Assume that Hq(X,E) = 0 for all q. Then one has

d∑

q=0

(−1)q+1 log |Hq(Γ,M)| = log τX(ρ).

Proof. Let C∗(L, VR) be the chain complex of the finite-dimensional real vector spaces

Cq(L, VR) := Cq(L̃)⊗Z[Γ] VR, q = 0, ..., d.

We have

Cq(L, VR) = Cq(L,M)⊗Z R.

Let ρR : Γ → GL(VR) be the representation induced by ρ and let ER := X̃ ×ρR VR be the
associated flat real vector bundle. Then H∗(X ;ER) = 0. The basis of the free Z-module
Cq(L;M), described above, gives rise to a distinguished basis of Cq(L;VR). Let τX(ρR) be
the Reidemeister torsion of the complex C∗(L;VR) with respect to volume elements defined
by these bases. Then it follows from (2.11) and (2.12) as in [BV, section 2.2] that

(2.13) log τX(ρR) =

d∑

q=0

(−1)q+1 log |Hq(Γ,M)|.

See also [MaMü, Proposition 2.3] and [Tu, Lemma 2.1.1]. Since the coboundary opera-
tors of the complexes C∗(L;VR) and C∗(L;V ), respectively, are induced by the cobound-
ary operators of C∗(L;M), it follows from the definition of the Reidemeister torsion that
τX(ρR) = τX(ρ). Combined with (2.13) the proposition follows. �

Finally we recall some facts conerning linear algebraic groups. For all details we refer
to [Bo2]. Let F be a finite Galois extension of Q with Galois group Σ := Gal(F/Q). For
σ ∈ Σ and x ∈ F let xσ denote the image of x under σ. If G is a linear algebraic group
over F with coordinate algebra F [G], let Gσ denote the linear algebraic group conjugate
by σ, see [Bo2]. If G is realized as the zero set in some F n of an ideal I in F [X1, . . . , Xn],
then Gσ is the zero set of the ideal Iσ, where Iσ is obtained from I by applying σ to each
polynomial coefficient. Each F -rational homomorphism ρ : G → H of linear algebraic
groups over F induces canonically an F -rational homomorphism ρσ : Gσ → Hσ.
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If G is an algebraic group defined over F , an algebraic group G′ defined over Q together
with an F -rational isomorphism µ : G′ ×Q F → G is called a Q-structure of G. The Q-
structure canonically induces an action of Σ on the coordinate algebra of G and thus on
G itself.

Let V be a finite-dimensional F -vector space. A Q-structure V0 of V is a Q-subspace
V0 of V such that the embedding V0 →֒ V induces an isomorphism V0 ⊗Q F of F -vector
spaces. For σ ∈ Σ a Q-linear automorphism A of V is called σ-linear if A(λv) = σ(λ)A(v),
λ ∈ F , v ∈ V . Then a semi-linear action of Σ on V is given by a family {fσ}σ∈Σ of
σ-linear automorphisms fσ of V , satisfying fστ = fσ ◦ fτ , σ, τ ∈ Σ. Given a semi-linear
action of Σ on V , the set V Σ := {v ∈ V : fσ(v) = v, ∀σ ∈ Σ} is a Q-structure of V and
every Q-structure is of this form (see [Bo2, AG.14.2]). If V0 is a Q-structure of V , then
GL(V0) is a Q-structure of GL(V ) and the corresponding action of Σ on GL(V ) is given
by σ · g := fσ ◦ g ◦ f−1

σ , g ∈ GL(V ).

3. Arithmetic subgroups of SO0(p, q)

Let p, q ∈ N be odd. Put

p1 = (p− 1)/2, q1 = (q − 1)/2, n := p1 + q1.

We denote by SO(p, q) the group of isometries of the standard quadratic form of signature
(p, q) on Rp+q with determinant 1. Let SO0(p, q) denote the identity component of SO(p, q).
The group SO0(p, q) is of fundamental rank one. Let g be the Lie algebra of SO0(p, q). We
choose the fundamental Cartan subalgebra as follows. Let Ei,j be the (p+q)×(p+q)-matrix
which is one at the i-th row and j-th column and which is zero elsewhere. Let

H1 := Ep,p+1 + Ep+1,p.(3.14)

and let

(3.15) Hi :=

{√
−1(E2i−3,2i−2 − E2i−2,2i−3), 2 ≤ i ≤ p1 + 1√
−1(E2i−1,2i − E2i,2i−1) p1 + 1 < i ≤ n + 1.

Then

h := H1 ⊕
n+1⊕

i=2

√
−1Hi

is a Cartan subalgebra of g. Define ei ∈ h∗C, i = 1, . . . , n+ 1, by

ei(Hj) = δi,j, 1 ≤ i, j ≤ n+ 1.

The finite-dimensional irreducible complex representations τ of SO0(p, q) are parametrized
by their highest weights Λ(τ) ∈ h∗C given by

Λ(τ) =k1(τ)e1 + · · ·+ kn+1(τ)en+1, (k1(τ), . . . kn+1(τ)) ∈ Zn+1,

k1(τ) ≥ k2(τ) ≥ · · · ≥ kn(τ) ≥ |kn+1(τ)| .
(3.16)
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For Λ(τ) a weight as in (3.16), the highest weight Λ(τθ) of the representation τ ◦ θ is

Λ(τθ) = k1(τ)e1 + · · ·+ kn(τ)en − kn+1(τ)en+1.(3.17)

If we let

ω+
f,n :=

n+1∑

j=1

ej ; ω−
f,n := (ω+

f,n)θ =
n∑

j=1

ej − en+1,(3.18)

then 1
2
ω±
f,n are the fundamental weights which are not invariant under θ. We now recall

the construction of certain arithmetically defined cocompact subgroups of SO0(p, q). For
more details see [Sch, section 3.2, Appendix B] and for the SO0(p, 1)-case [Mill].

Let F be a totally real number field of degree d = [F : Q] > 1. Let Σ be the Galois
group of F over Q. We fix an embedding F ⊂ R. Let 1 ∈ Σ be the identity. Let αj ∈ F ∗,
j = 1, . . . , p+ q, be such that

sign(αj) =

{
+1, if j ≤ p,

−1, if p < j ≤ p+ q,

and

sign (σ(αj)) = +1, σ ∈ Σ \ {1}, j = 1, . . . , p+ q.

For σ ∈ Σ let Qσ be the quadratic form on Rp+q defined by

Qσ(x) =

p+q∑

j=1

σ(αj)x
2
j .

Then Q := Q1 is a non-degenerate quadratic form of signature (p, q) and Qσ, σ 6= 1, is
positive definite.

Let G := SOQ ⊂ GLp+q be the special orthogonal group of Q, i.e., the subgroup of all
elements of determinant one leaving Q invariant. Then G is a connected algebraic group
defined over F . Let J ∈ GLp+q(R) be defined by

J := diag
(√

α1, . . . ,
√
αp,

√
−αp+1, . . . ,

√
−αp+q

)
.

Then the map g 7→ JgJ−1 establishes an isomorphism G(R) ∼= SO(p, q). Similarly, we have
Gσ(R) ∼= SO(p+ q), if σ 6= 1. Let

(3.19) G′ ∼= ResF/Q(G)

be the algebraic Q-group obtained by restriction of scalars. There is a canonical isomor-
phism of algebraic groups over F

(3.20) α : G′ ×Q F ∼=
∏

σ∈Σ

Gσ,

and the group of real points G′(R) satisfies

G′(R) ∼= SO(p, q)×
∏

σ∈Σ\{1}

SO(p+ q).
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Denote by

(3.21) ∆: G →
∏

σ∈Σ

Gσ

the diagonal embedding given by ∆(g) = (gσ)σ∈Σ.
Let OF be the ring of integers of F and let GOF

be the group of OF -units of G. An
arithmetic subgroups of G(F ) is by definition a subgroup which is commensurable with
GOF

. Let Γ0 := JGOF
J−1. Then Γ0 is a subgroup of SO(p, q).

Lemma 3.1. Γ0 is a discrete, cocompact subgroup of SO(p, q).

Proof. For σ ∈ Σ \ {1}, the group Gσ(R) is isomorphic to SO(p + q). Thus by [BoHa,
p. 530], Γ0 is discrete in SO(p, q). Since all quadratic forms Qσ, σ 6= 1, are positive
definite, the form Q is anisotropic over F . Thus, by [Bo2, page 256] G is anisotropic over
F . Therefore, GOF

contains no non-trivial unipotent elements. Using [BoHa, Lemma 11.4,
Theorem 12.3], it follows that the diagonal image of GOF

in
∏

σ∈Σ Gσ(R) is cocompact and
since Gσ(R) is compact for σ 6= 1, Γ0 is also cocompact in SO(p, q). �

Remark 3.2. If F = Q[
√
v] is a real quadratic field, then putting α1 = · · · = αp = 1,

αp+1 = · · · = αp+q = −√
v the above construction has already been given in [Bo1, section

4.3].

Now we let B be the symmetric bilinear form on F p+q given by

B(ei, ej) =

{
1, i+ j = p+ q + 1

0, i+ j 6= p+ q + 1
,

for e1, . . . , ep+q the standard base of F p+q. Let OB be the orthogonal group of B and let
SOB be the elements of OB of determinant one. Then OB and SOB are algebraic groups
defined over F and there exists an isomorphism µ : G(F̄ ) → SOB(F̄ ), i.e. G is a form of
SOB over F .

Let T be the maximal torus of SOB(F̄ ) given by

T = {diag(λ1, . . . , λn+1, λ
−1
1 , . . . , λ−1

n+1), λ1, . . . , λn+1 ∈ F̄ ∗},
where n = (p + q)/2 − 1. Then T is defined over F . Let X(T ) be the character
group of T , written additively. Then a base of X(T ) is given by the fi : T → F̄ ,
fi(diag(λ1, . . . , λn+1, λ

−1
1 , . . . , λ−1

n+1)) = λi, where 1 ≤ i ≤ n+ 1.
By Rep(SOB(F̄ )) we denote the finite-dimensional representations of SOB(F̄ ) which are

irreducible. Then the elements of Rep(SOB(F̄ )) correspond bijectively to their highest
weights λτ := m1f1 + · · · + mn+1fn+1, where m1, . . . , mn+1 ∈ Z, m1 ≥ m2 ≥ · · · ≥
mn ≥ |mn+1|. Since T is split over F , every finite-dimensional irreducible representation
of SOB(F̄ ) is defined over F , [Ti, Proposition 2.3].

For τ ∈ Rep(SOB(F̄ )) with highest weight λτ = m1(τ)f1 + · · · + mn+1(τ)fn+1 let τ ′ ∈
Rep(SOB(F̄ )) be the element with highest weight λτ ′ = m1(τ)f1+· · ·+mnfn−mn+1(τ)fn+1.
Then the following lemma holds.
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Lemma 3.3. For every τ ∈ Rep(SOB(F̄ )) there exists a representation τ̃ of OB(F̄ ) that
restricts to τ + τ ′ on SOB(F̄ ).

Proof. The proof of the corresponding proposition for SOB(C) given in [GW, Theorem
5.22] extends withouth difficulty to any algebraically closed field of characteristic zero. �

Remark 3.4. If τ satisfies τ = τ ′ then there exists in fact a representation of OB that
restricts to τ . However, we are only interested in the case τ 6= τ ′ and in this case the
representation τ̃ from the previous lemma is irreducible.

Now we let PSOB := SOB /{± Id}. Then an element τ ∈ Rep(SOB(F̄ )) of highest
weight λτ = m1f1 + · · · + mn+1fn descends to a representation of PSOB(F̄ ) if and only
m1 + · · ·+mn+1 is even.

Lemma 3.5. Let τ be a representation of SOB over F̄ which descends to a representation
of PSOB over F̄ . Then there exists an F -rational representation of G which over F̄ is
equivalent to (τ + τ ′) ◦ µ.
Proof. For σ ∈ Gal(F̄ /F ) define an automorphism φσ of SOB(F̄ ) by φσ := µ ◦ σ ◦ µ−1 ◦
σ−1. Since the Dynkin diagram Dn+1 has exactly one non-trivial automorphism, there
is a natural isomorphism Aut(SOB(F̄ )) ∼= POB(F̄ ), where POB(F̄ ) acts on SOB(F̄ ) by
conjugation, and thus there exists a unique aσ ∈ POB(F̄ ) such that for each g ∈ SOB(F̄ )
one has φσ(g) = aσga

−1
σ . Thus one has

µ(σ(g)) = aσσ(µ(g))a
−1
σ .(3.22)

We can regard the assignment σ → aσ as an element of the first Galois-cohomology set
H1(Gal(F̄ /F ),POB(F̄ )). By Lemma 3.3 there exist a representation τ̃ of POB(F̄ ) on
Vτ̃ = Vτ ⊕ Vτ ′ which restricts to τ ⊕ τ ′ on SOB(F̄ ). The assignment σ 7→ τ̃ (aσ) is an
element of H1(Gal(F̄ /F ),GL(Vτ̃ )) and since this set is trivial by Hilbert’s theorem 90,
there exists an x ∈ GL(Vτ̃ ) such that

τ̃(aσ) = x−1σ(x) ∀σ ∈ Gal(F̄ /F ).(3.23)

Now define a representation ρ of G(F̄ ) by ρ := Int(x) ◦ (τ + τ ′) ◦ µ. Then ρ is equivalent
to (τ + τ ′) ◦ µ. Applying (3.22) and (3.23) it follows that for σ ∈ Gal(F̄ /F ) and g ∈ G(F̄ )
one has

ρ(σ(g)) = xτ̃ (aσ)(τ + τ ′)(σ(µ(g)))τ̃(a−1
σ )x−1 = σ(x)σ ((τ + τ ′)(µ(g)))σ(x)−1 = σ(ρ(g)),

where we used that τ + τ ′ is defined over F and hence commutes with Gal(F̄ /F ). Thus ρ
commutes with Gal(F̄ /F ) and thus it is defined over F . �

Now we may fix an embedding of SO0(p, q) into SOB(C) such that the representations
of SO0(p, q) with highest weight m1e1 + · · ·+mn+1en+1 are the restrictions to SO0(p, q) of
the representation of SOB(C) with highest weight m1f1 + · · ·+mn+1fn+1.

The following proposition is certainly well known and was used already by Bergeron
and Venkatesh [BV, section 8.1]. However, for the sake of completeness we include a
proof here. If V is a finite-dimensional F -vector space, let V σ be the F -vector space with
scalar-multiplication a · v := σ(a)v, a ∈ F , v ∈ V .
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Lemma 3.6. Let G′ be an algebraic group defined over Q. Let V be a finite-dimensional
F -vector space and let ρ : G′ → GL(V ) be a representation defined over F . Then ρ̃ :=∏

σ∈Σ ρσ
−1

is defined over Q, where ρσ
−1

is regarded as an F -rational representation of G′

on V σ.

Proof. Each σ ∈ Σ acts on
∏

σ∈Σ V σ as a σ-linear automorphism by permuting the factors.
The corresponding Q-structure of

∏
σ∈Σ V σ is V , regarded as a Q-vector space and embed-

ded diagonally into
∏

σ∈Σ V σ . Now it is easy to see that ρ̃ commutes with the action of
Σ on G′ and the action of Σ on GL(

∏
σ∈Σ V σ) associated to this Q-structure. Thus ρ̃ is

defined over Q. �

Let G′(R)0 be the connected component of 1 ∈ G′(R) and G′(R)c :=
∏

σ∈Σ\{1} SO(p+q).
Then we have

G′(R)0 ∼= SO0(p, q)×G′(R)c.

Let θ be the standard Cartan-involution of SO0(p, q). Then θ ⊗ IdG′(R)c is a Cartan in-
volution of G′(R)0 which we continue to denote by θ. By Rep(G′(R)0) we denote the
finite-dimensional irreducible complex representations of G′(R)0. For τ ∈ Rep(G′(R)0), let
τθ be the element of Rep(G′(R)0) defined by τθ := τ ◦ θ.
Proposition 3.7. There exists a sequence ρ(m) of Q-rational representations of G′ on
finite-dimensional Q-vector spaces Vρ(m) such that

(1) For the decomposition

(3.24) ρ(m) =
⊕

τ∈Rep(G′(R)0)

[ρ(m) : τ ]τ,

[ρ(m) : τ ] ∈ N0 of ρ(m), regarded as a complex representation of G′(R)0 on the
vector space Vρ(m) ⊗Q C, into irreducible representations of G′(R)0 one has τ 6= τθ
for each τ ∈ Rep(G′(R)0) with [ρ(m) : τ ] 6= 0.

(2) The dimension dim(Vρ(m)) is a polynomial in m with leading term

dim(Vρ(m)) = C dmdn(n+1)/2 +O(md(n+1)/2−1),

as m → ∞, where C > 0 is a constanst which depends only on n.

Proof. The Galois group Σ acts on
∏

σ∈Σ Gσ as follows. For g ∈
∏

σ∈Σ Gσ and σ ∈ Σ we
denote the projection of g to Gσ by gσ. Then for σ, σ′ ∈ Σ one has

(σg)σ′ = σ(gσ−1σ′).

Now assume that for each σ ∈ Σ we are given a finite-dimensional F -vector space Vρ(σ)

and a representation ρ(σ) of Gσ on Vρ(σ), defined over F . Then the tensor-product

ρ :=
⊗

σ∈Σ

ρ(σ)

is a representation of
∏

σ∈Σ Gσ on
⊗

σ∈Σ Vρ(σ) and it follows that for σ′ ∈ Σ one has

ρσ
′

=
⊗

σ∈Σ

ρ(σ′−1σ)σ
′

.(3.25)
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Now if n is even, for m ∈ N we let τ(m) be the representation of G over F̄ of highest
weight 2me1 + · · · + 2men+1. If n is odd, we let τ(m) be the representation of highest
weight me1 + · · ·+men+1. Then τ(m) and τ(m)θ descend to representations of PG. Thus
by Lemma 3.5 there exists a representation of G over F which over F̄ is equivalent to
τ(m) + τ(m)θ. Thus if we define ρ0(m) by

ρ0(m) :=
⊗

σ∈Σ

(τ(m) + τ(m)θ)
σ,(3.26)

then ρ0(m) is defined over F and by (3.25), ρ0(m) is equivalent to ρ0(m)σ for each σ ∈ Σ.
Hence if we let ρ(m) be the direct sum of d copies of ρ0(m) then by Lemma 3.6 ρ(m)
is defined over Q. Each irreducible component of ρ(m)|G′(R)0 , regarded as a complex
representation of G′(R)0 on Vρ(m)⊗QC, is of the form τ(m)⊗π, or τ(m)θ⊗π′, where π and
π′ are irreducible representations of G′(R)c. Since τ(m) and τ(m)θ are not θ-invariant, the
same holds for each irreducible component of ρ(m)|G′(R)0 . This proves the first statement.
The second statement follows from Weyl’s dimension formula. �

We can now turn to the proof of Theorem 1.1. Let ∆ be the diagonal embedding ofG into∏
σ∈Σ Gσ. Then we can choose the isomorphism α in (3.20) such that α(G′

Z) = ∆(GOF
). Let

Γ ⊂ GOF
be a subgroup of finite index. Via the isomorphism G(R) ∼= SO(p, q) we identify

Γ with a subgroup of SO(p, q). We choose Γ such that it is torsion free and is contained in
SO0(p, q). By Lemma 3.1, Γ is a cocompact lattice in SO0(p, q). Let Γ′ = ∆(Γ). Since Γ
and Γ′ are isomorphic, it suffices to prove the statements of Theorem 1.1 for Γ′.

The group K0 := SO(p)× SO(q) is a a maximal compact subgroup of SO0(p, q). Put

K ′ := K0 ×
∏

σ∈Σ
σ 6=1

SO(p+ q).

ThenK ′ is a maximal compact subgroup ofG′(R)0. Put X̃ ′ := G′(R)0/K ′ andX ′ := Γ′\X̃ ′.
Let (ρ(m), Vρ(m)) be the sequence of Q-rational representations of G′ of Proposition 3.7.
Since each ρ(m) is defined over Q, there exists a free Z-module Mρ(m) in Vρ(m) which is
stable under ρ(m)(Γ′) and such that Mρ(m) ⊗Z Q ∼= Vρ(m), see for example [PR, page 173].
Let V C

ρ(m) := Vρ(m)⊗QC. Then the restriction of ρ(m) to Γ′ induces the flat complex vector
bundle

Eρ(m) := X̃ ′ ×ρ(m)|
Γ′
V C
ρ(m)

over X ′. The decomoposition (3.24) of ρ(m) induces a corresponding decomposition of
Eρ(m) into the direct sum of complex vector bundles associated to the restriction to Γ′ of
irreducible finite-dimensional representations τ of G′(R)0. By Proposition 3.7, each τ with
[ρ(m) : τ ] 6= 0 satisfies τ 6= τθ and thus by [BW, Chapter VII, Theorem 6.7] one has

H∗(X ′;Eρ(m)) = 0,(3.27)

where H∗(X ′;Eρ(m)) denotes the de Rham cohomology with coefficients in Eρ(m). Chose
a Hermitian fibre metric in Eρ(m). Let TX′(ρ(m)) be the analytic torsion of X ′ and ρ(m)
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(see (1.9)). It follows from (3.27) that TX′(ρ(m)) is metric independent [Mü1, Corollary
2.7]. Moreover H∗(Γ′,Mρ(m)) is a finite abelian group and by (1.10) we have

(3.28) log TX′(ρ(m)) =

n∑

q=0

(−1)q+1 log |Hq(Γ′,Mρ(m))|.

This equality reduces the proof of Theorem 1.1 to the study of the asymptotic behavior
of TX′(ρ(m)) as m → ∞, which is exactly the problem that has been dealt with in [MP].
Since {ρ(m)} is not a sequence of representations that has been considered in [MP], we
cannot apply the results of [MP] directly. We first need to reduce it to a case to which
[MP] can be applied.

Let ρ0(m) be defined by (3.26) and let TX′(ρ0(m)) be the corresponding analytic torsion.
Since ρ(m) is the direct sum of d copies of ρ0(m), we get

log TX′(ρ(m)) = d log TX′(ρ0(m))

Now let T
(2)
X′ (ρ0(m)) be the L2-torsion with respect to ρ0(m) (see [MP, section 5]). If we

apply [MP, Proposition 1.2] to the irreducible components of ρ0(m), it follows that there
exists c > 0 such that

log TX′(ρ0(m)) = log T
(2)
X′ (ρ0(m)) +O(e−cm),

as m → ∞. Using the definition of ρ0(m) by (3.26), [MP, (5.21)] and [MP, Proposition
5.3], it follows that

log T
(2)
X′ (ρ0(m)) =

(
log T

(2)
X′ (τ(m)) + log T

(2)
X′ τ(m)θ

)
(2 dim τ(m))d−1.

If Cp,q is as in (1.3), then by [MP, Proposition 6.7] one has

log T
(2)
X′ (τ(m)) = log T

(2)
X′ (τ(m)θ) = Cp,q vol(X

′)m dim τ(m) +O(dim(τ(m)),

as m → ∞. Thus putting everything together we obtain

log TX′(ρ(m)) = Cp,q vol(X
′)m dim(ρ(m)) +O(dim(ρ(m))),

as m → ∞. Since X ∼= X ′ and H∗(Γ,Mρ(m)) ∼= H∗(Γ′,Mρ(m)), Theorem 1.1 follows from
(3.28) and the second statement of Proposition 3.7.

4. Arithmetic subgroups of SL3(R)

Let D be a nine-dimensional division algebra over Q. Then by the Brauer-Hasse-Noether
theorem [Ro], D is a cyclic algebra for a cubic extension L of Q. Moreover, L splits D, i.e.
there exists an isomorphism of L-algebras

φ : D ⊗Q L ∼= Mat3×3(L).(4.29)

Thus for x ∈ D the reduced norm N(x) is given by N(x) := det(φ(x ⊗ 1)). Now let
G := SL1(D), where

SL1(D) := {x ∈ D : N(x) = 1}.
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Then by [PR, 2.3.1], G has a canonical structure of an algebraic group defined over Q.
We regard SL3 as an algebraic group over Q. The isomorphism φ from (4.29) induces an
isomorphism

φ : G(L) ∼= SL3(L),

i.e. G is a form of SL3 over L. Moreover, the following Lemma holds.

Lemma 4.1. Let ρ be a Q-rational representation of SL3. Then there exists a Q-rational
representation of G which over L is equivalent to ρ ◦ φ.

Proof. By [PR, Proposition 2.17], G is an inner form of SL3. Thus the proof of Lemma 3.1
in [MaMü] can be generalized without difficulties to prove the Lemma. �

Let o be an order in D, i.e., o is a free Z-submodule of D which is generated by a Z-base
of D and which is also a subring of D. Put

o1 := {x ∈ o : N(x) = 1}.

The left regular representation of D on itself induces a Q-rational representation of G on
D, see [PR, 2.3.1] and the stabilizer of o is o1. Thus o1 is arithmetic subgroup of G(Q).
Put

Γ := φ(o1).

Then Γ is an arithmetic subgroup of SL3(R). Moreover, the following lemma holds.

Lemma 4.2. The group Γ is a cocompact subgroup of SL3(R).

Proof. By [PR, Proposition 2.12], G is anisotropic over Q. Thus the proposition follows
from [BoHa, Lemma 11.4, Theorem 11.8]. �

Let T be the standard maximal torus in SL3 consisting of the diagonal matrices of
determinant 1. Then T is defined over Q and is Q-split. Let t be the Lie-algebra of T (R)
consisting of all diagonal matrices of trace 0. Let ei ∈ t∗ be defined by ei(diag(t1, t2, t3)) :=∑3

j=1 δi,jtj . Then with respect to the standard odering of the roots of tC in sl3,C the

fundamental weights ω1, ω2 ∈ t̃∗C are given by

ω1 =
2

3
(e1 − e2) +

1

3
(e2 − e3); ω2 =

1

3
(e1 − e2) +

2

3
(e2 − e3).(4.30)

The finite-dimensional irreducible representations τ of SL3(R) are parametrized by their
highest weights Λτ = m1ω1+m2ω2. If θ is the standard Cartan involution of SL3(R), then
the highest weight of the representation τθ := τ ◦ θ is given by Λτθ = m2ω1 +m1ω2.

Proposition 4.3. Let τ be a finite-dimensional irreducible representation of SL3(R) on a
finite-dimensional vector space Vτ . Then there exists a lattice M in Vτ which is invariant
under τ(Γ).
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Proof. Since T is Q-split τ is defined over Q [Ti][Proposition 2.3]. By Lemma 4.1, there
exists a rational representation τ ′ of G on a finite-dimensional Q-vector space V (τ ′) which
over L is equivalent to τ ◦ φ. Since o1 is an arithmetic subgroup of G(Q), there exists
a lattice in V (τ ′) which is stable under τ ′(o1), see for example [PR, page 173]. Since
Γ = φ(o1), the Proposition follows. �

We can now turn to the proof of Theorem 1.3. Let X̃ = SL3(R)/ SO(3) and X = Γ\X̃ ,
where Γ ⊂ SL3(R) is an arithmetic subgroup as above. Chose a SL3(R)-invariant metric

on X̃ and equip X with the induced metric. Let Λ ∈ h∗C be a highest weight. Assume that
Λ satisfies Λ 6= Λθ. Then the same holds for each weight mΛ, m ∈ N. Let τΛ(m) be the
irreducible finite-dimensional representation on VΛ(m) with highest weight mΛ. Let EτΛ(m)

be the flat vector bundle over X associated to τΛ(m). By [BW, Chapter VII, Theorem 6.7]
we have

(4.31) H∗(X,EτΛ(m)) = 0.

Let TX(τλ(m)) be the analytic torsion with respect to any Hermitian fibre metric in EτΛ(m).
By (4.31) and [Mü1, Corollary 2.7], TX(τΛ(m)) is independent of the choice of metrics on
X and in EτΛ(m). Let MΛ(m) ⊂ VΛ(m) be an arithmetic Γ-module, which exists by
Proposition 4.3. By (4.31), H∗(X,MΛ(m)) is a finite abelian group and by (1.10) we have

(4.32) log TX(τλ(m)) =
5∑

q=0

(−1)q+1 log |Hq(X,MΛ(m))|.

Using Theorem 1.1 and Corollary 1.5 of [MP], the proof of Theorem 1.3 follows.
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