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Abstract. Scattering theory for p-forms on manifolds with cylindrical ends has a direct
interpretation in terms of cohomology. Using the Hodge isomorphism, the scattering
matrix at low energy may be regarded as operator on the cohomology of the boundary.
Its value at zero describes the image of the absolute cohomology in the cohomology of the
boundary. We show that the so-called scattering length, the Eisenbud-Wigner time delay
at zero energy, has a cohomological interpretation as well. Namely, it relates the norm
of a cohomology class on the boundary to the norm of its image under the connecting
homomorphism in the long exact sequence in cohomology. An interesting consequence of
this is that one can estimate the scattering lengths in terms of geometric data like the
volumes of certain homological systoles.

1. Introduction and main results

Scattering theory for manifolds with cylindrical ends deals with the following geometric
situation. Let M be an oriented, connected, compact Riemannian manifold with boundary
Y = ∂M such that the metric is a product near the boundary, i.e., there is a tubular
neighborhood of Y which is isometric to (−ǫ, 0] × Y, equipped with the product metric
du2 + h, where h is a Riemannian metric on Y . The non-compact elongation X of M is
then obtained from M by attaching the half-cylinder Z = R+ × Y over the boundary (see
figure 1):

(1) X = Z ∪Y M.

X

Z

M

Y

Figure 1. Elongation X of M .

The Riemannian metric on M is extended to one on X in the obvious way so that

g|R+×Y = du2 + h.(2)

The second author was supported by the Leverhulm trust and the MPI Bonn.
1
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Such a manifold is called a manifold with cylindrical ends.
Scattering theory on X investigates how wave packets coming in from infinity are scat-

tered in M . The scattering of p-forms on X is described by the scattering matrix

Cp(λ) ∈ End

(⊕

µ≤λ

Eigµ(∆
′
p) ⊕ Eigµ(∆

′
p−1)

)
,(3)

where ∆′
p is the Laplace-Beltrami operator acting on p-forms on Y and Eigµ(∆

′
p) the

eigenspace of ∆′
p with eigenvalue µ. In particular for small values of the spectral parameter

λ we have

Cp(λ) ∈ End
(
Hp(Y ) ⊕Hp−1(Y )

)
,(4)

where Hp(Y ) = ker ∆′
p is the space of harmonic p-forms on Y . For the purposes of this

article one can think of the scattering matrix for small values of the spectral parameter as
being defined by the statement of Theorem 2.1. In this case it can be shown that C(λ)
leaves the direct summands invariant and is of the form

Cp(λ) =

(
Sp(λ) 0

0 −Sp−1(λ)

)
,(5)

where Sp(λ) ∈ End(Hp(Y )) is the scattering matrix describing the scattering of coclosed
forms. Again Sp can be defined by the statement of Theorem 2.6 as the matrix relating
the incoming and outgoing waves. The first observation is that the total scattering matrix
for coclosed p-forms at energy 0,

S(0) = ⊕pSp(0) ∈ End(H∗(Y )),

is a self-adjoint involution which anti-commutes with the Hodge star operator. The +1
eigenspace of S(0) coincides with the space of harmonic forms that represent cohomology
classes in Im(r : H∗(X,R) → H∗(Y,R)).

The Eisenbud-Wigner time-delay operator Tp(λ) describes the time-delay a p-form-wave
undergoes when being scattered in M (see Appendix A). It can be calculated from the
Eisenbud-Wigner formula (see Appendix A), and for small λ it is given by

Tp(λ) = −iCp(λ)∗
d

dλ
Cp(λ).

Of course

Tp(λ) =

(
Tp(λ) 0

0 Tp−1(λ)

)
,(6)

where Tp(λ) is the time delay operator for coclosed forms defined by

Tp(λ) = −iSp(λ)−1S ′
p(λ).(7)

Its value Tp(0) at zero energy is of particular interest and we call it the scattering length.
The physical interpretation of the scattering length is as follows. If a coclosed wave packet
has very low energy then, by the uncertainty relation, it will be far spread out. In particular
it will not be able to “feel” details of the geometry of M . The effect of the manifold M
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in the scattering process for a wave is then close to that of a cylindrical obstacle of length
given by the scattering length. It is therefore an interesting question to determine what
geometric properties of M have an effect on the scattering length. Since T (0) commutes
with the Hodge star operator it is enough to know its restriction to the −1 eigenspace of
S(0). Denote by ‖ · ‖st the stable norm of a homology class, and by ‖ · ‖∞ the comass norm
on the cohomology groups (see [Gro99]). Let ν1 > 0 be the smallest positive eigenvalue of
∆′
p. Put

Vol∗(M) = Vol(M) +
1√
ν1

Vol(Y ).

Furthermore, in section 5 we introduce for each n ∈ N and 0 ≤ p ≤ n constants C(n, p) > 0,
which are related to the estimation of the comass norm on ΛpRn. They are equal to 1 for
p = 0 and p = 1. One of our main results relates the scattering length to certains norms in
homology (Theorem 4.7) and gives rise to the following estimation of the scattering length
in terms of geometric data.

Theorem 1.1. Let 0 ≤ p ≤ n. For every φ in the −1-eigenspace of Sp(0) we have

1

2
C(n, p+ 1)−1Vol∗(M)−1‖[M ] ∩ ∂φ‖2

st ≤ 〈φ, T (0)−1φ〉 ≤ 1

2
C(n, p+ 1)Vol(M)‖∂φ‖2

∞.

As an example we treat the case when Y has two connected components Y1 and Y2 and
p = 0. In this case there is a canonical basis in H0(Y,R) with respect to which T0(0) has
the form

T0(0) =

(
t1 0
0 t2

)
,(8)

so that

t1 = 2
Vol(M)

Vol(Y )
,(9)

C2 ≤ t2 ≤ C1,(10)

and the constants C1 and C2 are given by

C1 = 2Vol∗(M)
Vol(Y1)Vol(Y2)

‖ι∗([Y1])‖2
st(Vol(Y1) + Vol(Y2))

,(11)

C2 = 2Vol(M)−1 dist(Y1, Y2)
2Vol(Y1)Vol(Y2)

Vol(Y1) + Vol(Y2)
.(12)

The map ι is the inclusion of Y into M . So we get an estimate for the scattering length by
purely geometric quantities. The physical interpretation of this is as follows. For a wave
of low energy the reflection coefficient r11 and the transmission coefficient r12 for a wave
coming in at the boundary component Y1 are approximated by their values at zero, namely
(see section 7.3)

r11 =
Vol(Y1) − Vol(Y2)

Vol(Y1) + Vol(Y2)
, r12 =

2Vol(Y1)

Vol(Y1) + Vol(Y2)
.(13)
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The time-delay is then determined by t1 and t2. For example in the case where Vol(Y1) =
Vol(Y2) the reflection coefficient at zero energy is zero and the time delay of the transmitted
wave is equal to 1

2
(t1 + t2) (see section 7.3). Another example, the full-torus, is treated in

section 7.4.
Given a > 0, let Ma be the manifold that is obtained from M by attaching the cylinder

[0, a] × Y to M . We also investigate how the L2-norm of a class in Hp(Ma,R) and the
L2-norm of its image in Hp+1(Ma,R) under the connecting homomorphism are related for
the manifold with boundary Ma. There is an operator qa that relates the L2-norm of classes
in the complement of the kernel of the connecting homomorphism to the L2-norm of the
image of this class under the connecting homomorphism. So qa measures to what extent
the connecting homomorphism is a partial isometry. Theorem 3.3 shows that the operator
qa has an expansion of the form

qa = a1 +
1

2
T (0) +O(e−ca),(14)

as a → ∞. This shows that one can calculate the scattering length by approximating X
by the compact manifolds Ma and consider the constant term in the above expansion. The
exponential decay of the remainder term may also be useful for numerical computations.

The paper is organized as follows. In sections 2 we review stationary scattering theory for
p-forms on manifolds with cylindrical ends. Section 3 and section 4 deal with cohomology
of M and X, and their relation to scattering theory and the continuous spectrum of the
Laplacian of X. We also derive a cohomological formula for the scattering length. In
sections 5 and 6 it is shown that the L2-scalar products on the cohomology groups of X
can be estimated in terms of geometric quantities and that these estimates imply estimates
on the scattering length. Section 7 treats the case of functions in the case of two boundary
components and the case of a full-torus. In this section we demonstrate how our main
result can be used to obtain estimates of the scattering length in terms of geometric data.
In appendix A we discuss the relation between the stationary and the dynamical approach
to scattering theory and we establish the Eisenbud-Wigner formula for manifolds with
cylindrical ends.

Whereas for the sake of notational simplicity we restricted ourselves in this paper to man-
ifolds with cylindrical ends most of our analysis carries over in a straightforward manner
to waveguides if Neumann boundary conditions are imposed.
Acknowledgements. Much of the work on this paper has been done during the visit of
the second author to the MPI in Bonn and he would like to thank the MPI for the kind
support. Both authors would also like to thank the MSRI in Berkeley for hospitality during
the program “Analysis on Singular Spaces”. We are grateful to Werner Ballmann, Alexej
Bolsinov, Peter Perry, and Sasha Pushnitski for useful discussions and comments.

2. Stationary scattering theory for manifolds with cylindrical ends

As before let M be an oriented, connected, compact Riemannian manifold with boundary
Y = ∂M such that the metric is a product near the boundary. Let X be the elongation of
M . For any Riemannian manifold W we denote by Λp(W ) (resp. Λp

c(W ), L2Λp(W )) the
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space of smooth p-forms (resp. smooth p-forms with compact supports, L2-forms) on W .
Let ∆p be the Laplace operator on Λp(W ). Throughout this paper a harmonic p-form will
mean a p-form φ ∈ Λp(W ) with ∆pφ = 0.

Since X is complete, the Laplace-Beltrami operator ∆p on p-forms is essentially self-
adjoint when regarded as operator in L2Λp(X) with domain Λp

c(X) ([Che73]). We continue
to denote its self-adjoint extension by ∆p. In this section we recall some facts concerning
the generalized eigenforms of ∆p and derive some properties of the scattering matrix for
low energy.

Let ∆′
p denote the Laplacian on p-Forms of Y . Let 0 ≤ ν1 < ν2 < · · · be the distinct

eigenvalues of of ∆′
p⊕∆′

p−1. Let Σ → C the minimal Riemann surface on which
√
λ2 − νj

is a single-valued function for all j ∈ N0. As proved by Melrose[Mel93] the resolvent
(∆p − λ2)−1, regarded as operator Λp

c(X) → L2
locΛ

p(X), admits a meromorphic extension
from the half-plane Im(λ) > 0 to Σ. Let µ2

1 > 0 be the first non-zero eigenvalue of
∆′
p ⊕ ∆′

p−1. Then it follows in particular that (∆p − λ2)−1 extends to a meromorphic
function on the disc {λ : |λ| < µ1}. As a consequence one can define analytic families of
generalized eigenforms.

For a ≥ 0 we denote by Ya the hypersurface (a, Y ) ⊂ R
+
0 × Y ⊂ X. Note that the

restriction of the bundle ΛpT ∗X to Ya is canonically isomorphic to the direct sum ΛpT ∗Y ⊕
Λp−1T ∗Y since each vector f ∈ ΛpT ∗X at some point (u, x) can be uniquely decomposed
as f = f1 + du ∧ f2 with f1 ∈ ΛpT ∗X and f2 ∈ Λp−1T ∗X. Accordingly, the restriction of
any p-form ω ∈ Λp(X) to the cylinder R+ × Y is of the form

ω = ω1 + du ∧ ω2,(15)

where ω1 and ω2 are sections of the pulled back bundles π∗ΛpT ∗Y and π∗Λp−1T ∗Y , respec-
tively, and π : R+ × Y → Y is the canonical projection. We think of ω1(u) and ω2(u) as
forms on Y that depend smoothly on the additional parameter u. The map

jp : π∗ΛpT ∗Y ⊕ π∗Λp−1T ∗Y → ΛpT ∗Z, (ω1, ω2) 7→ ω1 + du ∧ ω2(16)

is an isomorphism of vector bundles. The exterior differential of such a form ω is then
given by

dω = d′ω1 + du ∧ ∂uω1 − du ∧ d′ω2,(17)

where d′ denotes the exterior differential on Y . In matrix notation this means

j−1 ◦ d ◦ j =

(
d′ 0
∂u −d′

)
,(18)

where we denote j = ⊕jp. Since the metric has product structure the decomposition is
orthogonal and the formal adjoint δ of d is therefore

j−1 ◦ δ ◦ j =

(
δ′ −∂u
0 −δ′

)
.(19)
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Here again we use the notation δ′ for the codifferential on Y . We therefore have

j−1 ◦ (d+ δ) ◦ j =

(
1 0
0 −1

)
(d′ + δ′) +

(
0 −1
1 0

)
∂u.(20)

and

j−1
p ◦ ∆p ◦ jp =

(
−∂2

u + ∆′
p 0

0 −∂2
u + ∆′

p−1

)

for all p. This form of an operator allows for a separation of variables on the cylinder
R+ × Y . Suppose that (ψi) is an orthonormal sequence of eigenforms of

(
∆′
p 0

0 ∆′
p−1

)
(21)

with eigenvalues µ2
ψi

. Then for |λ| < µ1, any solution F of the equation (∆p − λ2)F = 0
has an expansion of the form

(22) F (u) =

∞∑

i=0

(
aie

−i
q

λ2−µ2
ψi
u

+ bie
i
q

λ2−µ2
ψi
u
)
jp(ψi) +

{∑
µψi=0 ciujp(ψi), λ = 0;

0, λ 6= 0.

The series converges in the C∞-topology. The square roots are chosen throughout the

article in such a way that
√
λ2 = λ if Im(λ) > 0. This means that

√
reiϕ =

√
re

i

2
ϕ if r > 0

and 0 ≤ ϕ < 2π. From the analytic continuation of the resolvent one gets the following
result.

Theorem 2.1. For each ψ in ker(∆′
p ⊕ ∆′

p−1) there exists a p-form F̃ (ψ, λ) which is

meromorphic in λ ∈ {z : |z| < µ1} such that the following conditions hold

(i) F̃ (ψ, λ) is holomorphic in λ for Im(λ) > 0.

(ii) ∆F̃ (ψ, λ) = λ2F̃ (ψ, λ).

(iii) There exists R̃p(ψ, λ) ∈ L2Λp(Z) such that on Z we have

F̃ (ψ, λ) = e−iλujp(ψ) + eiλujp(Cp(λ)ψ) + R̃p(ψ, λ).

(iv) Cp(λ) : ker(∆′
p ⊕ ∆′

p−1) → ker(∆′
p ⊕ ∆′

p−1) is a linear operator, and Cp(λ) and

R̃p(ψ, λ) are meromorphic functions of λ.

Moreover, Cp(λ), R̃p(ψ, λ) and F̃ (ψ, λ) are uniquely determined by these properties.

Proof. This follows from[Gui89], [Mel93]. For the convenience of the reader we include the
details. Let Σ → C be the minimal Riemann surface to which all the functions (λ2−µ2

ψi
)1/2

extend to be holomorphic. By [Gui89, Théorèm 0.2], [Mel95, Theorem7.1] the resolvent
(∆p−λ2)−1, regarded as operator Λp

c(X) → L2
locΛ

p(X), extends to a meromorphic function
of λ ∈ Σ. Especially (∆p − λ2)−1 extends to a meromorphic function of λ ∈ {z ∈ C : |z| <
µ1} as an operator Λp

c(X) → L2
locΛ

p(X). Let χ be a smooth function with support in Z
which is equal to 1 outside a compact set. Put

F̃ (ψ, λ) := χe−iλujp(ψ) − (∆p − λ2)−1
{
(∆p − λ2)(χe−iλujp(ψ))

}
.(23)
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Then F̃ (ψ, λ) is a smooth p-form on X which depends meromorphically on λ ∈ Σ. More-
over, it satisfies

(∆p − λ2)F̃ (ψ, λ) = 0.(24)

Since F̃ (ψ, λ)− χe−iλujp(ψ) is square integrable for Im(λ) > 0, the expansion (22) has the
form

F̃ (ψ, λ) = e−iλujp(ψ) + eiλujp(Cp(λ)ψ) + R̃p(ψ, λ)

where Cp(λ)ψ ∈ ker(∆′
P ⊕ ∆′

p−1) and

R̃p(ψ, λ, u) =
∑

µψi 6=0

(
ai(λ)e

−i
q

λ2−µ2
ψi
u
jp(ψi) + bi(λ)e

+i
q

λ2−µ2
ψi
u
jp(ψi)

)
.(25)

Moreover, R̃p(ψ, λ) is square integrable for Im(λ) > 0. This implies that ai(λ) = 0 for
Im(λ) > 0. Since ai(λ) is meromorphic, it follows that ai(λ) = 0 for |λ| < µ1. Thus
we conclude that Rp(ψ, λ) is a meromorphic function in the disc |λ| < µ1 with values in
L2Λp(X).

The uniqueness is an immediate consequence of the self-adjointness of ∆p. Namely, if

F̃1(ψ, λ) and F̃2(ψ, λ) both have the above properties then their difference G(ψ, λ) is square
integrable for Im(λ) > 0 and is contained in the kernel of (∆p − λ2). Using that ∆p is
self-adjoint, we get G(ψ, λ) = 0 for Im(λ) > 0. Since it is meromorphic in λ we conclude
that G(ψ, λ) = 0. �

The requirement that R̃p(ψ, λ) is in L2Λp(Z) in fact implies a much faster decay at
infinity.

Lemma 2.2. If R̃(ψ, λ) is regular at λ, then all derivatives of R̃(ψ, λ) in u and x are

exponentially decaying as u → ∞. More precisely

|∂ku(∆′)lR̃(ψ, λ)| ≤ C ′
k,l,λe

−Cλu,

for all k, l ≥ 0 and some positive constants C ′
k,l,λ and Cλ.

Proof. The proof is already implicitly contained in the proof of the previous theorem.
Namely, R̃(ψ, λ) is smooth by elliptic regularity and thus the expansion (25) converges in

Λp(Z). Since ai = 0, we get the decay for |λ| < µ1 with Cλ = Re
(√

µ2
1 − λ2

)
. �

Let ψ ∈ ker ∆′
p. Put

(26) F (ψ, λ) := F̃ ((ψ, 0), λ) , F (du ∧ ψ, λ) := F̃ ((0, ψ), λ) .

Then the expansion (iii) of Theorem 2.1 takes the form

F (ψ, λ) = e−iλuψ + eiλuC11
p (λ)ψ + eiλudu ∧ C21

p (λ)ψ +Rp(ψ, λ);

F (du ∧ ψ, λ) = e−iλudu ∧ ψ + eiλudu ∧ C22
p (λ)ψ + eiλuC12

p (λ)ψ +Rp(du ∧ ψ, λ),
(27)
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where

(28) Cp(λ) =



C11
p (λ) C12

p (λ)

C21
p (λ) C22

p (λ)




as endomorphism of ∆′
p⊕ker∆′

p−1. A priory there is no reason why Cp(λ) should leave the
summands invariant. Nevertheless this is guaranteed by a continuous version of the Hodge
decomposition as the proof of the following proposition shows.

Proposition 2.3. Cp(λ) leaves the spaces ker∆′
p and ker∆′

p−1 invariant, i.e., C12
p (λ) = 0

and C21
p (λ) = 0.

Proof. Let ψ ∈ ∆′
p. Using the expansion of 27, it follows that on R

+ × Y we have

δdF (ψ, λ) = λ2e−iλuψ + λ2eiλuC11
p (λ)ψ + δdRp(ψ, λ),

dδF (du ∧ ψ, λ) = λ2e−iλudu ∧ ψ + λ2eiλudu ∧ C22
p (λ)ψ + dδRp(du ∧ ψ, λ).

(29)

Comparing the leading terms, it follows that

λ−2δdF (ψ, λ) = F (ψ, λ), λ−2dδF (du ∧ ψ, λ) = F (du ∧ ψ, λ).

Since all derivatives of Rp(ψ, λ) and Rp(du∧ψ, λ) are exponentially decaying, the unique-
ness statement in theorem 2.1 implies immediately C12

p (λ) = 0 and C21
p (λ) = 0. �

Note that the splitting ΛpT ∗Z = π∗(ΛpT ∗Y ) ⊕ π∗(Λp−1T ∗Y ) indeed corresponds to the
Hodge decomposition. Let P1 and P2 the projection on the first and second summand,
respectively. Then we have

Proposition 2.4. We have P2ψ = 0, i.e. ψ ∈ ker∆′
p if and only if δF̃ (ψ, λ) = 0. Similarly

P1ψ = 0, i.e. ψ ∈ ker∆′
p−1 if and only if dF̃ (ψ, λ) = 0.

Proof. Let ψ = (ψ1, ψ2) ∈ ker ∆′
p ⊕ ker ∆′

p−1. Suppose that δF̃ (ψ, λ) = 0. Then, in
particular, we have δF (du ∧ ψ2, λ) = 0. Applying δ to the second equation of (27) and
using Proposition 2.3, it follows that ψ2 = 0. For the other direction, observe that by (27),
δF (ψ1, λ) = δR(ψ1, λ) on Z. Hence, δF (ψ1, λ) is exponentially decaying. In particular it
is square integrable for Im(λ) > 0. Since ∆p is self-adjoint and (∆p − λ2)δF (ψ1, λ) = 0 we

get δF (ψ1, λ) = 0. Thus, if ψ2 = 0, it follows that δF̃ (ψ, λ) = 0. The proof of the other
case is analogous. �

Proposition 2.5. The following relation holds for 0 ≤ p < n.

Cp(λ)|ker∆′
p

= −Cp+1(λ)|ker∆′
p
,(30)

Proof. Let ψ ∈ ker∆′
p. Using (27), we get

iλ−1dF (ψ, λ)|Z = e−iλudu ∧ ψ − eiλudu ∧ C11
p (λ)ψ + iλ−1dRp(ψ, λ)(31)

Comparing the leading terms, it follows from Theorem 2.1 that

iλ−1dF (ψ, λ) = F (du ∧ ψ, λ).
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Using (27), we get C11
p (λ) = −C22

p+1(λ), which is equivalent to the statement of the Propo-
sition. �

Let us use the notation Sp(λ) for the restriction of Cp(λ) to ker∆′
p. Then the above

proposition shows that

Cp(λ) =

(
Sp(λ) 0

0 −Sp−1(λ)

)
.(32)

In the following we will suppress the index p and write S(λ), meaning that S(λ) is acting
on the space of harmonic forms, leaving the space of p-forms invariant. It is the scattering
matrix at low energy for the scattering problem for coclosed forms. Summarizing we have
established the following theorem.

Theorem 2.6. For each harmonic p-form ψ ∈ ker(∆′
p) there exists a p-form F (ψ, λ) on

X, which is meromorphic in λ in the disc |λ| < µ1 such that

(i) δF (ψ, λ) = 0
(ii) F (ψ, λ) is holomorphic in λ for Im(λ) > 0.
(iii) (∆p − λ2)F (ψ, λ) = 0.
(iv) F (ψ, λ) = e−iλuψ + eiλuS(λ)ψ +R(ψ, λ) on R+ × Y ,

(v) S(λ) ∈ End(ker(∆′
p)) and R(ψ, λ) ∈ L2Λp(Z) are meromorphic functions of λ.

Moreover, S(λ), R(ψ, λ) and F (ψ, λ) are uniquely determined by these properties.

The scattering matrix has the following properties

Theorem 2.7. The function S(λ) satisfies the following equations

(i) S(λ)∗S(λ) = 1.
(ii) S(λ)S(−λ) = 1.
(iii) S(λ)∗ = − ∗ S(λ),

where ∗ is the Hodge star operator on Y .

Proof. For a > 0 let Xa be the manifold ([0, a) × Y ) ∪Y X with boundary Ya = {a} × Y .
Let ωX be the volume form of X. By Theorem 2.6, (iii), we have

∫

Xa

〈F (ψ, λ),∆pF (ψ, λ)〉ωX −
∫

Xa

〈∆pF (ψ, λ), F (ψ, λ)〉ωX = 0.

Using Green’s formula, we obtain
∫

Ya

〈F (ψ, λ),−∂uF (ψ, λ)〉ωY +

∫

Ya

〈∂uF (ψ, λ), F (ψ, λ)〉ωY = 0.(33)

In the limit a→ ∞ this expression can be evaluated using Theorem 2.6. We obtain

lim
a→∞

∫

Ya

(〈F (ψ, λ),−∂uF (ψ, λ)〉 + 〈∂uF (ψ, λ), F (ψ, λ)〉)ωY =

= −2iλ(‖ψ‖2 − 〈S(λ)ψ, S(λ)ψ〉) = 0,(34)
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which proves the first statement. The second statement follows from the functional equa-
tion

F (C(λ)ψ,−λ) = F (ψ, λ),

which is a simple consequence of the uniqueness statement in theorem 2.1. To show that
C(λ) anticommutes with the Hodge star operator on Y we note that that Hodge star
operator ∗X on X commutes with the Laplace operator ∆, i.e. ∗X∆p = ∆n−p∗X . Applying
this to F (ψ, λ) and using the uniqueness statement we obtain immediately

∗XCp = Cn−p ∗X .
For ψ ∈ ker∆′

p we get ∗Xψ = (−1)pdu ∧ ∗ψ and consequently ∗S(λ) = −S(λ)∗, where we
used that du∧ anticommutes with C(λ). �

As an application we obtain the following well known result about the signature sign(Y )
of a closed manifold Y .

Corollary 2.8. Let Y be a closed oriented manifold. Assume that Y is the boundary of a

compact manifold. Then sign(Y ) = 0.

Proof. We may assume that dimY = 4k. Otherwise the signature is zero. Pick a Rie-
mannian metric on Y . Let H2k

± (Y ) be the ±1 eigenspaces of ∗ acting in H2k(Y ). Then the
signature sign(Y ) of Y is given by

sign(Y ) = dimH2k
+ (Y ) − dimH2k

− (Y ).

If Y is the boundary of a compact Riemannian manifold M , it follows from Theorem 2.7,
that S(λ) is regular at λ = 0, S(0)2 = 1I and S(0) intertwines H2k

+ (Y ) and H2k
− (Y ). Hence

we get sign(Y ) = 0. �

Remark 2.9. The same proof works equally well for Dirac type operators. It implies the

cobordism invariance of the index of Dirac operators.

Proposition 2.10. S(λ), F (ψ, λ), and R(ψ, λ) are regular for real λ. If ψ = −S(0)ψ then

F (ψ, 0) = 0.

Proof. For real λ it follows from Theorem 2.7 that S(λ)S∗(λ) = 1I and therefore ‖S(λ)‖ = 1.
In particular, S is bounded on the real line and can not have a pole there. It remains to
show that F is regular for real λ. Suppose that φ is a square integrable eigensection of ∆
with real eigenvalue λ′. Then the expansion (22) of φ on R+ × Y takes the form

φ(u, y) =
∑

µ2
ψi
>λ′

aie
−

q

µ2
ψi

−λ′ u
jp(ψi).

This implies that φ is exponentially decaying. Since for real λ

0 = 〈(∆ − λ2)F (ψ, λ), φ〉 = −(λ2 − λ′2)〈F (ψ, λ), φ〉,(35)

and 〈F (ψ, λ), φ〉 is a meromorphic function we get 〈F (ψ, λ), φ〉 = 0. Suppose now that
F (ψ, λ) has a pole of order k at λ′. Then G := limλ→λ′(λ − λ′)kF (ψ, λ) is an eigenform
with eigenvalue λ′ and it also is square integrable since S is regular at λ′. By the above
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〈G,G〉 = 0. It follows that G = 0 and therefore F (ψ, λ) is regular at λ′. If ψ = −S(0)ψ
then F (ψ, 0) is square integrable and harmonic and by the same argument F (ψ, 0) = 0. �

In particular, it follows that F (ψ, λ) is regular at λ = 0. Therfore, F (ψ, 0) and
F ′(ψ, 0) := ∂

∂λ
F (ψ, λ)|λ=0 are well defined. From the proof of Proposition 2.10 we ob-

tain the following corollary.

Corollary 2.11. F (ψ, 0) and F ′(ψ, 0) are orthogonal to the space Hp
(2)(X) of square inte-

grable harmonic forms.

The scattering matrix S(λ) is also regular at 0 and it follows from Theorem 2.7 that S(0)
is a self-adjoint involution. Hence, ker(∆′

p) decomposes into +1 and −1 eigenspaces. For
ψ ∈ ker(∆′

p) with S(0)ψ = ψ we get that F (ψ, 0) is a smooth coclosed harmonic p-form
whose restriction to Z equals

F (ψ, 0) = 2ψ +R(ψ, 0),

where R(ψ, 0) and its derivatives are exponentially decaying. That is, ψ is a limiting value
of 1

2
F (ψ, 0) in the sense of Atiyah, Patodi, and Singer ([APS75]). It turns out that the

converse is also true.

Proposition 2.12. The +1 eigenspace for S(0) is the set of limiting values of coclosed

harmonic forms on X, i.e, it equals

{ψ ∈ ker∆′
p | ∃G ∈ Λp(X) : G|Z − ψ ∈ L2Λp(Z), ∆pG = 0, δG = 0}.

Furthermore for each ψ ∈ ker ∆′
p, F (ψ, 0) satisfies dF (ψ, 0) = 0 and δF (ψ, 0) = 0.

Proof. Suppose that F ∈ Λp(X) and G ∈ Λn−1−p(X) are both coclosed harmonic forms on
X with limiting values ψ and φ, respectively. Since ψ−G and φ−F are both exponentially
decaying and ψ and φ are closed and coclosed on Y the forms dG and dF are exponentially
decaying. Using Green’s formula, we get

0 = 〈∆G,G〉 = 〈δdG,G〉 = 〈dG, dG〉.
Thus dG = 0. Similarly we get dF = 0. Using Stokes formula, it follows that

0 =

∫

Xa

dG ∧ F = ±
∫

Y

ψ ∧ φ+O(e−cu).

Thus, 〈ψ, ∗φ〉 = 0. Now suppose that φ is a limiting value which is in the −1 eigenspace
to S(0). Since ∗ anticommutes with S(0), it follows that ∗φ is in the +1 eigenspace. It
is therefore a limiting value. Since ∗φ and φ are both limiting values it follows from the
above that ‖φ‖2 = ±〈φ, ∗ ∗ φ〉 = 0 and therefore, φ = 0. Since the set of limiting vectors
contains the +1 eigenspace it has to coincide with the +1 eigenspace. �

Finally we derive some formulas concerning F ′(ψ, 0) which we are going to use in the
next section. Note that the restriction of F ′(ψ, λ) to the cylinder Z has the form

F ′(ψ, λ)|Z = −iu(e−iλuψ − e+iλuS(λ)ψ) + eiλuS ′(λ)ψ +R′(ψ, λ),(36)
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and for λ = 0:

(37) F ′(ψ, 0)|Z = −iu (1 − S(0))ψ + S ′(0)ψ +R′(ψ, 0).

Differentiating the equation

(∆ − λ2)F (ψ, λ) = 0(38)

it follows that

∆F ′(ψ, 0) = 0.(39)

Hence, dF ′(ψ, 0) is in the kernel of ∆ and its restriction to the cylinder has the form

dF ′(ψ, 0)|Z = −idu ∧ (1 − S(0))ψ + dR′(ψ, 0).(40)

By Theorem 2.7, (iii), we get

(41) ∗XdF ′(ψ, 0)|Z = −i(1 + S(0)) ∗ ψ + ∗XdR′(ψ, 0).

Thus, ∗XdF ′(ψ, 0) is an extended harmonic form with limiting value −i(1 + S(0)) ∗ ψ.
Since ∗XdF ′(ψ, 0) is coexact and bounded it is orthogonal to the space H∗

(2)(X) of square

integrable harmonic forms. The proof of Prop. 2.10 shows that 1
2
F (−i(1 + S(0)) ∗ ψ, 0)

is harmonic and orthogonal to H∗
(2)(X). Their difference is therefore square integrable,

harmonic and orthogonal to H∗
(2)(X). Thus, it vanishes and we have the following nice

formula

∗XdF ′(ψ, 0) = − i

2
F ((1 + S(0)) ∗ ψ, 0) .(42)

In particular for ψ ∈ (ker ∂)⊥ we have

∗XdF ′(ψ, 0) = −iF (∗ψ, 0),(43)

or equivalently

(44) dF ′(ψ, 0) = −iF (du ∧ ψ, 0).

3. Cohomology and Hodge theory on M

As before let M be a compact manifold with boundary Y and X = (R+ × Y )∪Y M the
associated manifold with a cylindrical end. We consider the long exact sequence
(45)

. . . ∂
// Hk(M,Y,R)

e
// Hk(M,R)

r
// Hk(Y,R)

∂
// Hk+1(M,Y,R)

e
// . . . ,

in de Rham cohomology. Here e is the canonical embedding and r is the restriction ho-
momorphism. There are three cochain complexes which compute the relative de Rham
cohomology. Let

Λp(M,Y ) := {ω ∈ Λp(M) : i∗ω = 0} ,
where i : Y → M is the inclusion. Since d commutes with i∗, we get a complex Λ∗(M,Y ).
Its cohomology is denoted by H∗(M,Y,R). There is an exact sequence of complexes

0 // Λ∗(M,Y )
j

// Λ∗(M)
i∗

// Λ∗(Y ) // 0,
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where j is the inclusion map. It gives rise to the long exact sequence (45). The connecting
homomorphism ∂ is defined as follows. Let [φ] ∈ Hk(Y,R). Extend φ to a k-form ω on M
such that ω = φ in a neighborhood of the boundary. Then

∂[φ] = [dω].(46)

For the second description consider the cochain complex Λ∗
rel(M,Y ) of the mapping cone

of i∗ which is defined by

Λp
rel(M,Y ) := Λp(M) ⊕ Λp−1(Y )

with differential d given by

d(ω, θ) = (dω, i∗ω − dθ), ω ∈ Λp(M), θ ∈ Λp−1(Y ).

Let

α : Λp−1(Y ) → Λp
rel(M,Y ) and β : Λp

rel(M,Y ) → Λp(M)

be defined by α(θ) = (0, (−1)p−1θ) and β(ω, θ) = ω, respectively. Then α and β are cochain
maps and we get a second exact sequence of cochain complexes

0 // Λ∗−1(Y )
α

// Λ∗
rel(M,Y )

β
// Λ∗(M) // 0

There is a natural inclusion of cochain complexes

γ : Λ∗(M,Y ) → Λ∗
rel(M,Y ), ω 7→ (ω, 0).

It follows from the corresponding commutative diagram of long exact sequences that γ
induces an isomorphism

γ : H∗(M,Y,R) ∼= H∗
rel(M,Y,R).

FinallyH∗
rel(M,Y,R) is also naturally isomorphic to the cohomology with compact supports

H∗
c (X). The isomorphism can be described as follows. Let p : Z = R

+ × Y → Y be the
canonical projection. Integration over the fibre R+ of p induces a mapping

p∗ : Λp
c(R

+ × Y ) → Λp−1(Y ).

Define a map

ξ : ω ∈ Λp
c(X) 7→ (ω|M ,−p∗(ω|Z)) ∈ Λp

rel(M,Y )

This is a chain map. If the support of ω is contained in M \ Y , then ξ(ω) = (ω, 0). Since
every cohomology class in Hp

c (X) has a representative of this form, it follows that ξ induces
an isomorphism

ξ̄ : Hp
c (X) → Hp

rel(M,Y ).

If we fix a metric on Y we may identify Hk(Y,R) with the space of harmonic forms
Hk(Y,R). In fact, the image of e, i.e. the kernel of r can be read off from the scattering
matrix at 0.

Theorem 3.1. The +1 eigenspace of the scattering matrix S(0) on Hp(Y,R) coincides

with Im(Hp(M,R) → Hp(Y,R)).
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Proof. Let ψ ∈ Hp(Y,R) with ψ = S(0)ψ. By Proposition 2.12, F (ψ, 0) is closed and
coclosed. Therefore the restriction of F (ψ, 0) to M defines a cohomology class in Hp(M).
Expand F (ψ, 0) on Z in terms of an orthonormal basis of ker ∆′

p ⊕ ker ∆′
p−1. Using that

F (ψ, 0) is closed and coclosed, it follows that its expansion on Z has the form

F (ψ, 0) = 2ψ +
∑

µφi>0

aie
−µφiu(d′φi − µφidu ∧ φi),(47)

where {φi}i∈N is an orthonormal basis of δ(Λp(Y )) consisting of eigenforms of ∆′
p−1 with

eigenvalues µ2
φi

. In particular

i∗Y F (ψ, 0) = 2ψ + d′

(∑

i

aiφi

)
,(48)

and therefore the image of the cohomology class [1
2
F (ψ, 0)] under r is precisely [ψ]. There-

fore we have shown that the +1 eigenspace of S(0) is contained in the image of Hp(M,R)
in Hp(Y,R). Now let φ be an element in the image of r, i.e. φ is a harmonic form that is
in the same cohomology class as the restriction of a closed form f on M . If ψ is in the −1
eigenspace of S(0) then by Theorem 2.7, ∗ψ is in the +1 eigenspace and we have

0 =

∫

M

df ∧ F (∗ψ, 0) =

∫

Y

i∗Y (f) ∧ ∗ψ =

∫

Y

φ ∧ ∗ψ = 〈φ, ψ〉.(49)

Hence, any element in Im(Hp(M,R) → Hp(Y,R)) is in the orthogonal complement to the
−1 eigenspace of S(0) which is exactly the +1 eigenspace. This shows that Im(Hp(M,R) →
Hp(Y,R)) is contained in the +1 eigenspace and this concludes the proof. �

Hence, the scattering matrix at 0 is determined completely by the metric on the bound-
ary. Namely, it is equal to 1 on the kernel of ∂ and equal to −1 on the orthogonal
complement of the kernel of ∂. Recall that by Proposition 2.12, F (ψ, 0) is a closed and

coclosed p-form. Let F̂ : Hk(Y,R) → Hk(M,R) be the map defined by

F̂ (ψ) = [
1

2
F (ψ, 0)|M ].(50)

Then, by construction, r ◦ F̂ is the orthogonal projection onto the kernel of ∂.
Hodge theory for manifolds with boundary shows that absolute and relative cohomology

classes have unique harmonic representatives that satisfy certain boundary conditions.
We recall the definition of the relative and absolute boundary conditions for the Laplace
operator. The operator ∆rel is the closure of the Laplace operator with respect to the
relative boundary conditions

ω|Y = 0, (∗δω)|Y = 0.

The operator ∆abs is the closure of the Laplace operator with respect to the absolute
boundary conditions

(∗ω)|Y = 0, (∗dω)|Y = 0.
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Both operators are self-adjoint and have compact resolvents. Their kernels are the space of
harmonic forms satisfying relative and absolute boundary conditions. Equivalently, they
are given by

Hp
rel(M) = {ω ∈ Λp(M) : dω = δω = 0, ω|Y = 0},

Hp
abs(M) = {ω ∈ Λp(M) : dω = δω = 0, (∗ω)|Y = 0},

Hodge theory for manifolds with boundary shows that the canonical maps

Hp
rel(M) → Hp(M,Y,R), Hp

abs(M) → Hp(M,R)

are isomorphisms, that is, every absolute/relative cohomology class has a unique harmonic
representative satisfying absolute/relative boundary conditions (see e.g. [DS52]).

The harmonic representative φ of the cohomology class [φ] ∈ Hp(M,Y,R) is the unique
minimizer of the functional

ω 7→ 〈ω, ω〉L2(M)

in [φ]. Similarly, any harmonic form satisfying absolute boundary conditions minimizes
the L2-norm in its absolute cohomology class. Apart from these minimax principles there
is another interesting minimizing problem which is described in the following proposition.

Theorem 3.2. Let φ ∈ Λp(Y ). Consider the functional F on {ω ∈ Λp(M) : ω|Y = φ}
which is defined by

F (ω) = 〈dω, dω〉L2.

Then there exists a unique coclosed harmonic form ω0 with ω0|Y = φ such that ω0 is

orthogonal to Hp
rel(M). The minimum of F is attained at ω0 and ω0 is the unique coclosed

minimizer that is orthogonal to Hp
rel(M). If φ is closed dω0 is the harmonic representative

in ∂[φ].

Proof. We divide the proof into several steps.
Uniqueness: If two forms ω0 and ω′

0 are harmonic, coclosed, and their restrictions to
Y coincide, it follows that ω0 − ω′

0 is harmonic, coclosed and satisfies relative boundary
conditions. Therefore, ω0 −ω′

0 ∈ Hp
rel(M). If both ω0 and ω′

0 are orthogonal to Hp
rel(M) it

follows that ω0 = ω′
0.

Existence: Choose any extension ψ̃ of φ to M which in a neighborhood of Y is of the
form

φ+ udu ∧ δφ.(51)

Then δψ̃ vanishes near Y . Next we claim that the form ∆ψ̃ is in the orthogonal complement
of the kernel of ∆rel. Indeed, if ξ ∈ Hp

rel(M), then

〈ξ,∆ψ̃〉 =

∫

M

dδψ̃ ∧ ∗ξ +

∫

M

ξ ∧ ∗δdψ̃ =

=

∫

Y

δψ̃ ∧ ∗ξ −
∫

Y

ξ ∧ ∗dψ̃ = 0,
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where the first integral vanishes because ψ̃ is coclosed near Y and the second integral van-
ishes because ξ satisfies relative boundary conditions. Let us denote by p0 the orthogonal
projection onto the kernel of ∆rel. Since ∆ψ̃ is in the orthogonal complement of the kernel
of ∆rel the following form is well defined and harmonic

ω0 = ψ̃ −
(
∆rel|Hp

rel
(M)⊥

)−1

(∆ψ̃) − p0ψ̃.

By construction it is also in the orthogonal complement of Hp
rel(M) and satisfies ω0|Y = φ.

Moreover, ω0 is harmonic and since ∆rel commutes with δ, we have

δω0 = δψ̃ −
(
∆rel|Hp

rel
(M)⊥

)−1

∆δψ̃

Since δψ̃ vansihes near Y , it is in the domain of ∆rel and therefore, the right hand side
vanishes. Hence δω0 = 0.
Minimizing property: Suppose that ψ p-form with ψ|Y = 0, then

〈d(ω0 + ψ), d(ω0 + ψ)〉 = 〈dω0, dω0〉 + 2〈dω0, dψ〉 + 〈dψ, dψ〉 =

= 〈dω0, dω0〉 + 〈dψ, dψ〉,
because 〈dω0, dψ〉 = 〈δdω0, ψ〉 = 0. Thus, ω0 is a minimizer. One can see immediately
that the Euler-Lagrange equations for the minimizer are the equations δdω0 = 0. Thus,
any coclosed minimizer has to be harmonic. The uniqueness statement for the minimizer
thus follows from the above uniqueness statement. �

Since restriction to the boundary commutes with the differential the map which sends
φ to ω0 commutes with the differential. Therefore, if φ is exact or closed, so is ω0.

Now consider the manifold Ma which is obtained from M by attaching the cylinder
[0, a] × Y to M . Then Ma is a manifold with boundary Ya. Let φ ∈ Hp−1(Y ). We regard
it as a harmonic form on Ya. By the Hodge theorem there is a unique harmonic form in
Hp
rel(Ma) which represents ∂[φ] ∈ Hp(Ma, ∂Ma). Let us denote this form by ∂aφ, where

the notation ∂a indicates that ∂a maps Hp−1(Y ) to different spaces depending on a. For
each a we have the L2-inner product on Hp

rel(Ma). It is a natural question to ask whether
∂ as a map from one Hilbert space to another one is a partial isometry. The scalar product
on Hp

rel(Ma), however, depends on a.

Theorem 3.3. Let Qa be the sesquilinear form on ker(∂)⊥ which is defined by

Qa(ψ, φ) = 〈∂aψ, ∂aφ〉L2(Ma)

and let q(a) be the unique linear operator ker(∂)⊥ → ker(∂)⊥ such that

Qa(ψ, φ) = 〈ψ, q(a)φ〉.
Then, as a→ ∞:

q(a)−1 = a1I +
i

2
S ′(0)|ker(∂)⊥ +O(ae−µ1a).
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Proof. Recall that ker(∂)⊥ = ker(I + S(0)). Let φ ∈ ker(∂)⊥. Then by (37) the restriction
of F ′(φ, 0) to the cylinder Z has the following form

F ′(φ, 0)|Z = −2iuφ+ S ′(0)φ+R′(φ, 0).(52)

It follows that F ′(φ, 0) is a coclosed harmonic form. Thus, by theorem 3.2 F ′(φ, 0) is a
coclosed minimizer of the functional η → 〈dη, dη〉L2(Ma) with boundary condition η|Ya =
−2iaφ + S ′(0)φ + R′(φ, 0)|Ya. Let H be the minimizer with boundary conditions H|Y =
aφ + i

2
S ′(0)φ so that dH is the unique harmonic representative of ∂a

(
(a1I + i

2
S ′(0))φ

)
.

Again by theorem 3.2

Gφ :=
i

2
F ′(φ, 0) −H(53)

minimizes the functional η → 〈dη, dη〉L2(Ma) with boundary conditions

η|Ya = R′(φ, 0)|Ya.(54)

Then for every ψ ∈ ker(∂)⊥ we have

Qa(ψ, (a1I +
i

2
S ′(0))φ) = 〈∂aψ,

i

2
dF ′(φ, 0)〉L2(Ma) − 〈∂aψ, dGφ〉L2(Ma).(55)

The second term on the right hand side can be estimated using the Cauchy-Schwarz in-
equality

|〈∂aψ, dGφ〉L2(Ma)| ≤ ‖∂aψ‖L2(Ma) · ‖dGφ‖L2(Ma).(56)

The first term in (55) can be explicitly calculated. Using (44) we get

〈∂aψ,
i

2
dF ′(φ, 0)〉L2(Ma) =

1

2

∫

Y

ψ ∧ ∗MF (du ∧ φ, 0) =

=

∫

Y

ψ ∧ ∗φ = 〈ψ, φ〉,

where we used that R(du ∧ φ, 0)|Y is orthogonal to ψ. Thus,

|Qa(ψ, (a1I +
i

2
S ′(0))φ) − 〈ψ, φ〉| ≤ ‖∂aψ‖L2(Ma) · ‖dGφ‖L2(Ma).(57)

The terms on the right hand side can be estimated as follows. First note that ‖dGφ‖L2(Ma)

minimizes ‖dη‖L2(Ma) over all forms η which restrict to R′(φ, 0)|Ya on Ya. Moreover, χa :=
R′(φ, 0)|Ya is exponentially decaying in a. Define the form ηa by ηa := u

a
χa on the cylinder

and 0 elsewhere. Then,

‖dηa‖2
L2(Ma)

=
a

3
‖dχa‖2

L2(Y ) +
1

a
‖χa‖2

L2(Y ).(58)

By Lemma 2.2 we have

‖dχa‖2
L2(Y ) + ‖χa‖2

L2(Y ) ≤ Cφe
−2µ1a,(59)

which implies

‖dGφ‖L2(Ma) ≤ C̃φe
−µ1a.(60)
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To estimate ‖ ∂aψ ‖L2(Ma), recall that by Theorem 3.2, ∂aψ = dω0, where ω0 minimizes the
functional η 7→ ‖dη‖2

L2(Ma)
with boundary conditions η|Ya = ψ. Let f ∈ C∞(R−) such that

f(u) = 1 for −1/4 ≤ u ≤ 0 and f(u) = 0 for u ≤ −3/4. For a ≥ 1 define ψ̂a ∈ Λp(Ma) by

ψ̂a(x) =

{
f(u− a)ψ(y), if x = (u, y) ∈ [0, a] × Y ;

0, otherwise.

Then it follows that there exists C > 0 such that

‖∂aψ‖L2Λp+1(Ma) ≤ ‖dψ̂a‖L2Λp+1(Ma) ≤ C‖ψ‖L2Λp(Y ).

Thus we get

|Qa(ψ, (a1I +
i

2
S ′(0))φ) − 〈ψ, φ〉| ≤ C ′′

φ‖ψ‖e−µ1a.(61)

By compactness of the unit sphere in ker(∂)⊥ the constant can be chosen independent of
φ if we use vectors of norm 1 only. Hence

sup
‖ψ‖,‖φ‖=1

〈
ψ, (q(a)(a1I +

i

2
S ′(0)) − 1I)φ

〉
≤ Ce−µ1a,

which implies

(62) ‖a1I +
i

2
S ′(0) − q(a)−1‖ ≤ C‖q(a)−1‖e−µ1a.

From this inequality we deduce that ‖q(a)−1‖ ≤ C(1 + a). Combined with (62) the state-
ment of the theorem follows. �

4. Hodge theory on X and the scattering length

In this section we give a description of the long exact cohomology sequence of X in terms
of harmonic forms and we derive a cohomological formula for the scattering length.

Let H∗
c (X) denote the de Rham cohomology groups with compact supports. It is well

known (see [Mel93]) that H∗(X) and H∗
c (X) are canonically isomorphic to certain spaces

of extended harmonic forms on X. We recall some details.
The space of extended harmonic forms Hp

ext(X) is defined to be the subspace of all (real
valued) ψ ∈ Λp(X) satifying 1) ∆pψ = 0 and 2) there exist φ1 ∈ ker ∆′

p and φ2 ∈ ker ∆′
p−1

such that

ψ|Z − φ1 − du ∧ φ2 ∈ L2Λp(Z).

Note that for a given ψ ∈ Hp
ext(X) the sections φ1 and φ2 are uniquely determined. We

regard φ1 (resp. φ2) as the tangential (resp. normal) boundary value of ψ at infinity and
we denote them by ψt and ψn, respectively. The spaces satisfying absolute and relative
boundary conditions at infinity are then defined as

Hp
ext,abs(X) := {ψ ∈ Hp

ext(X) | ψn = 0},
Hp
ext,rel(X) := {ψ ∈ Hp

ext(X) | ψt = 0}.
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Since ψ ∈ Hp
ext(X) is harmonic and the form ψ − ψt − du ∧ ψn is square integrable, it

follows from (22) that there exists c > 0 such that

(63) (ψ − ψt − du ∧ ψn)(u, y) ≪ e−cu, (u, y) ∈ Z.

Moreover dψ and δψ are also exponentially decaying. Applying Greens formula to Ma, we
get

0 = 〈∆ψ, ψ〉Ma
=‖ dψ ‖2

Ma
+ ‖ δψ ‖2

Ma
+O(e−ca),

which implies that

(64) dψ = 0, δψ = 0 for all ψ ∈ Hp
ext(X).

The intersection Hp
ext,abs(X)∩Hp

ext,rel(X) is the space Hp
(2)(X) of square integrable harmonic

forms.
On Hp

ext(X) we introduce an inner product as follows. For ψ, φ ∈ Hp
ext(X) let

(65) 〈ψ, φ〉 =

∫

M

ψ ∧ ∗φ+

∫

Z

(ψ − ψt − du ∧ ψn) ∧ ∗(φ− φt − du ∧ φn).

To verify that this is an inner product, we only need to show that ‖ φ ‖= 0 implies
φ = 0. So suppose that ‖ φ ‖= 0. Then, in particular, we have φ|M = 0 and the unique
continuation property for harmonic forms (see [Bae99, Corollary 3]) implies φ = 0. We
note that the inner product can be also defined by the following formula:

(66) 〈ψ, φ〉 = lim
a→∞

(∫

Ma

ψ ∧ ∗φ− a(〈ψt, φt〉 + 〈ψn, φn〉)
)
.

This inner product coincides on the subspace Hp
(2)(X) with the usual inner product on

Hp
(2)(X). The orthogonal projections define canonical maps

Hp
ext,rel(X) → Hp

(2)(X), Hp
ext,abs(X) → Hp

(2)(X).

Moreover, we have the maps

F̂ : Hp(Y ) → Hp
ext,abs(X), φ 7→ 1

2
F (φ, 0),

Ĝ : Hp(Y ) → Hp
ext,rel(X), φ 7→ i

2
dF ′(φ, 0).

(67)

Next we define maps into the de Rham cohomology. Let φ ∈ Hp
ext,abs(X). By (64), φ is

closed and we get a canonical map

(68) R : Hp
ext,abs(X) → Hp(X,R).

Now consider ψ ∈ Hp
ext,rel(X). By (64) ψ is closed and on the cylinder ψ is of the form

(69) ψ|Z = du ∧ ψn + dθ,

where θ is exponentially decaying. Let χ be a function with support on the cylinder Z
which is equal to 1 outside a compact set. Following [Mel93] we can then define a map

Rc : Hp
ext,rel(X) → Hp

c (X,R), ψ 7→ [ψ − d(χ(uψn + θ))].(70)
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This map is well defined and independent of the choice of χ. Indeed changing χ on a
compact subset changes

ψ − d(χ(uψn + θ))

by the differential of a compactly supported form. Let

(·, ·) : Hp
c (X) ×Hn−p(X) → R

be the canonical pairing defined by

([φ], [ψ]) =

∫

X

φ ∧ ψ, [φ] ∈ Hp
c (X), [ψ] ∈ Hn−p(X).

Define a pairing

(·, ·)ext : Hp
ext,rel(X) ×Hn−p

ext,abs(X) → R(71)

by taking the constant term in the asymptotic expansion of∫

Ma

ψ ∧ φ

as a→ ∞. Applying Green’s formula to Ma, it follows that there exists c > 0 such that∫

Ma

ψ ∧ φ = a

∫

Y

ψn ∧ φt + ([ψ − d(χ(u · ψn + θ))], [φ]) +O(e−ca)

as a→ ∞. This implies that the following diagram commutes

(72)

Hp

ext,rel(X) × Hn−p

ext,abs(X)

R

Hp
c (X, R) × Hn−p(X, R)

...............................................................................................
.......... ..
..
..
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.....
..
.
.
.
.
.
.

..........
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

..
..

.

.

.

.

.

.

..

..
..

Rc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

..
..

.

.

.

.

.

.

..

..

..

R

,

where the horizontal maps are given by the corresponding pairing.
Let φ ∈ Hp

ext(X) and ω ∈ Λp−1
c (X). Since φ is co-closed (64), it follows that 〈dω, φ〉 = 0.

Therefore, for φ ∈ Hp
ext(X), [ψ] ∈ Hp

c (X), and ψ′ ∈ [ψ], the inner product 〈ψ′, φ〉 is inde-
pendent of the representative of the cohomology class [ψ] and will be denoted by 〈[ψ], φ〉.
This leads to the following alternative description of the inner product in Hp

ext,rel(X).

Lemma 4.1. For all φ, ψ ∈ Hp
ext,rel(X) we have

〈ψ, φ〉 = 〈Rc(ψ), φ〉.
Proof. Applying Stoke’s theorem and using that θ is rapidly decreasing, we get∫

Ma

d(χ(uψn + θ)) ∧ ∗φ = a〈ψn, φn〉 +O(e−ca).

By (66) we get
〈ψ, φ〉 = 〈ψ − d(χ(uψn + θ)), φ〉 = 〈Rc(ψ), φ〉.

�
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Our next goal is to describe the connecting homomorphism ∂ : Hp(Y,R) → Hp+1
c (X,R)

on the level of harmonic forms. To this end we need some preapration. Let ψ be in the
−1 eigenspace of S(0). Then by (37), we have on Z

i

2
F ′(ψ, 0)|Z = uψ +

i

2
S ′(0)ψ + θ,

where θ is exponentially decaying. Let χ be a smooth function with support in Z which is
a equal to 1 outside a compact set. Then

i

2
F ′(ψ, 0) − χ(uψ + θ)

is equal to i
2
S ′(0)ψ outside a compact set and we conclude that

d(
i

2
F ′(ψ, 0) − χ(uψ + θ))

represents ∂[ i
2
S ′(0)ψ] in Hp+1

c (X,R). Let κ : Hp(Y ) → Hp(Y ) be the canonical isomor-
phism. Then we have shown that for each ψ ∈ Hp(Y ) we have

(73) Rc(Ĝ(ψ)) = ∂

[
κ(
i

2
S ′(0)ψ)

]
,

where Ĝ(ψ) is defined by (67).

Lemma 4.2. The operator S ′(0) in H∗(Y ) is invertible.

Proof. Differentiating equations (ii) and (iii) of Theorem 2.7, it follows that S ′(0) commutes
with S(0) and anti-commutes with ∗. Therefore, it suffices to show that the restriction of
S ′(0) to the −1-eigenspace E− of S(0) is invertible. Let ψ ∈ E−. Then S ′(0)ψ ∈ E−. By
Theorem 3.1 we have E− = (ker ∂)⊥. Using (73), it follows that it suffices to show that

Rc(Ĝ(ψ)) 6= 0 whenever ψ 6= 0. By Lemma 4.1 we have

〈Ĝ(ψ), Ĝ(ψ)〉 = 〈Rc(Ĝ(ψ)), Ĝ(ψ)〉
for all ψ ∈ Hp

ext,rel(X). Recall that Ĝ(ψ) is a harmonic form, which is non-zero, if ψ 6= 0.
Therefore, the left hand side of the above equality is non-zero, if ψ 6= 0. �

Now we define maps

ẽ : Hp
ext,rel(X) → Hp

ext,abs(X), r̃ : Hp
ext,abs(X) → Hp(Y ), ∂̃ : Hp(Y ) → Hp+1

ext,rel(X)

as follows. Let ẽ be the composition of the orthogonal projection Hp
ext,rel(X) → Hp

(2)(X)

and the inclusion Hp
(2)(X) → Hp

ext,abs(X). r̃ assigns to φ ∈ Hp
ext,abs(X) its limiting value

φt. To define ∂̃, we note that by Lemma 4.2, S ′(0) is an invertible operator. Put

∂̃ = Ĝ ◦
(

i

2
S ′(0)

)−1

.
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Proposition 4.3. The sequence

. . . Hp

ext,rel(X) Hp

ext,abs(X) Hp(Y ) Hp+1
ext,rel(X) . . .............................................................................................

...

.....
..
..
.
..

∂̃
...............................................

...

.....
..
..
.
..

ẽ
........................................................................

...

.....
..
..
.
..

r̃
...........................................................................

...

.....
..
..
.
..

∂̃
............................................................................................

...

.....
..
..
.
..

ẽ

is exact.

Proof. Let E± = ker(S(0) ∓ Id). By Proposition 2.12 and (42) it follows that

(74) Im(r̃) = E+ = ker(Ĝ).

Since S ′(0) preserves E±, we get Im(r̃) = ker(∂̃). By definition we have Im(ẽ) = Hp(Y ) and

this is also equal to ker(r̃). Finally by Corollary 2.11 it follows that Im(∂̃) = Hp+1
(2) (X)⊥.

On the other hand, by definition we have ker(ẽ) = Hp+1
(2) (X)⊥. Thus Im(∂̃) = ker(ẽ). �

Using the definition of ∂̃ and (73), it follows that

Rc ◦ ∂̃ = ∂ ◦ κ.
By [APS75] every element in the image of H∗

c (X,R) in H∗(X,R) can be represented
by a unique square integrable harmonic form. Using these facts we obtain the following
commutative diagram.

. . . Hp

ext,rel(X)

Hp(Y ) Hp

(2)(X)

Hp

ext,abs(X) Hp(Y )

ker(S(0) − 1I) Hp(Y )

Hp+1
ext,rel(X) . . .

. . . Hp
c (X, R) Hp(X, R) Hp(Y, R) Hp+1

c (X, R) . . .......................................................................................................
...

.....
..
..
.
..

∂
......................................................................

...

.....
..
..
.
..

e
........................................................................

...

.....
..
..
.
..

r
............................................................

...

.....
..
..
.
..

∂
..........................................................................................

...

.....
..
..
.
..

e

.............................................................................................
..

.....
..
..
.
..

∂̃

...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
....
..
.
.
.
.
.
.
.
.

..

..
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

..

.

.

.

.

..

.

..
..

.

.

.

.

.

..

.

..
..

.........................................................................
..

.....
..
..
.
..

r̃
............................................................................

..

.....
..
..
.
..

∂̃
.............................................................................................

..

.....
..
..
.
..

ẽ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
.
.

.

.

.

.

.

.

.

.

..
.
.

Rc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
.
.

.

.

.

.

.

.

.

.

..
.
.

R

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

..

.
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.

..
.
.

κ

.

.

.

.

.

.

.
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.
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.

.

.

..
.
.

Rc

.
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...
..
...
...
...
...
..
...
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...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
....
..
.
.
.
.
.
.
.
.

..

..
....
....

F̂

................................................
..

.....
..
..
.
..

ẽ

..
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
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...
..
...
...
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...
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...
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i
2S′(0)
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..
..

.

.

.

.

.

..

.

..
..

Ĝ

..
...
..
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
.....
.
.
.
.
.
.
.
.
.
.

..

..
.....
...

i
2S′(0)

.

.

.

.

.

.

.

.
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.
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.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..
..

.

.

.

.

.

..

.

..
..

Ĝ

Proposition 4.4. The maps

R : Hp
ext,abs(X) → Hp(X,R), Rc : Hp

ext,rel(X) → Hp
c (X,R)

are isomorphisms.

Proof. We first consider R. Let Hp
! (X,R) = Im(e). By [APS75], R induces an isomorphism

of Hp
(2)(X) onto Hp

! (X). Let φ ∈ Hp
ext,abs(X) and suppose that R(φ) = 0. Then it follows

that r̃(φ) = 0. Hence φ ∈ Hp
(2)(X). Since R is an isomorphism on φ ∈ Hp

(2)(X), we get φ =

0. This proves injectivity. Let ψ ∈ Hp(X,R). Using Hp(X,R) ∼= Hp(M,R) and Theorem
3.1, it follows that κ−1(r(ψ)) ∈ ker(S(0) − Id). Thus by (74) there exists φ ∈ Hp

ext,abs(X)

such that r̃(φ) = κ−1(r(ψ)). Then r(R(φ) − ψ) = 0. Hence R(φ) − ψ ∈ Hp
! (X,R). By the

above remark there is ω ∈ Hp
(2)(X) such that R(ω) = R(φ) − ψ. Thus R is surjectiv and

hence an isomorphism. Applying the commutativity of the diagramm and the 5-Lemma,
it follows that Rc is an isomorphism too. �
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This can also be proved by slightly different methods (e.g. [Mel95, Mel93]).

Corollary 4.5. In every class in Hp(X,R) there is a unique representative in Hp
ext,abs(X).

Corollary 4.6. For every class [ψ] in Hp
c (X,R) there is a unique element ψ̂ in Hp

ext,rel(X)

such that for any φ ∈ Hp
ext,abs(X):

〈[ψ], [φ]〉 = 〈ψ̂, φ〉.
Moreover, the map

Hp
c (X,R) → Hp

ext,rel(X),

[ψ] 7→ ψ̂

is an isomorphism.

We can now consider the scattering length

(75) T (0) := −iS(0)∗S ′(0) = −iS(0)S ′(0).

Let ∂ : Hp(Y,R) → Hp+1
c (X,R) be the connecting homomorphism. We identify Hp(Y,R)

with Hp(Y ) and Hp+1
c (X,R) with Hp+1

ext,rel(X) via Corollary 4.6. Thus we may regard the
connecting homomorphism as a map

∂ : Hp(Y ) → Hp+1
ext,rel(X).

Let (ker ∂)⊥ be the orthogonal complement of ker ∂.

Theorem 4.7. The scattering length T (0) is a positive, invertible operator in Hp(Y ). It

is uniquely determined by the following conditions.

∀φ, ψ ∈ (ker ∂)⊥ : 〈∂φ, ∂(T (0)ψ)〉 = 2〈φ, ψ〉,(76)

T (0)∗ = ∗T (0).(77)

Proof. By Theorem 3.1, Im(r) = ker ∂ equals the +1 eigenspace of S(0). Therefore (ker ∂)⊥

equals the −1 eigenspace of S(0). By Theorem 2.7, ∗ anti-commutes with S(0). Hence it
interchanges the ±1-eigenspaces. ∗ also anti-commutes with S ′(0) and consequently the
scattering length T (0) commutes with the Hodge star operator. It is therefore completely
determined by its restriction to (ker ∂)⊥. Let φ, ψ ∈ (ker ∂)⊥. Using (73) and Lemma 4.1,
we have

〈∂φ, ∂T (0)〉 = 〈∂φ,−i∂(S ′(0)S(0)ψ)〉 = 2〈∂φ, ∂ ((i/2)S ′(0)ψ)〉
= 2〈∂φ,Rc(Ĝ(ψ))〉 = 2〈∂φ, Ĝ(ψ)〉.

(78)

Let φ̃ be the pull-back of φ to Z and let χ ∈ C∞(Z) such that χ = 0 on [0, 1] × Y and

χ = 1 outside a compact set. Then d(χφ̃) ∈ Λp+1
c (X) represents ∂[φ] ∈ Hp+1

c (X,R). By
the same argument as in the proof of Lemma 4.1 we get

〈∂φ, Ĝ(ψ)〉 = 〈d(χφ̃), Ĝ(ψ)〉.
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By (41), ∗Ĝ(ψ) = ∗ i
2
dF ′(ψ, 0) is an extended harmonic form with limiting value ∗ψ. Using

Stokes theorem, applied to Ma, it follows that

(79) 〈d(χφ̃), Ĝ(ψ)〉 = lim
a→∞

∫

∂Ma

φ ∧ ∗Ĝ(ψ) =

∫

Y

φ ∧ ∗ψ = 〈φ, ψ〉.

This concludes the proof of the theorem. �

Corollary 4.8. For the scattering length T (0) = −iS(0)∗S ′(0) we have the following for-

mula

T−1(0) =
1

2

(
∂∗∂ + (∗)−1∂∗∂∗

)
=

1

2

(
rr∗ + (∗)−1rr∗∗

)
.

This implies that 1
2
r∗T (0)r is equal to the orthogonal projection onto the orthogonal

complement of ker r.

5. Estimates on the norm of extended harmonic forms

By the results of the previous sections we have canonical isomorphisms

ηabs : Hp
ext,abs(X) ∼= Hp(X,R) ∼= Hp(M,R),

ηrel : Hp
ext,rel(X) ∼= Hp

c (X,R) ∼= Hp(M,Y,R).
(80)

In this section we establish relations between some norms on these spaces. On the coho-
mology groups Hp(M,R) and Hp(M,Y,R) there is the so-called comass norm (see [Gro99,
Ch. 4C]) which is defined as follows. If V is a finite dimensional inner product space, then
ΛpV ∗ has a natural inner product as well and we denote the norm that is induced by this
inner product by ‖ · ‖. The comass norm ‖ · ‖∞ on ΛpV ∗ is defined by

‖ω‖∞ = sup{ω(e1, . . . , ep) | ek ∈ V, ‖ek‖ = 1}(81)

Since the norms are equivalent there is a constant C such that

‖ω‖2 ≤ C‖ω‖2
∞,(82)

and we denote by C(n, p) the optimal such constant. Since all n-dimensional inner product
spaces are unitarily equivalent the constant depends only on n and p. Of course (see also
[Fed69]),

C(n, 0) = C(n, 1) = 1,(83)

C(n, p) ≤
(
n

p

)
.(84)

Moreover, since the Hodge star operator leaves the space of primitive forms invariant, we
have

C(n, n− p) = C(n, p).(85)

It is also known that

C(n, 2) = [
n

2
](86)
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(see [GlKo02]). Now let B be a differentiable manifold. Let ω ∈ Λp(B). The comass ‖ω‖∞
of ω is defined by

‖ω‖∞ = sup{ωx(e1, . . . , ep) | x ∈ B, ei ∈ TxB, g(ei, ei) = 1} =(87)

= sup{‖ωx‖∞ | x ∈ B}.
For a compact manifold B with smooth boundary ∂B this induces a norm on Hp(B, ∂B,R)
by

‖φ‖∞ = inf{‖ω‖∞ | φ = [ω], ω ∈ Λp(B, ∂B), dω = 0},(88)

which we also refer to as the comass norm. To compare the norms on the various co-
homology groups, we need some preparation. Let ψ ∈ Λp(M). We define an extension

ψ̂ ∈ L∞Λp(X) of ψ in the following way. The restriction ψ|Y can be expanded into eigen-
sections of the Laplace-Beltrami operator on Y :

ψ|Y = φ+

∞∑

i=1

aiφi,

where φ is harmonic and φi is an orthonormal basis in the orthogonal complement of the
space of harmonic forms such that

∆′φi = µ2
φi
φi.

Now define

ψ̂(x) =

{
ψ(x) for x ∈M,

φ(y) +
∑∞

i=1 aie
−µφiu

(
φi(y) − µ−1

φi
du ∧ δ′φi(y)

)
for x = (u, y) ∈ Z

(89)

As usually x = (u, y). The map ψ 7→ ψ̂ is of course linear and maps into the space of

bounded sections. Note that in general ψ̂ is not continuous. However, it satisfies

i∗Y (ψ̂|M) = i∗Y (ψ̂|Z).

Therefore, using Green’s formula, it follows that the distributional derivative dψ̂ satisfies

dψ̂(x) =
∞∑

i=1

aie
−µφiu

(
d′φi − µφidu ∧ φi + µ−1

φi
du ∧ d′δ′φi

)
=(90)

=
∞∑

i=1

aie
−µφiu

(
d′φi − µ−1

φi
du ∧ δ′d′φi

)
= d̂ψ.

In particular dψ̂ is again bounded. If ψ is closed, then ψ̂ is also closed. Note that the
extension map ψ ∈ Λp(M) 7→ ψ̂ ∈ L∞Λp(X) is chosen so that it inverts the restriction
operator on the space Hp

ext,abs(X). Namely, for F ∈ Hp
ext,abs(X) it follows from (47) that

F = F̂ |M .(91)

We can now establish the comparison results for the norms.



26 W. MÜLLER AND A. STROHMAIER

Lemma 5.1. Let ψ ∈ Λp(M) be closed and F ∈ Hp
ext,abs(X) a harmonic form such that F |M

and ψ represent the same element in Hp(M,R). Let φ ∈ Hp(Y ) be the unique harmonic

representative of the cohomology class of ψ|Y . Then

‖F‖2 ≤ ‖ψ‖2
L2Λp(M) +

1

µ1

‖ψ|Y − φ‖2
L2Λp(Y ),(92)

where µ2
1 is the smallest positive eigenvalue of ∆Y . In particular

‖F‖2 ≤ C(n, p)Vol∗(M)‖[F |M ]‖2
∞,(93)

where we define the effective volume Vol∗(M) by

Vol∗(M) = Vol(M) +
1

µ1
Vol(Y ).(94)

Proof. Let F ∈ Hp
ext,abs(X). Let ψ ∈ Λp(M) be a closed form such that

F |M − ψ = dh,(95)

for some h ∈ Λp−1(M). Denote by φ the unique harmonic representative of the class of
ψ|Y . If χZ is the characteristic function of Z ⊂ X, then the norm of F is by definition the
L2-norm of F − φχZ . Therefore,

‖ψ̂ − φχZ‖2 = ‖F − φχZ + (ψ̂ − F )‖2 =(96)

= ‖F − φχZ‖2 + ‖(ψ̂ − F )‖2 + 2〈F − φχZ , (ψ̂ − F )〉.(97)

Now observe that by (95) and the definition of ψ̂, the expansion of ψ̂ − F on Z contains

no harmonic form. Hence by (63) and (89) the restriction of ψ̂ − F to Z is exponentially
decreasing. This implies

〈F − φχZ , ψ̂ − F 〉 = 〈F, ψ̂ − F 〉.
By (95) and (90) we have F − ψ̂ = d̂h = dĥ, where the latter means the distributional
derivative. Since F is closed and coclosed, it follows that

〈F − φχZ , F − ψ̂〉 = 〈F, d̂h〉 = 〈F, dĥ〉 = 〈δF, ĥ〉 = 0.(98)

Therefore we get

‖ψ̂ − φχZ‖2 = ‖F − φχZ + (ψ̂ − F )‖2 =

= ‖F − φχZ‖2 + ‖(ψ̂ − F )‖2 ≥ ‖F‖2.(99)

On the other hand

‖ψ̂ − φχZ‖2 = ‖ψ‖2
L2Λp(M) +

∫ ∞

0

∞∑

i=1

|ai|2e−2µφiu
(
‖φi‖2 + µ−2

φi
‖δ′φi‖2

)
du =

= ‖ψ‖2
L2Λp(M) +

∞∑

i=1

µ−1
φi
|ai|2‖φi‖2 = ‖ψ‖2

L2Λp(M) + ‖∆− 1

4

Y (ψ|Y − φ)‖2
L2Λp(Y ) ≤

≤ ‖ψ‖2
L2Λp(M) +

1

µ1
‖ψ|Y − φ‖2.(100)
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Lemma 5.2. Let φ ∈ Hp
ext,rel(X). Let ψ ∈ Λp(M,Y ) be a representative of the class

[ψ] ∈ Hp(M,Y,R) which corresponds to φ with resepect to the isomorphism (80). Then

‖φ‖2 ≤ ‖ψ‖2
L2Λp(M),(101)

and in particular

‖φ‖2 ≤ C(n, p)Vol(M)‖[ψ]‖2
∞.(102)

Proof. Let φ ∈ Hp
ext,rel(X). Recall the definition of Rc by (70). Choose χ such that the

support of φ−d(χ(uφn+ θ)) is contained in M . Then [φ−d(χ(uφn+ θ))] is the image of φ
w.r.t. the isomorphism (80). Since ψ ∈ Λp(M,Y ) represents this cohomology class, there
is ω ∈ Λp−1(M,Y ) such that

φ− d(χ(uφn + θ)) = ψ + dω.(103)

Let ψ̃ (resp. ω̃) be the differential form on X which is equal to ψ (resp. ω) on M and 0
on Z. Then

‖ψ‖2 = ‖ψ̃ − φ+ χZdu ∧ φn + (φ− χZdu ∧ φn)‖2 = ‖ψ̃ − φ+ χZdu ∧ φn‖2

+ ‖φ− χZdu ∧ φn‖2 + 2〈ψ̃ − φ+ χZdu ∧ φn, φ− χZdu ∧ φn〉.
(104)

By the definition (65) of the norm in Hp
ext,rel(X), we have

‖ φ ‖=‖ φ− χZdu ∧ φn ‖L2 .

By (103) we have

〈ψ̃ − φ+ χZdu ∧ φn, φ− χZdu ∧ φn〉 = 〈ψ̃ − φ, φ− χZdu ∧ φn〉
= −〈dω̃ + d(χ(uφn + θ)), φ− χZdu ∧ φn〉.

Since ω ∈ Λp−1(M,Y ), it follows from Green’s formula that

〈dω̃, φ− χZdu ∧ φn〉 =

∫

M

dω ∧ ∗φ =

∫

Y

i∗Y (ω) ∧ i∗Y (∗φ) = 0.

Similarly, by Green’s formula and (69) we have

〈d(χ(uφn + θ)), φ−χZdu ∧ φn〉 =

∫

M

d(χ(uφn + θ)) ∧ ∗φ

+

∫

Z

d(χ(uφn + θ)) ∧ ∗(φ− χZdu ∧ φn)

=

∫

Y

θ ∧ ∗(du ∧ φn + dθ) −
∫

Y

θ ∧ ∗dθ = 0.

Thus
〈ψ̃ − φ+ χZdu ∧ φn, φ− χZdu ∧ φn〉 = 0

and by (104) we get

‖ψ‖2 = ‖φ‖2 + ‖ψ̃ − φ+ χZdu ∧ φn‖2 ≥ ‖φ‖2.
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6. Estimates on the scattering matrix and stable systoles

We recall some notions from geometric measure theory. Suppose B is a compact oriented
Riemannian manifold and let A be a closed submanifold. In our case A will be either the
boundary of B or the empty set. For z ∈ Hp(B,A,Z) let the minimal volume be defined
as the infimum of the volumes of all its representatives, i.e.

vol(z) = inf{
∑

i

|αi|Vol(ci) | z =
∑

i

αi[ci], αi ∈ Z}.(105)

where the infimum is over all Lipschitz continuous simplices ci. The stable norm ‖z‖st of
an element z ∈ Hp(B,A,R) is defined similarly by

‖z‖st := inf{
∑

i

|αi|Vol(ci) | z =
∑

i

αi[ci], αi ∈ R}.(106)

This defines indeed a norm (see [FF60, 9.6, 9.9], and [Fed75, §3], also [Gro99, Ch. 4C],
and [Fed69, 5.1.6]). The stable norm of an element in z ∈ Hp(B,A,Z) is by definition the
stable norm of its image in Hp(B,A,R). Clearly,

‖z‖st ≤ vol(z)(107)

and equality does not hold in general. However, as shown by Federer (see [Fed75, §5]),

‖z‖st = lim
k→∞

1

k
vol(kz).(108)

Moreover, for z ∈ Hn−1(B,A,Z) we have equality, i.e. ‖z‖st = vol(z).
By a general result in geometric measure theory the stable norm and the comass are

dual to each other, i.e.,

‖z‖st = sup{|φ(z)| | φ ∈ Hp(B,A,R), ‖φ‖∞ ≤ 1}(109)

(see [Fed75, 4.10], and also [Gro99, 4.35], and [AuB06] for a sketch of the proof in the case
without boundary).

6.1. Estimate of the L2-norm on H∗(Y ). Now we will apply this result to our problem
in the case where B = Y and A = ∅. We equip Hp(Y ) with the norm induced from Hp(Y )
by the de Rham isomorphism. Suppose that ω is a p-form on Y . Then using (82) one
obtains

‖ω‖2
2 ≤ C(n− 1, p)Vol(Y )‖ω‖2

∞,(110)
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Now let φ be a harmonic p-form representing an element [φ] ∈ Hp(Y,R). Using (110), we
get

‖φ‖2 = sup

{∫
φ ∧ ω| ω ∈ Λn−p−1(Y ), dω = 0, ‖ω‖2 ≤ 1

}

≥ C(n− 1, p)−1/2Vol(Y )−1/2 sup

{∫
φ ∧ ω| ω ∈ Λn−p−1(Y ), dω = 0, ‖ω‖∞ ≤ 1

}

= C(n− 1, p)−1/2Vol(Y )−1/2 sup
{
〈[φ] ∪ α, [Y ]〉 | α ∈ Hn−p−1(Y,R), ‖α‖∞ ≤ 1

}

Since the stable norm is dual to the comass norm, we finally get

‖φ‖2 ≥ C(n− 1, p)−1/2Vol(Y )−1/2‖[Y ] ∩ φ‖st,(111)

for any φ ∈ Hp(Y,R).
On the other hand the inequality (110) may also be used directly. Since ‖φ‖2 is the

infimum of the L2-norms of all representatives of the cohomology class [φ], we have

Proposition 6.1. The Hilbert space norm on Hp(Y,R), induced from the harmonic forms,

satisfies

C(n− 1, p)−1/2Vol(Y )−1/2‖[Y ] ∩ φ‖st ≤ ‖φ‖2 ≤ C(n− 1, p)1/2Vol(Y )1/2‖φ‖∞.(112)

6.2. Estimate of the norms on Hext(X). We can use Lemmas 5.1 and 5.2 in the same
way as above to get similar estimates of the norms of elements in Hp

ext,rel(X). First note
that ∗ induces an isomorphism

∗ : Hp
ext,rel(X) → Hn−p

ext,abs(X).

Let (·, ·)ext be the pairing (71). Then we have

〈φ, ψ〉 = (φ, ∗ψ)ext, φ, ψ ∈ Hp
ext,rel(X).

Let F ∈ Hp
ext,rel(X). Then we get

‖F‖ = sup{〈F, ω〉 | ω ∈ Hp
ext,rel(X), ‖ω‖ ≤ 1}

= sup
{
(F, ψ)ext | ψ ∈ Hn−p

ext,abs(X), ‖ψ‖ ≤ 1
}
.

(113)

Choose a representative φ of the cohomology class Rc(F ) ∈ Hp
c (X) with supp(φ) ⊂ M .

Then ηrel(F ) = [φ]. Since the diagramm (72) commutes, we get

〈φ, ψ〉 = (Rc(φ), R(∗ψ)) = ([φ], [∗ψ|M ]), φ, ψ ∈ Hp
ext,rel(X).

Using Lemma 5.1, it follows from (113) that

‖F‖2 = sup{([φ], [ψ|M ]) | ψ ∈ Hn−p
ext,abs(X), ‖ψ‖ ≤ 1}

≥ C(n, p)−1/2Vol∗(M)−1/2 sup{〈[φ] ∪ α, [M ]〉 | α ∈ Hn−p(M,R), ‖α‖∞ ≤ 1}.
Since the stable norm is dual to the comass norm, we finally get

‖F‖ ≥ C(n, p)−1/2Vol∗(M)−1/2‖[M ] ∩ [φ]‖st,(114)
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Note that the Poincare-Lefschetz dual [M ]∩ [φ] of [φ] is in Hp(M,R) and its stable norm
equals its stable norm as an element of Hp(M,R). Lemma 5.2 gives an upper bound for
‖F‖ and we get

Proposition 6.2. Let F ∈ Hp
ext,rel(X) and φ = ηrel(F ) ∈ Hp(M,Y,R). Then we have

C(n, p)−1/2Vol∗(M)−1/2‖[M ] ∩ φ‖st ≤ ‖F‖ ≤ C(n, p)1/2Vol(M)1/2‖φ‖∞.(115)

Using Theorem 4.7, we obtain Theorem 1.1.
If we denote by ι the inclusion map Y → M and by ι∗ : Hp(Y,R) → Hp(M,R) the

induced map in homology, then

[M ] ∩ ∂φ = ι∗ ([Y ] ∩ φ) .(116)

That is [M ]∩∂φ coincides with the image of the Poincare dual of the class φ inHn−p−1(M,R).
The stable norm of ∂φ can be calculated in many cases explicitly in terms of geometric
data using the fact that the stable mass is dual to the comass norm. In order to make
statements about the spectrum of the map T (0) one can combine these estimates with the
estimates of the L2-norms of the cohomology classes on Y (see Proposition 6.1).

7. Examples

7.1. The scattering length for functions. Note that the extended harmonic functions
are exactly the constant functions. Therefore, H0(Y ) ∩ ker ∂ is spanned by the function
equal to 1 on Y . Thus, the +1 eigenspace to S0(0) is spanned by 1. Moreover, since S
anticommutes with the Hodge ∗ operator we have Sn−1(0) ∗ 1 = − ∗ 1. By Stokes formula

(∂[∗1])[M ] = [∗1][Y ](117)

and therefore

∂[∗1] =
Vol(Y )

Vol(M)
[∗M1](118)

and by the above equation we immediately obtain

Tn−1(0)|(ker ∂)⊥ = 2
Vol(M)

Vol(Y )
.(119)

This in turn implies that

T0(0)|ker ∂ = 2
Vol(M)

Vol(Y )
.(120)

7.2. Y has only one connected component. In this case H0(Y ) consists of the constant
functions only. By the above we have

Tn−1(0) = 2
Vol(M)

Vol(Y )
.(121)



SCATTERING AT LOW ENERGIES 31

This in turn implies that

T0(0) = 2
Vol(M)

Vol(Y )
.(122)

Note that if Y = Sn−1 the only non-vanishing cohomology groups are H0(Y ) and Hn−1(Y ).
Thus, in this case the above formulas determine T (0) completely.

7.3. Y = Y1 ∪ Y2 has two boundary components. Now we have H0(Y ) ∼= R2 and
therefore on H0(Y ) is a direct sum of the one dimensional spaces ker ∂ and ker ∂⊥. Under
the splitting H0(Y ) = ker ∂ ⊕ ker ∂⊥ the operator T0(0) is of the form

T0(0) =

(
t1 0
0 t2

)
,(123)

where we have already seen, that

t1 = 2
Vol(M)

Vol(Y )
.(124)

Our formula now allows us to give an estimate of t2 in purely geometric terms. The
harmonic functions in ker ∂ are multiples of the function 1 on Y . The complement ker ∂⊥

has dimension 1 and is spanned by the function

χ(x) =

{
Vol(Y2) for x ∈ Y1

−Vol(Y1) for x ∈ Y2
(125)

Clearly,

‖χ‖2
2 = Vol(Y2)

2Vol(Y1) + Vol(Y1)
2Vol(Y2).(126)

It remains to estimate the L2-norm of the class ∂χ in H1(M,Y,R). The comass norm
of ∂χ may be calculated using the duality between the stable norm and the comass norm.
Let c be a Lipschitz continuous chain whose boundary is homologuous to y2 − y1, where
y1 ∈ Y1 and y2 ∈ Y2. Then c defines a relative cycle [c] in H1(M,Y,R) and we have

∂χ([c]) =

∫

c

∂χ = Vol(Y1) + Vol(Y2) = Vol(Y ).(127)

We observe that the cycle c can be written as a linear combination of curves which are
either closed or whose end points are in the boundary. This implies

‖[c]‖st ≥ dist(Y1, Y2),(128)

with equality if for example [c] is in the same homology class as a shortest curve connecting
Y1 with Y2.

Duality implies

‖∂χ‖∞ = dist(Y1, Y2)
−1Vol(Y ),(129)

and therefore

‖∂χ‖2 ≤ Vol(M)1/2dist(Y1, Y2)
−1Vol(Y ).(130)
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To get the estimate from above we need to look at ‖M ∩ ∂χ‖st that is the stable norm
of the Poincare dual of the class ∂χ. By Equation (116) we have M ∩ ∂χ = ι∗([Y ]∩χ). Of
course,

ι∗([Y ] ∩ χ) = ι∗(Vol(Y2)[Y1] − Vol(Y1)[Y2]) = Vol(Y )ι∗([Y1]),(131)

where we have used that ι∗([Y1]) + ι∗([Y2]) = 0. Therefore,

‖M ∩ ∂χ‖st = Vol(Y )‖ι∗([Y1])‖st.(132)

Combining these two estimates we obtain

C2 ≤ t2 ≤ C1(133)

with

C1 = 2Vol∗(M)
Vol(Y1)Vol(Y2)

‖ι∗([Y1])‖2
st(Vol(Y1) + Vol(Y2))

,(134)

C2 = 2Vol(M)−1 dist(Y1, Y2)
2Vol(Y1)Vol(Y2)

Vol(Y1) + Vol(Y2)
.(135)

Note that with respect to this basis, the scattering matrix at zero has the form

S0(0) =

(
1 0
0 −1

)
.(136)

In order to interpret this in terms of reflection and transmission coefficients we choose
another basis (χ1, χ2) of H0(Y ), where χi is constant equal to 1 on Yi and equal to zero on
the other boundary component. In this basis we get

S0(0) =
1

Vol(Y1) + Vol(Y2)

(
Vol(Y1) − Vol(Y2) 2Vol(Y2)

2Vol(Y1) Vol(Y2) − Vol(Y1)

)
.(137)

The reflection coefficient r11 and the transmission coefficient r12 of a wave of low energy

that comes in at the end Y1 and is scattered in M therefore are r11 = Vol(Y1)−Vol(Y2)
Vol(Y1)+Vol(Y2)

and

r12 = 2Vol(Y1)
Vol(Y1)+Vol(Y2)

. Transforming T0(0) into this basis gives

T0(0) =
1

Vol(Y1) + Vol(Y2)

(
t1Vol(Y1) + t2Vol(Y2) (t1 − t2)Vol(Y2)

(t1 − t2)Vol(Y1) t1Vol(Y2) + t2Vol(Y1)

)
.(138)

As a remark we would like to add here that in physics the scattering matrix for one
dimensional scattering problems has the transmission coefficients on the diagonal and the
reflection coefficients off the diagonal. Our notation differs here as we consider the operator
with Neumann boundary conditions at each end as the unperturbed operator.

7.4. The full-torus. Let M be the full torus D × S1 with boundary Y = T 2 = S1 × S1.
We view both D and S1 as subsets of the complex planes and use coordinates z = reiy

on D and z = eix on S1. We assume that we are given a metric on M which has product
structure in a small neighborhood of the boundary and that the metric on the boundary
is equal to the product metric

ℓ21dx
2 + ℓ22dy

2,(139)
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α β

Figure 2. The cycles α ∈ H2(M,Y ) and β ∈ H1(M) on M .

with positive real numbers ℓ1, ℓ2. Then, the volume is Vol(Y ) = 4π2ℓ1ℓ2. Moreover,
H1(M,R) ∼= R and it is gerated by the class of the one form dx. The group H1(Y,R) is
isomorphic to R2 and is generated by the classes of the two harmonic 1-forms dx and dy.
The L2-norms of these forms is easily calculated.

||dx||2L2 =

∫

Y

dx ∧ ∗dx = 4π2 ℓ2
ℓ1
,(140)

||dy||2L2 =

∫

Y

dy ∧ ∗dy = 4π2 ℓ1
ℓ2
.(141)

and, moreover, dx and dy are orthogonal to each other. The restriction of the form dx on
M to Y is the form dx regarded as a form on Y . Therefore, the kernel of the connecting
homomorphism ∂ is spanned by [dx]. Hence, (ker ∂)⊥ is spanned by [dy]. Since the Hodge
star operator commutes with T2(0) the map T2(0) has the form

T2(0) =

(
t 0
0 t

)
,(142)

with respect to the decomposition H1(T 2,R) = ker ∂⊕(ker ∂)⊥. In order to get an estimate
for t we need to calculate ‖∂[dy]‖∞ and ‖[M ] ∩ ∂[dy]|st. The stable norm of ‖∂[dy]‖∞ can
again be calculated by duality. For this note that H2(M,Y,R) ∼= R by Alexander duality
and it is generated by the relative cycle α = D × {1} ⊂M . Now, of course

〈∂[dy], [α]〉 =

∫

∂D×{1}

dy = 2π.(143)

Duality of comass norm and stable norm now implies that

‖∂[dy]‖∞ = 2π‖[D × {1}]‖−1
st .(144)

The class [M ] ∩ ∂[dy] is given by −2πι∗({1} × S1). So 1
2π
‖[M ] ∩ ∂[dy]‖st is equal to the

infimum of the lengths of all representatives of the cycle β = {1} × S1 in H1(M,R). The
geometric picture is described in Fig. 2. Theorem 1.1 now gives an estimate of t:
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2
ℓ1
ℓ2

‖α‖2
st

Vol(M)
≤ t ≤ 2

ℓ1
ℓ2

Vol∗(M)

‖β‖2
st

.(145)

Since µ1 = min{ℓ−1
1 , ℓ−1

2 } we have Vol∗(M) = Vol(M) + 4π2ℓ1ℓ2 max{ℓ1, ℓ2}.

Appendix A. Dynamical approach and spectral decomposition

In this appendix we discuss the relation between the stationary and the dynamical
approach to scattering theory and we establish the Eisenbud-Wigner formula for manifolds
with cylindrical ends. For details concerning scattering theory we refer to [Ya92]. For
original papers on the Eisenbud-Wigner formula see [Eis48] and [Wi55]. In order to simplify
the relation of the scattering length to the time-delay operator we consider scattering theory
for the square root of the Laplace Beltrami operator, i.e. we consider scattering theory
and the time-delay in relativistic quantum mechanics.

Let ∆p be the closure in L2 of the operator ∆p with domain Λp
c(X). Denote by ∆p,0 the

self-adjoint extension of ∆p with respect to Neumann boundary conditions along Y . Note
that ∆p,0 is the self-adjoint operator associated to the quadratic form

φ 7→
∫

M

qx(φ)dx+

∫

Z

qx(φ),

qx(φ) = dφ(x) ∧ ∗dφ(x) + δφ(x) ∧ ∗δφ(x)

on H1(M,ΛpT ∗M) ⊕H1(Z,ΛpT ∗Z) ⊂ L2Λp(X). With respect to the decomposition

L2Λp(X) = L2Λp(M) ⊕ L2Λp(Z)

we have

∆p,0 = ∆p,M ⊕ ∆p,Z ,

where ∆p,M and ∆p,Z are the corresponding self-adjoint extensions of ∆p|M and ∆p|Z ,
respectively, with Neumann boundary conditions imposed. Let H be the square root of ∆p

defined by spectral calculus and similarly define H0 = (∆p,0)
1/2, HM = ∆

1/2
p,M , and HZ =

∆
1/2
p,Z . Since M is compact, HM has purely discrete spectrum. The spectral resolution of HZ

can be determined, using separation of variables. The spectrum is absolutely continuous.
A complete set of generalized eigensections is given by

F0(φ, λ) =
(
e+i

√
λ2−µ2

φ
u + e−i

√
λ2−µ2

φ
u
)
jp(φ),(146)

where φ runs through an orthonormal basis of eigensection of the operator ∆′
p⊕∆′

p−1 with

eigenvalue µ2
φ.

Denote by Pac (resp. P 0
ac) the orthogonal projection onto the absolutely continuous sub-

space of H (resp. H0). Denote by Hac and H0,ac the restrictions of H and H0, respectively,
to the absolutely continuous subspaces. Furthermore, for an open interval (a, b) we denote
by Pac(a, b) (resp. P 0

ac(a, b)) the projection onto the continuous part of the spectral sub-
space of the interval. As explained above, the absolutely continuous subspace for H0 is
L2Λp(Z). Thus P 0

ac is the orthogonal projection of L2Λp(X) onto the subspace L2Λp(Z).
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By [Gui89, Théorèm 3.6] and the Birman-Kato invariance principle the wave operators

W± = s − lim
t→±∞

eitHe−itH0P 0
ac(147)

exist and are complete. This means that the strong limit exists and and the operators
W± define isometries of P 0

acL
2Λp(X) onto PacL

2Λp(X), intertwining H0,ac and Hac. In this
context the scattering operator S is defined as

S = W ∗
+W−.(148)

This is a unitary operator in P 0
acL

2Λp(X) which commutes with H0,ac. Let σ0 = σac(H0) be
the absolutely continuous spectrum of H0. It equals [µ,∞) with µ ≥ 0. Let {E0(λ)}λ∈σ0

be the spectral family of H0,ac. Since S commutes with H0,ac, we have

S =

∫

σ0

S(λ) dE0(λ),

where S(λ) = S(λ;H,H0) acts in the finite-dimensional Hilbert space

H(λ) =
⊕

µ≤λ2

Eigµ(∆
′
p) ⊕ Eigµ(∆

′
p−1).(149)

For the purposes of this paper we need only to investigate the structure of the continuous
spectrum of H in the interval [0, µ1) in the situations when µ = 0. The generalized
eigensections F (φ, λ) constructed in Theorem 2.1 are well defined as distributions on (0, µ1)
with values in L2Λp(X). This follows easily from the properties of the Fourier transform
and the expansion of F (φ, λ) on Z. Of course, in the weak topology on the space of
distributions we have

〈F (φ, λ), F (ψ, λ′)〉 = lim
a→∞

∫

Ma

F (φ, λ)(x) ∧ ∗F (ψ, λ′)(x).(150)

The smooth function ∫

Ma

F (φ, λ)(x) ∧ ∗F (ψ, λ′)(x)(151)

can be determined as the continuous extension of
1

λ2 − (λ′)2

∫

Ma

∆pF (φ, λ) ∧ ∗F (ψ, λ′)(x) − F (φ, λ) ∧ ∗∆pF (ψ, λ′)(x).(152)

This integral can be simplified using Green’s formula and the limit a→ ∞ can be explicitly
evaluated (see Equ. (172)). A simple exercise in distribution theory shows that indeed we
have the orthogonality relations

〈F (φ, λ), F (ψ, λ′)〉 = 2π〈φ, ψ〉δ(λ− λ′)(153)

as distributions on (0, µ1)× (0, µ1). Moreover, in the same way as in [Gui89], Theorem 6.2,
one shows that

W+F0(φ, λ) = F (C∗(λ)φ, λ),(154)

W−F0(φ, λ) = F (φ, λ).(155)
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Therefore, in the distributional sense for λ ∈ (0, µ1)

SF0(φ, λ) = F0(Cp(λ), λ)(156)

which shows that the dynamical and the stationary scattering matrices coincide

S(λ) = Cp(λ).(157)

The time delay operator T is defined in the following way. If φ ∈ PacL
2Λp(X) then,

according to the laws of quantum mechanics, the probability of finding the particle with
wave function φ in Ma at time t is given by

∫

Ma

‖e−iHtφ‖2
xdx = ‖χMa

e−iHtφ‖2.(158)

The total time spent in Ma is then given by
∫ ∞

−∞

‖χMa
e−iHtφ‖2dt.(159)

This expression is not necessarily finite for all φ. Now, according to scattering theory, for
φ ∈ P 0

acL
2Λp(X) the states e−itHW−φ and e−iH0tφ are asymptotically the same for t→ −∞.

Thus, the time excess due to the interaction (the presence of M) is
∫ ∞

−∞

(
‖χMa

e−iHtW−φ‖2 − ‖χMa
e−iH0tφ‖2

)
dt.(160)

The Eisenbud-Wigner time-delay operator T is formally defined by

〈φ, T φ〉 = lim
a→∞

∫ ∞

−∞

(
‖χMa

e−iHtW−P
0
acφ‖2 − ‖χMa

e−iH0tP 0
acφ‖2

)
dt.(161)

In many situations in potential scattering it can be shown that the above defines a closable
quadratic form and T is a self-adjoint operator that commutes with H0 and the Eisenbud-
Wigner formula

T =

∫

σac(H0)

T (λ) dE0(λ),(162)

T (λ) = −iS(λ)−1dS
dλ

(λ)(163)

holds. Since we are only interested in the spectrum near 0, we prove this formula only for
elements in P 0

ac(0, µ1).

Proposition A.1. Suppose that g ∈ C∞
0 (0, µ1), φ ∈ ker∆′

p ⊕ ∆′
p−1. Let F0(φ, g) :=∫

R
F0(φ, λ)g(λ)dλ. Then,

∫ ∞

−∞

‖χMa
e−iHtW−F0(φ, g)‖2dt <∞,

∫ ∞

−∞

‖χMa
e−iH0tF0(φ, g)‖2dt <∞.



SCATTERING AT LOW ENERGIES 37

Moreover,

〈F0(φ, g), T F0(φ, g)〉 = 2π

∫

σ0

T (λ)g(λ)2 dE0(λ),(164)

where

T (λ) = −iS(λ)−1S ′(λ).(165)

Hence, T is a self-adjoint operator on P 0
ac(0, µ1)L

2Λp(X) which has the form

T =

∫

σ0

T (λ) dE0(λ)(166)

with respect to the spectral family {E0(λ)}λ∈σ0
of H0,ac.

Proof. We can do this calculation in the explicit spectral decomposition.
∫ ∞

−∞

‖χMa
e−iHtF0(φ, g)‖2dλ =

=

∫ ∞

−∞

∫ ∫ ∫

Ma

e−i(λ−λ′)t〈F0(φ, λ), F0(φ, λ
′)〉xg(λ)g(λ′)dxdλdλ′dt =(167)

= 2π

∫
〈F0(φ, λ), χMa

F0(φ, λ)〉g(λ)2dλ.

and similarly,
∫ ∞

−∞

‖χMa
e−iHtF (φ, g)‖2dλ =

= 2π

∫
〈〈F (φ, λ), χMa

F (φ, λ)〉g(λ)2dλ.(168)

In the limit a→ ∞ both integrals can be computed up to exponentially small errors since
we have the expansions on Z:

F (φ, λ)|Z = e−iλujp(φ) + e+iλujp(S(λ)φ) +R,(169)

F0(φ, λ)|Z = e−iλujp(φ) + e+iλujp(φ).(170)

Therefore, integration by parts yields

〈F0(φ, λ), χMa
F0(φ

′, λ′)〉 =

=
1

λ2 − (λ′)2

∫

Ma

〈∆pF0(φ, λ), F0(φ
′, λ′)〉x − 〈F0(φ, λ),∆pF0(φ

′, λ′)〉x =(171)

=
2

λ− λ′
sin ((λ− λ′)a) 〈φ, φ′〉 +

2

λ+ λ′
sin ((λ+ λ′)a) 〈φ, φ′〉.
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Similarly, we have

〈F (φ, λ), χMa
F (φ′, λ′)〉 =

=
1

λ2 − (λ′)2

∫

Ma

〈∆pF (φ, λ), F (φ′, λ′)〉x − 〈F (φ, λ),∆pF (φ′, λ′)〉x =

=
2

λ− λ′
sin ((λ− λ′)a) 〈φ, φ′〉 +

(
i

λ− λ′
ei(λ−λ

′)a

)
〈φ, (1I − S∗(λ)S(λ′))φ′〉−(172)

− i

λ+ λ′

(
ei(λ+λ′)a〈φ,S∗(λ)φ′〉 − e−i(λ+λ′)a〈φ,S(λ′)φ′〉

)
+O(e−µ1a).

Therefore,

〈F (φ, λ), χMa
F (φ′, λ′)〉 − 〈F0(φ, λ), χMa

F0(φ
′, λ′)〉 =

=

(
i

λ− λ′
ei(λ−λ

′)a

)
〈φ, (1I − S∗(λ)S(λ′))φ′〉 − 2

λ+ λ′
sin ((λ+ λ′)a) 〈φ, φ′〉−

− i

λ+ λ′

(
ei(λ+λ′)a〈φ,S∗(λ)φ′〉 − e−i(λ+λ′)a〈φ,S(λ′)φ′〉

)
+O(e−µ1a),

and one obtains

lim
a→∞

lim
λ′→λ

〈F (φ, λ), χMa
F (φ′, λ)〉 − 〈F0(φ, λ), χMa

F0(φ
′, λ)〉 = 〈φ, T (λ)φ′〉,(173)

where the second limit is in the distributional sense and

T (λ) = −iS(λ)−1S ′(λ).(174)

�

By the properties of the scattering matrix T (λ) commutes with the Hodge star operator
and leaves the summands in ker∆′

p ⊕ ∆′
p−1 invariant (see (32)). We therefore have

Tp(λ) =

(
Tp(λ) 0

0 Tp−1(λ)

)
,(175)

where Tp(λ) is the time delay operator for coclosed forms defined by

Tp(λ) = −iSp(λ)−1S ′
p−1(λ).(176)

This operator describes the time-delay of coclosed forms of energy λ < µ1 scattered in M .
In the physics literature the time delay of the ℓ = 0 partial wave for potential scattering
in R3 is called the scattering length (e.g. [RS79]). As the ℓ = 0 partial wave corresponds
to the constant function on the sphere at infinity we call Tp(0) in analogy with this the
scattering length. Note however, that in the physics literature the time-delay is usually
considered for non-relativistic Schrödinger mechanics so that it differs from the relativistic
time-delay by an energy dependent factor. A simple relation that equates time-delay and
scattering length can for dimensional reasons only hold in relativistic theories.
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