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Abstract. This paper is a survey article on the limiting behavior of the discrete spectrum
of the right regular representation in L2(Γ\G) for a lattice Γ in a reductive group G over
a number field. We discuss various aspects of the Weyl law, the limit multiplicity problem
and the analytic torsion.
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1. Introduction

Let G be a connected, linear, semisimple algebraic group over Q. Let Π(G(R)) denote the
set of all equivalence classes of irreducible unitary representations of G(R), equipped with
the Fell topology [Di]. We fix a Haar measure on G(R). Let Γ ⊂ G(R) be a lattice, i.e., a
discrete subgroup such that vol(Γ\G(R)) < ∞. Let RΓ be the right regular representation
of G on L2(Γ\G). Let L2

disc(Γ\G) be the span of all irreducible subrepresentations of RΓ and
denote by RΓ,disc the restriction of RΓ to L2

disc(Γ\G). Then RΓ,disc decomposes discretely as

(1.1) RΓ,disc
∼=
⊕̂

π∈Π(G)
mΓ(π)π,

where

mΓ(π) = dimHomG(π,RΓ) = dimHomG(π,RΓ,disc)
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is the multiplicity with which π occurs in RΓ. The multiplicities are known to be finite
under a weak reduction-theoretic assumption on (G,Γ) [OW], which is satisfied if G has
no compact factors or if Γ is arithmetic. The study of the multiplicities mΓ(π) is one of the
main concerns in the theory of automorphic forms. Apart from special cases like discrete
series representations, one cannot hope in general to describe the multiplicity function on
Π(G) explicitly. A more feasible and interesting problem is the study of the asymptotic
behavior of the multiplicities with respect to the growth of various parameters such as the
level of congruence subgroups or the infinitesimal character of π. This is closely related to
the study of families of automorphic forms (see [SST]).

The first problem in this context is the Weyl law. Let K be a maximal compact subgroup
of G. Fix an irreducible representation σ ofK. Let Π(G; σ) be the subspace of all π ∈ Π(G)
such that [π|K : σ] > 0. Especially, if σ0 is the trivial representation, then Π(G; σ0) is
the spherical dual Π(G(R))sph. Given π ∈ Π(G(R)), denote by λπ = π(Ω) the Casimir
eigenvalue of π. For λ ≥ 0 let the counting function be defined by

(1.2) NΓ(λ; σ) =
∑

π∈Π(G;σ)
|λπ|≤λ

mΓ(π).

Then the problem is to determine the behavior of the counting function as λ → ∞.

Another basic problem is the limit multiplicity problem, which is the study of the asymp-
totic behavior of the multiplicities if vol(Γ\G(R)) → ∞. For G = GLn this corresponds
to the study of harmonic families of cuspidal automorphic representations of GLn(A) (see
[SST]). More precisely, for a given lattice Γ define the discrete spectral measure µΓ on
Π(G), associated to Γ, by

(1.3) µΓ =
1

vol(Γ\G(R))

∑

π∈Π(G(R))

mΓ(π)δπ,

where δπ is the Dirac measure at π. Then the limit multiplicity problem is concerned
with the study of the asymptotic behavior of µΓ as vol(Γ\G(R)) → ∞. For appropriate
sequences of lattices (Γn) one expects that the measures µΓn converge to the Plancherel
measure µpl on Π(G(R)).

There are closely related problems in topology and spectral theory. One of them concerns
Betti numbers. Let K be a maximal compact subgroup of G and put X = G/K. Let Γ be
a uniform lattice in G and let (Γn) be a tower of normal subgroups of Γ. Put M = Γ\X
and Mn = Γn\X , n ∈ N. Then Mn → M is a sequence of finite normal coverings of M .
For any topological space Y let bk(Y ) denote the k-th Betti number of Y . Then

(1.4) lim
n→∞

bk(Mn)

vol(Mn)
= b

(2)
k (X),

where b
(2)
k (X) is the k-th L2-Betti number of X . This was proved by Lück [Lu1] in the

more general context of CW-complexes. In the case of locally symmetric spaces, it follows
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from the results about limit multiplicities. Again, it was extended by Abert et al [AB1] to
much more general sequences of uniform lattices.

A more sophisticated spectral invariant is the Ray-Singer analytic torsion TX(ρ) (see
[RS]). It depends on a finite dimensional representation ρ of Γ and is defined in terms of
the spectra of the Laplace operators ∆p(ρ) on p-forms with coefficients in the flat bundle
associated with ρ. Of particular interest are representations of Γ which arise as the re-
striction of a representation of G. For appropriate representations, called strongly acyclic,
Bergeron and Venkatesch [BV] studied the asymptotic behavior of log TXn(ρ) as n → ∞.
One of their main results is

(1.5) lim
n→∞

log TXn(ρ)

vol(Xn)
= log T

(2)
X (ρ),

where T
(2)
X (ρ) is the L2-torsion [Lo], [MV]. Using the equality of analytic torsion and

Reidemeister torsion [Ch], [Mu1], (1.5) implies results about the growth of the torsion
subgroup in the integer homology of arithmetic groups. Let G be a semisimple algebraic
group over Q, G = G(R) and Γ ⊂ G(Q) a co-compact, arithmetic subgroup. As shown
in [BV], there are strongly acyclic representations ρ of G on a finite dimensional vector
space V such that V contains a Γ-invariant lattice M . Let M be the local system of free
Z-modules over X , attached to M . Then the cohomology H∗(X,M) of X with coefficients
in M is a finite abelian group. Denote by |H∗(X,M)| its order. Assume that d = dim(X)
is odd. Then by [BV] one has

lim
n→∞

d∑

p=1

(−1)p+
d−1
2
log |Hp(Xn,M)|

[Γ : Γn]
= cM,G vol(X),

where cM,G is a constant that depends only on G and M . Moreover, if δ(G) := rankG −
rankK = 1, then cM,G > 0. It is conjectured that the limit

(1.6) lim
n→∞

log |Hj(Xn,M)|
[Γ : Γn]

always exists and is equal to zero, unless δ(G) = 1 and j = (d− 1)/2. In the latter case it
is equal to cM,G times vol(X). The conjecture is known to be true for G = SL2(C).

An important problem is to extend these results to the non-compact case.

2. The Arthur trace formula

The trace formula is one of the main technical tools to study the kind of spectral problems
mentioned in the introduction. For R-rank one groups the Selberg trace formula is available
[Wa1]. In the higher rank case the Selberg trace formula is replaced by the Arthur trace
formula.

In this section we recall Arthur’s trace formula, and in particular the refinement of the
spectral expansion obtained in [FLM1].



4 WERNER MÜLLER

2.1. Notation. We will mostly use the notation of [FLM1]. Let G be a reductive group
defined over Q and let A be the ring of adeles of Q. We fix a maximal compact subgroup
K =

∏
v Kv = K∞ ·Kfin of G(A) = G(R) ·G(Afin).

Let g and k denote the Lie algebras of G(R) and K∞, respectively. Let θ be the Cartan
involution of G(R) with respect to K∞. It induces a Cartan decomposition g = p⊕ k. We
fix an invariant bi-linear form B on g which is positive definite on p and negative definite on
k. This choice defines a Casimir operator Ω onG(R), and we denote the Casimir eigenvalue
of any π ∈ Π(G(R)) by λπ. Similarly, we obtain a Casimir operator ΩK∞

on K∞ and write
λτ for the Casimir eigenvalue of a representation τ ∈ Π(K∞) (cf. [BG, §2.3]). The form B
induces a Euclidean scalar product (X, Y ) = −B(X, θ(Y )) on g and all its subspaces. For
τ ∈ Π(K∞) we define ‖τ‖ as in [CD, §2.2].
We fix a maximal Q-split torus S0 of G and let M0 be its centralizer, which is a minimal

Levi subgroup defined over Q. We assume that the maximal compact subgroup K ⊂ G(A)
is admissible with respect to M0 [Ar5, §1]. Denote by A0 the identity component of S0(R),
which is viewed as a subgroup of S0(A). We write L for the (finite) set of Levi subgroups
containing M0, i.e., the set of centralizers of subtori of S0. Let W0 = NG(Q)(S0)/M0 be the
Weyl group of (G,S0), where NG(Q)(H) is the normalizer of H in G(Q). For any s ∈ W0

we choose a representative ws ∈ G(Q). Note that W0 acts on L by sM = wsMw−1
s .

Let now M ∈ L. We write SM for the split part of the identity component of the center
of M. Set AM = A0 ∩ SM(R) and W (M) = NG(Q)(M)/M, which can be identified with
a subgroup of W0. Denote by a∗M the R-vector space spanned by the lattice X∗(M) of Q-
rational characters of M and let a∗M,C = a∗M ⊗R C be its complexification. We write aM for
the dual space of a∗M , which is spanned by the co-characters of SM . Let HM : M(A) → aM
be the homomorphism given by

e〈χ,HM(m)〉 = |χ(m)|A =
∏

v

|χ(mv)|v

for any χ ∈ X∗(M) and denote by M(A)1 ⊂ M(A) the kernel of HM . Let L(M) be
the set of Levi subgroups containing M and P(M) the set of parabolic subgroups of G
with Levi part M. We also write F(M) = FG(M) =

∐
L∈L(M)P(L) for the (finite) set of

parabolic subgroups of G containing M. Note that W (M) acts on P(M) and F(M) by
sP = wsPw−1

s . Denote by ΣM the set of reduced roots of SM on the Lie algebra of G. For
any α ∈ ΣM we denote by α∨ ∈ aM the corresponding co-root. Let L2

disc(AMM(Q)\M(A))
be the discrete part of L2(AMM(Q)\M(A)), i.e., the closure of the sum of all irreducible
subrepresentations of the regular representation of M(A). We denote by Πdisc(M(A)) the
countable set of equivalence classes of irreducible unitary representations of M(A) which
occur in the decomposition of L2

disc(AMM(Q)\M(A)) into irreducible representations.

For any L ∈ L(M) we identify a∗L with a subspace of a∗M . We denote by aLM the annihilator
of a∗L in aM . We set

L1(M) = {L ∈ L(M) : dim aLM = 1}
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and
F1(M) =

⋃

L∈L1(M)

P(L).

Note that the restriction of the scalar product (·, ·) on g defined above gives aM0 the
structure of a Euclidean space. In particular, this fixes Haar measures on the spaces
aLM and their duals (aLM)∗. We follow Arthur in the corresponding normalization of Haar
measures on the groups M(A) ([Ar1, §1]).

2.2. Intertwining operators. The main ingredient of the spectral side of the Arthur
trace formula are logarithmic derivatives of intertwining operators. We shall now describe
the structure of the intertwining operators.

Let P ∈ P(M). We write aP = aM . Let UP be the unipotent radical of P and MP

the unique L ∈ L(M) (in fact the unique L ∈ L(M0)) such that P ∈ P(L). Denote by
ΣP ⊂ a∗P the set of reduced roots of SM on the Lie algebra uP of UP . Let ∆P be the
subset of simple roots of P, which is a basis for (aGP )

∗. Write a∗P,+ for the closure of the
Weyl chamber of P, i.e.

a∗P,+ = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ΣP} = {λ ∈ a∗M : 〈λ, α∨〉 ≥ 0 for all α ∈ ∆P}.
Denote by δP the modulus function of P(A). Let Ā2(P ) be the Hilbert space completion
of

{φ ∈ C∞(M(Q)UP (A)\G(A)) : δ
− 1

2
P φ(·x) ∈ L2

disc(AMM(Q)\M(A)), ∀x ∈ G(A)}
with respect to the inner product

(φ1, φ2) =

∫

AMM(Q)UP (A)\G(A)

φ1(g)φ2(g) dg.

Let α ∈ ΣM . We say that two parabolic subgroups P,Q ∈ P(M) are adjacent along α,
and write P|αQ, if ΣP ∩ −ΣQ = {α}. Alternatively, P and Q are adjacent if the closure

PQ of PQ belongs to F1(M). Any R ∈ F1(M) is of the form PQ for a unique unordered
pair {P,Q} of parabolic subgroups in P(M), namely P and Q are the maximal parabolic
subgroups of R, and P|αQ with α∨ ∈ Σ∨

P ∩ aRM . Switching the order of P and Q changes
α to −α.

For any P ∈ P(M) let HP : G(A) → aP be the extension of HM to a left UP (A)- and
right K-invariant map. Denote by A2(P ) the dense subspace of Ā2(P ) consisting of its K-
and z-finite vectors, where z is the center of the universal enveloping algebra of g⊗C. That

is, A2(P ) is the space of automorphic forms φ on UP (A)M(F )\G(A) such that δ
− 1

2
P φ(·k)

is a square-integrable automorphic form on AMM(F )\M(A) for all k ∈ K. Let ρ(P, λ),
λ ∈ a∗M,C, be the induced representation of G(A) on Ā2(P ) given by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)−HP (x)〉.

It is isomorphic to Ind
G(A)
P(A)

(
L2
disc(AMM(Q)\M(A))⊗ e〈λ,HM (·)〉

)
.
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For P,Q ∈ P(M) let

MQ|P (λ) : A2(P ) → A2(Q), λ ∈ a∗M,C,

be the standard intertwining operator [Ar3, §1], which is the meromorphic continuation in
λ of the integral

[MQ|P (λ)φ](x) =

∫

UQ(A)∩UP (A)\UQ(A)

φ(nx)e〈λ,HP (nx)−HQ(x)〉 dn, φ ∈ A2(P ), x ∈ G(A).

These operators satisfy the following properties.

(1) MP |P (λ) ≡ Id for all P ∈ P(M) and λ ∈ a∗M,C.
(2) For any P,Q,R ∈ P(M) we have MR|P (λ) = MR|Q(λ) ◦MQ|P (λ) for all λ ∈ a∗M,C.

In particular, MQ|P (λ)
−1 = MP |Q(λ).

(3) MQ|P (λ)
∗ = MP |Q(−λ) for any P,Q ∈ P(M) and λ ∈ a∗M,C. In particular, MQ|P (λ)

is unitary for λ ∈ ia∗M .
(4) If P|αQ then MQ|P (λ) depends only on 〈λ, α∨〉.

Given π ∈ Πdisc(M(A)), let A2
π(P ) be the space of all φ ∈ A2(P ) for which the function x ∈

M(A) 7→ δ
− 1

2
P φ(xg), g ∈ G(A), belongs to the π-isotypic subspace L2(AMM(Q)\M(A)).

For any P ∈ P(M) we have a canonical isomorphism of G(Af)× (gC, K∞)-modules

jP : Hom(π, L2(AMM(Q)\M(A)))⊗ Ind
G(A)
P(A) (π) → A2

π(P ).

If we fix a unitary structure on π and endow Hom(π, L2(AMM(Q)\M(A))) with the inner
product (A,B) = B⋆A (which is a scalar operator on the space of π), the isomorphism jP
becomes an isometry.

Suppose that P|αQ. The operator MQ|P (π, s) := MQ|P (s̟)|A2
π(P ), where ̟ ∈ a⋆M is

such that 〈̟,α∨〉 = 1, admits a normalization by a global factor nα(π, s) which is a
meromorphic function in s. We may write

(2.1) MQ|P (π, s) ◦ jP = nα(π, s) · jQ ◦ (Id⊗RQ|P (π, s))

where RQ|P (π, s) = ⊗vRQ|P (πv, s) is the product of the locally defined normalized in-
tertwining operators and π = ⊗vπv [Ar3, §6], (cf. [Mu6, (2.17)]). In many cases, the
normalizing factors can be expressed in terms automorphic L-functions [Sha1], [Sha2]. For
example, let G = GL(n). Then the global normalizing factors nα can be expressed in
terms of Rankin-Selberg L-functions and the known properties of these functions, which
are collected and analyzed in [Mu5, §§4,5]. Write M ≃

∏r
i=1GL(ni), where the root α

is trivial on
∏

i≥3GL(ni), and let π ≃ ⊗πi with representations πi ∈ Πdisc(GL(ni,A)).
Let L(s, π1 × π̃2) be the completed Rankin-Selberg L-function associated to π1 and π2. It
satisfies the functional equation

(2.2) L(s, π1 × π̃2) = ǫ(
1

2
, π1 × π̃2)N(π1 × π̃2)

1
2
−sL(1− s, π̃1 × π2)
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where |ǫ(1
2
, π1 × π̃2)| = 1 and N(π1 × π̃2) ∈ N is the conductor. Then we have

(2.3) nα(π, s) =
L(s, π1 × π̃2)

ǫ(1
2
, π1 × π̃2)N(π1 × π̃2)

1
2
−sL(s + 1, π1 × π̃2)

.

2.3. The trace formula. Arthur’s trace formula gives two alternative expressions for a
distribution J on G(A)1. Note that this distribution depends on the choice of M0 and K.
For h ∈ C∞

c (G(A)1), Arthur defines J(h) as the value at the point T = T0 specified in
[Ar5, Lemma 1.1] of a polynomial JT (h) on aM0 of degree at most d0 = dim aGM0

. Here, the
polynomial JT (h) depends in addition on the choice of a parabolic subgroup P0 ∈ P(M0).
Consider the equivalence relation on G(Q) defined by γ ∼ γ′ whenever the semisimple
parts of γ and γ′ are G(Q)-conjugate. Let O be the set of the resulting equivalence
classes (which are in bijection with conjugacy classes of semisimple elements). The coarse
geometric expansion [Ar1] is

(2.4) JT (h) =
∑

o∈O

JT
o (h),

where the summands JT
o (h) are again polynomials in T of degree at most d0. Write

Jo(h) = JT0
o (h), which depends only on M0 and K. Then Jo(h) = 0 if the support of h

is disjoint from all conjugacy classes of G(A) intersecting o (cf. [Ar6, Theorem 8.1]). By
[ibid., Lemma 9.1] (together with the descent formula of [Ar5, §2]), for each compact set
Ω ⊂ G(A)1 there exists a finite subset O(Ω) ⊂ O such that for h supported in Ω only the
terms with o ∈ O(Ω) contribute to (2.4). In particular, the sum is always finite. When o

consists of the unipotent elements of G(Q), we write JT
unip(h) for J

T
o (h).

We now turn to the spectral side. Let L ⊃ M be Levi subgroups in L, P ∈ P(M),
and let m = dim aGL be the co-rank of L in G. Denote by BP,L the set of m-tuples
β = (β∨

1 , . . . , β
∨
m) of elements of Σ∨

P whose projections to aL form a basis for aGL . For any

β = (β∨
1 , . . . , β

∨
m) ∈ BP,L let vol(β) be the co-volume in aGL of the lattice spanned by β and

let

ΞL(β) = {(Q1, . . . ,Qm) ∈ F1(M)m : β∨
i ∈ a

Qi

M , i = 1, . . . , m}
= {(P1P

′
1, . . . , PmP ′

m) : Pi|βiP ′
i , i = 1, . . . , m}.

For any smooth function f on a∗M and µ ∈ a∗M denote by Dµf the directional derivative
of f along µ ∈ a∗M . For a pair P1|αP2 of adjacent parabolic subgroups in P(M) write

δP1|P2(λ) = MP2|P1(λ)D̟MP1|P2(λ) : A2(P2) → A2(P2),

where ̟ ∈ a∗M is such that 〈̟,α∨〉 = 1. 1 Equivalently, writing MP1|P2(λ) = Φ(〈λ, α∨〉)
for a meromorphic function Φ of a single complex variable, we have

δP1|P2(λ) = Φ(〈λ, α∨〉)−1Φ′(〈λ, α∨〉).

1Note that this definition differs slightly from the definition of δP1|P2
in [FL1].
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For any m-tuple X = (Q1, . . . , Qm) ∈ ΞL(β) with Qi = PiP
′
i , Pi|βiP ′

i , denote by ∆X (P, λ)
the expression

vol(β)

m!
MP ′

1|P
(λ)−1δP1|P ′

1
(λ)MP ′

1|P
′

2
(λ) · · · δPm−1|P ′

m−1
(λ)MP ′

m−1|P
′
m
(λ)δPm|P ′

m
(λ)MP ′

m|P (λ).

In [FLM1, pp. 179-180] we define a (purely combinatorial) map XL : BP,L → F1(M)m

with the property that XL(β) ∈ ΞL(β) for all β ∈ BP,L.
2

For any s ∈ W (M) let Ls be the smallest Levi subgroup in L(M) containing ws. We
recall that aLs = {H ∈ aM | sH = H}. Set

ιs = |det(s− 1)
a
Ls
M
|−1.

For P ∈ F(M0) and s ∈ W (MP ) let M(P, s) : A2(P ) → A2(P ) be as in [Ar3, p. 1309].
M(P, s) is a unitary operator which commutes with the operators ρ(P, λ, h) for λ ∈ ia∗Ls

.
Finally, we can state the refined spectral expansion.

Theorem 1 ([FLM1]). For any h ∈ C∞
c (G(A)1) the spectral side of Arthur’s trace formula

is given by

(2.5) J(h) =
∑

[M ]

Jspec,M(h),

M ranging over the conjugacy classes of Levi subgroups of G (represented by members of
L), where

(2.6) Jspec,M(h) =
1

|W (M)|
∑

s∈W (M)

ιs
∑

β∈BP,Ls

∫

i(aGLs
)∗
tr(∆XLs (β)

(P, λ)M(P, s)ρ(P, λ, h)) dλ

with P ∈ P(M) arbitrary. The operators are of trace class and the integrals are absolutely
convergent.

Note that the term corresponding to M = G is Jspec,G(h) = trRdisc(h). Next assume that
M is the Levi subgroup of a maximal parabolic subgroup P . Furthermore, let L = M . Let
P̄ be the opposite parabolic subgroup to P . Then up to a constant, the contribution to
the spectral side is given by

∑

π∈Πdisc(M(A)1)

∫

ia⋆
tr(MP̄ |P (π, λ)

−1 d

dz
MP̄ |P (π, λ)M(P, s)ρ(P, π, λ, h)) dλ.

Now assume that G = SL(2,R) and K = SO(2). Let h ∈ SL(2,R)) be bi-K-invariant. Let
C(s) be the scattering matrix.

2The map XL depends in fact on the additional choice of a vector µ ∈ (a∗
M
)m which does not lie in an

explicit finite set of hyperplanes. For our purposes, the precise definition of XL is immaterial.
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3. The Weyl law

The Weyl law is concerned with the study of the asymptotic behavior of the counting
function (1.2) as λ → ∞. This is the first problem which needs to be solved in order to
be able to pursue a deeper study of the cuspidal automorphic spectrum. For example, the
study of statistical properties of the automorphic spectrum requires first of all to know
that the spectrum is infinite and has the right asymptotic properties. This, in particular,
concerns the study of families of automorphic forms (see [SST]).

The investigation of the asymptotic behavior of the counting function (1.2) is closely
related to the study of the counting function of the eigenvalues of the Laplace operator

on a compact Riemannian manifold [DG]. Let X̃ = G/K. It can be equipped with a

G-invariant metric which is unique up to scaling. Let X = Γ\X̃ . Assume that Γ is torsion

free. Then X is a complete Riemannian manifold of finite volume. Let σ ∈ K̂ and let
Ẽσ → X̃ be the homogeneous vector bundle associated to σ, which is equipped with the

invariant Hermitian metric induced by σ. Let Eσ = Γ\Ẽσ be the corresponding locally
homogeneous vector bundle over X . Let ∇σ be the connection in Eσ induced by the

canonical connection in Ẽσ. Let ∆σ = (∇σ)⋆∇σ be the Bochner-Laplace operator, acting
in C∞(X,Eσ). It is an elliptic, second order, formally self-adjoint differential operator
of Laplace type, i.e., its principal symbol is given by ‖ξ‖2x IdEσ,x. The Bochner-Laplace
operator is related to the Casimir operator RΓ(Ω) by

(3.1) ∆σ = −RΓ(Ω) + λσ Id,

where λσ is the Casimir eigenvalue of σ. Assume that X is compact. Then ∆σ has a pure
discrete spectrum consisting of a sequence of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞ of finite
multiplicities. Let

NΓ,σ(λ) = #{j : λj ≤ λ}
be the counting function of the eigenvalues, where eigenvalues are counted with there
multiplicity. By (3.1) the counting function (1.2) has the same asymptotic behavior as
NΓ,σ(λ). The Weyl law for NΓ,σ(λ) can be established by standard methods. For example,
for a weak version, which means with no estimation of the remainder term, on can use the
asymptotic expansion of the trace of the heat operator e−t∆σ . Thus if Γ is co-compact we
get from these general methods the following formula for the asymptotic behavior of the
counting function. Let d = dimX . As λ → ∞ we have

(3.2) NΓ(λ; σ) =
dim(σ) vol(Γ\G/K)

(4π)d/2Γ(d/2 + 1)
λd/2 + o(λd/2),

where Γ(s) denotes the Gamma function.

If Γ is not co-compact, then ∆σ has a nonempty continuous spectrum which consists of
a half-line [c,∞) for some c ≥ 0. This makes it much more difficult to study the discrete
spectrum of this operator, because almost all eigenvalues, if they exist, will be embedded
into the continuous spectrum. It is well know from mathematical physics that embedded
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eigenvalues are unstable under perturbations. One of the basic tools to study the cuspidal
automorphic spectrum is the trace formula.

3.1. Hyperbolic surfaces. In the non-compact case, a general Weyl law was first derived
by Selberg for a hyperbolic surface X = Γ\H of finite area, where H = SL(2,R)/ SO(2) is
the upper half-plane. We briefly recall the method which is based on the trace formula. It
illustrates the basic idea which is also used in the higher rank case.

Let ∆ = d⋆d be the Laplace operator with respect to the hyperbolic metric. Then ∆,
regarded as operator in L2(X) with domain C∞(X), is essentially self-adjoint. The spec-
trum of ∆ is the union of a pure point spectrum and the absolutely continuous spectrum.
The pure point spectrum consists of a sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · ·
of finite multiplicities. If X is noncompact then, in general, we only know that λ0 exists.
We slightly change the definition of the counting function by

NΓ(λ) := #{j :
√
λj ≤ λ}.

The new terms in the trace formula, which are due to the non-compactness of Γ\H arise
from the parabolic conjugacy classes in Γ and the Eisenstein series. Let us recall the
definition of Eisenstein series. Let a1, ..., am ∈ R ∪ {∞} be representatives of the Γ-
conjugacy classes of parabolic fixed points of Γ. The ai’s are called cusps. For each ai let
Γai be the stabilizer of ai in Γ. Choose σi ∈ SL(2,R) such that

σi(∞) = ai, σ−1
i Γaiσi =

{(
1 n
0 1

)
: n ∈ Z

}
.

Then the Eisenstein series Ei(z, s) associated to the cusp ai is defined as

(3.3) Ei(z, s) =
∑

γ∈Γai
\Γ

Im(σ−1
i γz)s, Re(s) > 1.

The series converges absolutely and uniformly on compact subsets of the half-plane Re(s) >
1 and it satisfies the following properties.

1) Ei(γz, s) = Ei(z, s) for all γ ∈ Γ.
2) As a function of s, Ei(z, s) admits a meromorphic continuation to C which is regular

on the line Re(s) = 1/2.
3) Ei(z, s) is a smooth function of z and satisfies ∆zEi(z, s) = s(1− s)Ei(z, s).

The contribution of the Eisenstein series to the Selberg trace formula is given by their zeroth
Fourier coefficients of the Fourier expansion in the cusps. The zeroth Fourier coefficient of
the Eisenstein series Ek(z, s) in the cusp al is given by

∫ 1

0

Ek(σl(x+ iy), s) dx = δkly
s + Ckl(s)y

1−s,
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where δkl is Kronecker’s delta function and Ckl(s) is a meromorphic function of s ∈ C. Put

C(s) := (Ckl(s))
m
k,l=1 .

This is the so called scattering matrix. Let g ∈ C∞
c (R) and let h = ĝ be the Fourier

transform of g. Let φ(s) := detC(s). Denote by {γ} the hyperbolic Γ-conjugacy classes.
For every hyperbolic element γ, denote by γ0 the primitive hyperbolic element such that
γ = γk

0 for some k ∈ N. Every nontrivial hyperbolic conjugacy class {γ} corresponds to a
unique closed geodesic cγ . Let l(γ) denote its length. Write the eigenvalues as

λj =
1

4
+ r2j , rj ∈ iR ∪ (1/2, 1].

Then the trace formula is the following identity.

∑

j

h(rj)−
1

4π

∫ ∞

−∞

h(r)
φ′

φ
(1/2 + ir) dr +

1

4
φ(1/2)h(0)

=
Area(Γ\H)

4π

∫

R

h(r)r tanh(πr) dr +
∑

{γ}

l(γ0)

2 sinh
(

l(γ)
2

)g(l(γ))

− m

2π

∫ ∞

−∞

h(r)
Γ′

Γ
(1 + ir)dr +

m

4
h(0)−m ln 2 g(0).

(3.4)

The left hand side is the spectral side, which contains all terms associated with the spectrum
and the right hand side is the geometric side. The trace formula holds for every discrete
subgroup Γ ⊂ SL(2,R) with co-finite area. In analogy to the counting function of the
eigenvalues we introduce the winding number

(3.5) MΓ(λ) = − 1

4π

∫ λ

−λ

φ′

φ
(1/2 + ir) dr,

which measures the continuous spectrum. Using the cut-off Laplacian of Lax-Phillips [CV]
one can deduce the following elementary bounds

(3.6) NΓ(λ) ≪ λ2, MΓ(λ) ≪ λ2, λ ≥ 1.

These bounds imply that the the trace formula (3.4) holds for a larger class of functions.
In particular, it can be applied to the heat kernel kt. Its spherical Fourier transform equals
ht(r) = e−t(1/4+r2), t > 0. If we insert ht into the trace formula we get the following
asymptotic expansion as t → 0.

∑

j

e−tλj − 1

4π

∫

R

e−t(1/4+r2)φ
′

φ
(1/2 + ir) dr

=
Area(Γ\H)

4πt
+

a log t√
t

+
b√
t
+O(1)

(3.7)

for certain constants a, b ∈ R. Using [Se1, (8.8), (8.9)] it follows that the winding number
MΓ(λ) is monotonic increasing for λ ≫ 0. Therefore we can apply a Tauberian theorem to
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(3.7) and we get the following Weyl law, established by Selberg [Se1]. As λ → ∞ we have

(3.8) NΓ(λ) +MΓ(λ) ∼
Area(Γ\H)

4π
λ2.

In general, we cannot estimate separately the counting function and the winding number.
For congruence subgroups, however, the entries of the scattering matrix can be expressed
in terms of well-known analytic functions. For Γ(N) the determinant of the scattering
matrix φ(s) has been computed by Huxley [Hu]. It has the form

(3.9) φ(s) = (−1)lA1−2s

(
Γ(1− s)

Γ(s)

)k∏

χ

L(2− 2s, χ̄)

L(2s, χ)
,

where k, l ∈ Z, A > 0, the product runs over Dirichlet characters χ to some modulus
dividing N and L(s, χ) is the Dirichlet L-function with character χ. Especially for Γ(1)
we have

(3.10) φ(s) =
√
π
Γ(s− 1/2)ζ(2s− 1)

Γ(s)ζ(2s)
,

where ζ(s) denotes the Riemann zeta function.

Using Stirling’s approximation formula to estimate the logarithmic derivative of the
Gamma function and standard estimations for the logarithmic derivative of Dirichlet L-
functions on the line Re(s) = 1 [Pr, Chapt V, Theormem 7.1], we get

(3.11)
φ′

φ
(1/2 + ir) = O(log(4 + |r|)), |r| → ∞.

This implies that

(3.12) MΓ(N)(λ) ≪ λ log λ.

Together with (3.8) we obtain Weyl’s law for the point spectrum of the Laplacian on
X(N) = Γ(N)\H:

(3.13) NΓ(N)(λ) ∼
Area(X(N))

4π
λ2, λ → ∞,

which is due to Selberg [Se1, p.668]. A similar formula holds for other congruence groups
such as Γ0(N). In particular, (3.13) implies that for congruence groups there exist infinitely
many linearly independent Maass cusp forms.

By a more sophisticated use of the Selberg trace formula one can estimate the remainder
term (see [Mu3]). For congruence subgroups one gets

Theorem 3.1. For every N ∈ N we have

(3.14) NΓ(N)(λ) =
Area(X(N))

4π
λ2 +O(λ logλ)

as λ → ∞.
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A finite area hyperbolic surface for which the Weyl law holds is called by Sarnak essen-
tially cuspidal. Now it is strongly believed that essential cuspidality is limited to special
arithmetic surfaces. This is based on work by Phillips and Sarnak who studied the behavior
of the discrete spectrum when Γ is deformed in the corresponding Teichmüller space. We
refer to [Sa1] for a detailed discussion of their method. This led Phillips and Sarnak to the
following conjectures.

Conjecture 1. 1) The generic Γ in a given Teichmüller space of finite area hyperbolic
surfaces is not essentially cuspidal.

2) Except for the Teichmüller space of the once punctured torus, the generic Γ has only a
finite number of discrete eigenvalues.

3.2. Higher rank. We turn now to the general case. We assume that G = G(R), where

G is a connected semisimple algebraic group over Q. Let X = Γ\X̃ = Γ\G/K and
Eσ → X be as above. Let ∆σ : C

∞(X,Eσ) → C∞(X,Eσ) be the Bochner-Laplace operator.
As operator in L2(X,Eσ) it is essentially self-adjoint. Let L2

disc(X,Eσ) the subspace of
L2(X,Eσ) which is the closure of the span of all L2-eigensections of ∆σ. Recall that a cusp
form for Γ is a smooth K-finite function φ : Γ\G → C which is a joint eigenfunction of the
center of the universal enveloping algebra Z(gC) and which satisfies

∫

Γ∩NP \NP

φ(nx) dn = 0

for all unipotent radicals NP of proper rational parabolic subgroups P of G, i.e., P = P(R),
where P is a rational parabolic subgroup of G. Put

L2
cus(X,Eσ) := (L2

cus(Γ\G)⊗ Vσ)
K .

Then L2
cus(X,Eσ) is contained in L2

disc(X,Eσ). The orthogonal complement L2
res(X,Eσ)

of L2
cus(X,Eσ) in L2

disc(X,Eσ) is called the residual subspace. By Langland’s theory of
Eisenstein series it follows that L2

res(X,Eσ) is spanned by iterated residues of cuspidal
Eisenstein series. By definition we have an orthogonal decomposition

L2
disc(X,Eσ) = L2

cus(X,Eσ)⊕ L2
res(X,Eσ).

Let Ndisc
Γ (λ, σ), N cus

Γ (λ, σ), and N res
Γ (λ, σ) be the counting function of the eigenvalues

with eigensections belonging to the corresponding subspace. The following results about
the growth of the counting functions hold for any lattice Γ in a real semisimple Lie group.
Let d = dimX . Donnelly [Do] has proved the following bound for the cuspidal spectrum

(3.15) lim sup
λ→∞

N cus
Γ (λ, σ)

λd/2
≤ dim(σ) vol(X)

(4π)d/2Γ
(
d
2
+ 1
) .

For the full discrete spectrum, we have at least an upper bound for the growth of the
counting function. The main result of [Mu2] states that

(3.16) Ndisc
Γ (λ, σ) ≪ (1 + λ2d).
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This result implies that invariant integral operators are trace class on the discrete sub-
space which is the starting point for the trace formula. The proof of (3.16) relies on the
description of the residual subspace in terms of iterated residues of Eisenstein series.

Let N cus
Γ (λ) be the counting function with respect to the trivial representation σ0 of K,

i.e., the counting function of the cuspidal spectrum of the Laplacian on functions. Then
Sarnak [Sa2] conjectured that if rank(G/K) > 1, Weyl’s law holds forN cus

Γ (λ), which means
that equality holds in (3.16). Furthermore, one expects that the growth of the residual
spectrum is of lower order than the cuspidal spectrum.

In the meantime Sarnak’s conjecture has been verified in quite a number of cases. A.
Reznikov proved it for congruence groups in a group G of real rank one, S. Miller [Mi]
proved it for G = SL(3) and Γ = SL(3,Z), the author [Mu3] established it for G = SL(n)
and a congruence group Γ. The most general result is due to Lindenstrauss and Venkatesh
[LV] who proved the following theorem.

Theorem 3.2. Let G be a split adjoint semi-simple group over Q and let Γ ⊂ G(Q) be a
congruence subgroup. Let d = dimS. Then

(3.17) N cus
Γ (λ) ∼ vol(Γ\X̃)

(4π)d/2Γ
(
d
2
+ 1
)λd/2, λ → ∞.

The method used by Lindenstrauss and Venkatesh is based on the construction of con-
volution operators with pure cuspidal image. It avoids the delicate estimates of the contri-
butions of the Eisenstein series to the trace formula. This proves existence of many cusp
forms for these groups.

For an arbitrary K-type, we have the following theorem proved in [Mu3].

Theorem 3.3. Let n ≥ 2 and X̃ = SL(n,R)/ SO(n). Let d = dim X̃. For every principal
congruence subgroup Γ of SL(n,Z) and every irreducible unitary representation σ of SO(n)
such that σ|Zγ = Id, we have

(3.18) N cus
Γ (λ, σ) ∼ dim(σ) vol(Γ\X̃)

(4π)d/2Γ(d/2 + 1)
λd/2

as λ → ∞.

The residual spectrum for SL(n) has been described by Moeglin and Waldspurger [MW].
Combined with (3.15) it follows that for G = SL(n) we have

(3.19) N res
Γ(N)(λ, σ) ≪ λd/2−1,

where d = dimSL(n,R)/ SO(n) and Γ(N) ⊂ SL(n,Z) is the principal congruence subgroup
of level N .

The proof of Theorem 3.3 uses the Arthur trace formula combined with the heat equation
method similar to the proof of (3.13). The application of the Arthur trace formula requires
the adelic reformulation of the problem.
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We briefly describe the method. For all details we refer to [Mu5]. For simplicity we
consider only the trivial K∞-type, i.e, we consider the counting function N cus

Γ (λ). By
(3.19) we can replace the counting function N cus

Γ (λ) by Ndisc
Γ (λ). Let G = GL(n) regarded

as an algebraic group over Q. Denote by AG the split component of the center of G and let
AG(R)

0 be the component of 1 in AG(R). Let Πdisc(G(A), ξ0) be the set of all irreducible
subrepresentations of the regular representation of G(A) in L2(G(Q)AG(R)

0\G(A)). Given
a representation π ∈ Πdisc(G(A), ξ0), let m(π) denote the multiplicity with which π occurs
in L2(G(Q)AG(R)

0\G(A)). For any irreducible representation π = π∞ ⊗ πf of G(A),
let Hπ∞

and Hπf
denote the Hilbert space of the representation π∞ and πf , respectively.

Let Kf be an open compact subgroup of G(Af ). Denote by HKf
πf the subspace of Kf -

invariant vectors in Hπf
and by HK∞

π∞
the subspace of K∞-invariant vectors in Hπ∞

. Given
π ∈ Π(G(A), ξ0), denote by λπ∞

the Casimir eigenvalue of the restriction of π∞ to G(R)1.
Assume that −1 6= Kf . Then (3.18) for the trivial K∞-type follows by Karamata’s theorem
from the existence of an asymptotic expansion of the form

(3.20)
∑

π∈Πdisc(G(A),ξ0)

m(π)etλπ∞ dim
(
HKf

πf

)
dim

(
HK∞

π∞
) ∼ vol(G(Q)\G(A)1/Kf)

(4π)d/2
t−d/2

as t → +0.

To establish (3.20) we apply the Arthur trace formula as follows. We choose a certain

family of test functions φ̃1
t ∈ C∞

c (G(A)1), depending on t > 0, which at the infinite place are

given by the heat kernel ht ∈ C∞(G(R)1) of the Laplacian ∆̃ on X̃ , multiplied by a certain
cutoff function ϕt, and which at the finite places is given by the normalized characteristic
function of an open compact subgroup Kf of G(Af). Then by the non-invariant trace
formula [Ar1] we have the equality

Jspec(φ̃
1
t ) = Jgeo(φ̃

1
t ), t > 0.

Then we study asymptotic behavior of the spectral and the geometric side as t → 0. To
deal with the geometric side, we use the fine o-expansion [Ar6]

(3.21) Jgeo(f) =
∑

M∈L

∑

γ∈(M(QS ))M,S

aM (S, γ)JM(f, γ),

which expresses the distribution Jgeo(f) in terms of weighted orbital integrals JM(γ, f).
Here M runs over the set of Levi subgroups L containing the Levi component M0 of the
standard minimal parabolic subgroup P0, S is a finite set of places of Q, and (M(QS))M,S is
a certain set of equivalence classes inM(QS). This reduces our problem to the investigation
of weighted orbital integrals. The key result is that

lim
t→0

td/2JM(φ̃1
t , γ) = 0,

unless M = G and γ = 1. This follows from the description of the local weighted orbital
integrals by [Ar4, Corollary 6.2]. The contributions to (3.21) of the terms where M = G
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and γ = 1 are easy to determine. Using the behavior of the heat kernel ht(1) as t → 0, it
follows that

(3.22) Jgeo(φ̃
1
t ) ∼

vol(G(Q)\G(A)1/Kf)

(4π)d/2
t−d/2

as t → 0. To deal with the spectral side we use Theorem 1. This theorem allows us to

replace φ̃1
t by a similar function φ1

t ∈ C1(G(A)1) which is given as the product of the heat
kernel ht at infinity and the normalized characteristic function of Kf . The term in Jspec(φ

1
t )

corresponding to M = G is Jspec,G(φ
1
t ) = trRdisc(φ

1
t ), which is equal to the left hand side

of (3.20). If M is a proper Levi subgroup of G, then Jspec,M(φ1
t ) is given by (2.6), which is

a finite some of integrals. The main ingredient of the integrals are logarithmic derivatives
of intertwining operators and the estimation of these integrals is reduced to the estimation
of the logarithmic derivatives. Using (2.1) this problem is reduced to the estimation of the
logarithmic derivatives of the normalizing factors and the local intertwining operators. In
the case of G = GL(n), the normalizing factors are expressed in terms of Ranking-Selberg
L-functions (2.3). Using the analytic properties of Rankin-Selberg L-functions, it follows
that there exists C > 0 such that for π = π1 ⊗ π2, πi ∈ Πdisc(GL(ni,A)), and T > 1 we
have

(3.23)

∫ T+1

T

∣∣∣∣
n′
α(π, iλ)

nα(π, iλ)

∣∣∣∣ dλ ≤ C log(T + ν(π1 × π̃2)),

where ν(π1× π̃2) = N(π1× π̃2)(2+ c(π1× π̃2), N(π1× π̃2) is the conductor occurring in the
functional equation (2.2) and c(π1× π̃2) is the analytic conductor defined in [Mu5, (4.21)].
For the proof of (3.23) see [Mu5, Proposition 5.1]. In the case of SL(2,R) we have the
pointwise estimate (3.11). If we integrate it, we get the analogue of (3.23) which would
suffice to derive the Weyl law for the principal congruence subgroups of SL(2,Z).

Finally we have to deal with normalized intertwining operators

RQ|P (π, s) = ⊗vRQ|P (πv, s).

Since the open compact subgroup Kfin of G(Afin) is fixed, there are only finitely many
places v for which we have to consider RQ|P (πv, s). The main ingredient for the estimation
of the logarithmic derivative of RQ|P (πv, s), which is uniform in πv, is a weak version of
the Ramanujan conjecture (see [MS, Proposition 0.2]).

Combining these estimations, it follows that for every proper Levi subgroup M of G we
have

(3.24) Jspec,M(φ1
t ) = O(t−(d−1)/2)

as t → +0. This proves (3.20).

The next problem is to estimate the remainder term in Weyl’s law. For G = SL(n)
this problem has been studied by E. Lapid and the author in [LM]. Actually, we consider
not only the cuspidal spectrum of the Laplacian, but the cuspidal spectrum of the whole
algebra of invariant differential operators D(X̃).
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As D(X̃) preserves the space of cusp forms, we can proceed as in the compact case and

decompose L2
cus(Γ\X̃) into joint eigenspaces of D(X̃). Recall that the characters of D(X̃)

are parametrized by a⋆C/W . Given λ ∈ a∗C/W , let

Ecus(λ) =
{
ϕ ∈ L2

cus(Γ\X̃) : Dϕ = χλ(D)ϕ
}

be the associated joint eigenspace. Each eigenspace is finite-dimensional. Let m(λ) =
Ecus(λ). Define the cuspidal spectrum Λcus(Γ) to be

Λcus(Γ) = {λ ∈ a∗C/W : m(λ) > 0}.
Then we have an orthogonal direct sum decomposition

L2
cus(Γ\X̃) =

⊕

λ∈Λcus(Γ)

Ecus(λ).

Let β(λ) be the Plancherel measure on ia⋆. Then in [LM] we established the following
extension of main results of [DKV] to congruence quotients of S = SL(n,R)/ SO(n).

Theorem 3.4. Let d = dim X̃. Let Ω ⊂ a∗ be a bounded domain with piecewise smooth
boundary. Then for N ≥ 3 we have

(3.25)
∑

λ∈Λcus(Γ(N))
λ∈itΩ

m(λ) =
vol(Γ(N)\X̃)

|W |

∫

tΩ

β(iλ) dλ+O
(
td−1(log t)max(n,3)

)
,

as t → ∞, and

(3.26)
∑

λ∈Λcus(Γ(N))
λ∈Bt(0)\ia∗

m(λ) = O
(
td−2

)
, t → ∞.

If we apply (3.25) and (3.26) to the unit ball in a∗, we get the following corollary.

Corollary 3.5. Let X̃ = SL(n,R)/ SO(n) and d = dim X̃. Let Γ(N) be the principal
congruence subgroup of SL(n,Z) of level N . Then for N ≥ 3 we have

N cus
Γ(N)(λ) =

vol(Γ(N)\X̃)

(4π)d/2Γ
(
d
2
+ 1
)λd/2 +O

(
λ(d−1)/2(log λ)max(n,3)

)
, λ → ∞.

The condition N ≥ 3 is imposed for technical reasons. It guarantees that the principal
congruence subgroup Γ(N) is neat in the sense of Borel, and in particular, has no torsion.
This simplifies the analysis by eliminating the contributions of the non-unipotent conjugacy
classes in the trace formula.

Note that Λcus(Γ(N))∩ ia∗ is the cuspidal tempered spherical spectrum. The Ramanujan
conjecture [Sa3] for GL(n) at the Archimedean place states that

Λcus(Γ(N)) ⊂ ia∗
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so that (3.26) is empty, if the Ramanujan conjecture is true. However, the Ramanujan
conjecture is far from being proved. Moreover, it is known to be false for other groups G
and (3.26) is what one can expect in general.

The method to prove Theorem 3.4 is an extension of the method of [DKV]. The Selberg
trace formula, which is one of the basic tools in [DKV], is replaced by the non-invariant
Arthur trace formula. Again, one of the main issues in the proof is the estimation of the
logarithmic derivatives of the intertwining operators occurring on the spectral side of the
trace formula.

3.3. Upper and lower bounds. In some cases it suffices to have upper or lower bounds
for the counting function. For example, Donnelly’s result (3.15) implies that there exists
a constant C > 0 such that

(3.27) N cus
Γ (λ, σ) ≤ C(1 + λd/2), λ ≥ 0.

For the full discrete spectrum we have the bound (3.16). However, the exponent is not
the optimal one. For some applications it this necessary to have such a bound which is
uniform in Γ. For the cuspidal spectrum this problem has been studied by Deitmar and
Hoffmann [DH]. To state the result, we have to introduce some notation. Let Γn(N) be
the principal congruence subgroup of GL(n,Z) of level N . Let G be a connected reductive
linear algebraic group over Q. Let η : G → GL(n) be a faithful Q-rational representation.
A family T of subgroups of G(Q) is called a family of bounded depth in G(Q) if there
exists D ∈ N which satisfies the following property: For every Γ ∈ T there exists N ∈ N

such that Γn(N)∩ η(G(Q)) is a subgroup of η(Γ) of index at most D. We note that every
Γ ∈ T is contained in Γ0 := Γn(1)∩G(Q). Then the result of Deitmar and Hoffmann [DH,
Corollary 18] is the following theorem.

Theorem 3.6. Let T be a family of bounded depth in G(Q). There exists C > 0 such that
for all Γ ∈ T and all λ ≥ 0 we have

(3.28) N cus
Γ (λ; σ) ≤ C[Γ0 : Γ](1 + λ)d/2.

Conjecture 2. The estimation (3.28) holds for Ndisc
Γ (λ; σ).

Given the description of the residual spectrum for GL(n) by [MW], it seems to be possible
to establish this conjecture for GL(n).

As for lower bounds there is the weak Weyl law established in [LM]. For σ ∈ K̂ let

cσ(Γ) =
dim(σ) vol(Γ\X̃)

(4π)d/2Γ(d/2 + 1)

be the constant in Weyl’s law, where d = dim(X̃). Let G be a semisimple algebraic group
defined over Q and let Γ ⊂ G(Q) be a congruence subgroup defined by an open compact
subgroup Kfin =

∏
pKp of G(Afin). Let S be a finite set of primes. We will say that Γ is

deep enough with respect to S, if for every prime p ∈ S, Kp is a subgroup of some minimal
parahoric subgroup of G(Qp). Then the main result of [LM] is the following theorem.
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Theorem 3.7. Let G be an almost simple connected and simply connected semisimple
algebraic group defined over Q such that G(R) is non compact. Let S be a finite set of
primes containing at least two primes. Then for every congruence subgroup Γ ⊂ G(Q)

there exists a nonnegative constant cS(Γ) ≤ 1 such that for every σ ∈ K̂ with σ|ZΓ
= Id we

have

cσ(Γ)cS(Γ) ≤ lim inf
λ→∞

N cus
Γ (λ, σ)

λd/2
.

Moreover cS(Γ) > 0 if Γ is deep enough with respect to S.

3.4. Self-dual automorphic representations. So far, we considered only the family of
all cusp forms of GL(n,A). A nontrivial subfamily is formed by the family of self-dual
automorphic representations. They arise as functorial lifts of automorphic representations
of classical groups. Functoriality from classical groups to GL(N) has been established by
Cogdell, Kim, Piatetski-Shapiro, and Shahidi for generic automorphic representations and
then by Arthur for all representations. In his thesis, V. Kala has studied the counting
function of self-dual cuspidal automorphic representations of GL(n,A). For N ∈ N with
prime decomposition N =

∏
p p

r(p) let

Kp(N) :=
{
k ∈ GL(n,Zp) : k ≡ 1 mod pr(p)Zp

}

Let K(N) be the principal congruence subgroup defined by

K(N) := O(n)×
∏

p

Kp(N).

Let

N
K(N)
sd (λ) :=

∑

λ(Π)≤λ

Π∼=Π̃

dimΠK(N),

where the sum ranges over all self-dual cuspidal automorphic representations Π of GL(n,A)
with Casimir eigenvalues ≤ λ. Then the main result of [Ka] is the following theorem.

Theorem 3.8. Let n = 2m+ ε with ε = 0, 1. Put d = m2 +m. For all N ∈ N there exist
constants C1, C2 > 0 such that for λ ≫ 0 one has

C1λ
d/2 ≤ N

K(N)
sd (λ) ≤ C2λ

d/2.

By Corollary 3.5, the counting function of all cuspidal representations, counted similarly,
is asymptotic to Cλd/2, where d = (n2+n− 2)/2. Hence for n > 2, the density of self-dual
cusp forms is zero.

The main idea of the proof is to consider the descent π of each self-dual cuspidal auto-
morphic representation Π of GL(n,A) to one of the quasisplit classical groups G(A) and
to use results towards to Weyl’s law on G(A). The key problem is to relate the Casimir
eigenvalue and the existence of K(N)-fixed vectors for Π and π.
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In a special case Kala’s method leads to an exact asymptotic formula. Let n = 2m and
d = m2 +m. Let K = O(n)×

∏
pKp with Kp = GL(n,Zp). Then there exists C > 0 such

that

(3.29) NK
sd (λ) = Cλd/2 + o(λd/2)

(see [Ka, Corollary 6.2.2]). One may conjecture that this is true in general.

3.5. Weyl’s law for Hecke operators. One can also study the asymptotic distribution
of infinitesimal characters of cuspidal automorphic representations weighted by the eigen-
values of Hecke operators acting on cusp forms of GL(n). For details we refer to the recent
papers by J. Matz [Ma1], J. Matz and N. Templier [MT] and the survey article of J. Matz
in these proceedings.

4. The limit multiplicity problem

The limit multiplicity problem is another basic problem which is concerned with the
asymptotic behavior of automorphic spectra.

In this section we summarize some of the known results about the limit multiplicity
problem. To begin with we recall some facts concerning the Plancherel measure µpl on
Π(G). First of all, the support of µpl is the tempered dual Π(G)temp, consisting of the
equivalence classes of the irreducible unitary tempered representations. Up to a closed
subset of Plancherel measure zero, the topological space Π(G)temp is homeomorphic to a
countable union of Euclidean spaces of bounded dimensions. Under this homeomorphism
the Plancherel density is given by a continuous function. We call the relatively quasi-
compact subsets of Π(G) bounded. We note that µΓ(A) < ∞ for bounded sets A ⊂
Π(G) under the reduction-theoretic assumptions on (G,Γ) mentioned above (see [BG]). A
bounded subset A of Π(G)temp is called a Jordan measurable subset, if µpl(∂A) = 0, where
∂A = Ā − int(A) is the boundary of A in Π(G)temp. Furthermore, a Riemann integrable
function on Π(G)temp is a bounded, compactly supported function which is continuous
almost everywhere with respect to the Plancherel measure.

Let (µn)n∈N be a sequence of Borel measures on Π(G). We say that the sequence (µn)n∈N
has the limit multiplicity property (property (LM)), if the following two conditions are
satisfied.

1) For every Jordan measurable set A ⊂ Π(G)temp we have

µn(A) → µpl(A), as n → ∞.

2) For every bounded subset A ⊂ Π(G) \ Π(G)temp we have

µn(A) → 0, as n → ∞.

We note that condition 1) can be restated as
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1a) For every Riemann integrable function f on Π(G)temp one has

lim
n→∞

µn(f) = µpl(f).

Now let (Γn)n∈N be a sequence of lattices in G. The sequence (Γn)n∈N is said to have the
limit multiplicity property (LM), if the sequence of measures (µΓn)n∈N has property (LM).

The limit multiplicity problem can be formulated as follows: under which conditions does
the sequence of measures µΓn satisfy property (LM)?

The limit multiplicity problem has been studied to a great extent in the case of uniform
lattices. In this case, RΓ decomposes discretely. It started with the work of DeGeorge
and Wallach [DW1],[DW2], who considered towers of normal subgroups, i.e., descending
sequences of normal subgroups of finite index of a given uniform lattice with trivial in-
tersection. For such sequences they dealt with the case of discrete series representations
and the tempered spectrum, if the split rank of G is 1. Subsequently, Delorme [De] solved
the limit multiplicity problem affirmatively for normal towers of cocompact lattices. Re-
cently, there has been great progress in proving limit multiplicity for much more general
sequences of uniform lattices by Abert et al [AB1],[AB2]. In particular, families of non-
commensurable lattices were considered for the first time. The basic idea is the notion
of Benjamini-Schramm convergence (BS-convergence), which originally was introduced for
sequences of finite graphs of bounded degree and has been adopted by Abert et al to
sequences of Riemannian manifolds. For a Riemannian manifold M and R > 0 let

M<R = {x ∈ M : injradM(x) < R}.
Let (Γn) be a sequence of lattices in G. Then the orbifolds Mn = Γn\X are said to
BS-converge to X , if for every R > 0 one has

(4.1) lim
n→+∞

vol((Mn)<R)

vol(Mn)
= 0.

To find examples of sequences (Γn) which satisfy this condition, consider a cocompact
arithmetic lattice Γ0 ⊂ G. By [AB1, Theorem 5.2] there exist constants c, µ > 0 such that
for any congruence subgroup Γ ⊂ Γ0 and any R > 1 one has

(4.2) vol((Γ\X)<R) ≤ ecR vol(Γ\X)1−µ.

Thus any sequence (Γn) of congruences subgroups of Γ0 such that vol(Γn\G) → ∞ as
n → ∞ satisfies (4.1).

A family of lattices in G is called to be uniformly discrete, if there exists a neighborhood
of the identity in G that intersects trivially all of their conjugates. For torsion-free lattices
Γn this is equivalent to the condition that there is a uniform lower bound of the injectivity
radii of the manifolds Γn\X . In particular, any family of normal subgroups (Γn) of a fixed
uniform lattice Γ is uniformly discrete. Now the following theorem is one of the main
results of [AB1, Theorem 1.2].

Theorem 4.1 ([AB1]). Let (Γn) be a uniformly discrete sequence of lattices in G such that
the orbifolds Γn\X BS-converge to X. Then the sequence (Γn) has the (LM) property.
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It follows from the discussions above that any sequence of congruence subgroups (Γn) of
a given cocompact arithmetic lattice Γ0 of G satisfies the assumptions of the theorem.

A special case of the limit multiplicity property is the case of a singleton A = {π}. Let
Π(G)d ⊂ Π(G) be the discrete series and d(π) the formal degree of π ∈ Π(G)d. If (Γn) is
a sequence of lattices in G which satisfies the (LM) property, then it follows that

(4.3) lim
n→∞

mΓn(π)

vol(Γn\G)
=

{
d(π), π ∈ Π(G)d,

0, else.

It was first proved by DeGeorge and Wallach [DW1] that (4.3) holds for any tower of
normal subgroups of a given uniform lattice of G.

An important problem is to extend these results to the non-compact case. Then the
spectrum contains a continuous part and much less is known. The limit multiplicity prob-
lem has been solved for normal towers of arithmetic lattices and discrete series L-packets
of representations (with regular parameters) by Rohlfs and Speh [RoS]. Then Savin [Sav]
solved the limit multiplicity problem for the discrete series and normal towers of congruence
subgroups.

In [FLM2] we dealt with the general case. Let F be a number field and denote by OF

its ring of integers. For the non-compact lattice SL(n,OF ) ⊂ SL(n, F ⊗ R) we have the
following result.

Theorem 4.2. Let F be a number field. Then the collection of principal congruence
subgroups (ΓN) of SL(n,OF ) has the limit multiplicity property.

In [FL2], T. Finis and E. Lapid extended this result to the collection of all congruence
subgroups of SL(n,OF ), not containing non-trivial central elements. In [FLM2], we also
discussed the case of a general reductive group.

4.1. The density principle and the trace formula. A standard approach to the limit
multiplicity problem is to use integration against test functions on G and the trace formula.
Let K be a maximal compact subgroup of G. Denote by C∞

c,fin(G) the space of smooth,

compactly supported bi-K-finite functions on G. Given f ∈ C∞
c,fin(G), define f̂(π) for

π ∈ Π(G) by f̂(π) := trπ(f). The function π ∈ Π(G) 7→ f̂(π) on Π(G) is the “Fourier

transform” of f . Let µ be a Borel measure on Π(G). Then µ(f̂) is defined, but might be
divergent. Especially, we have

(4.4) µΓ(f̂) =
1

vol(Γ\G)
trRΓ,disc(f).

By [Mu2], RΓ,disc(f) is a trace class operator. Thus the right hand side is well defined.

Furthermore, by the Plancherel theorem we have µpl(f̂) = f(1). The density principle of
Sauvageot [Sau], which is a refinement of the work of Delorme, can be stated as follows.
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Theorem 4.3. Let (µn)n∈N be a sequence of Borel measures on Π(G) and assume that for
all f ∈ C∞

c,fin(G) we have

(4.5) µn(f̂) → µpl(f̂) = f(1), as n → ∞.

Then (µn)n∈N satisfies (LM).

Now let (Γn)n∈N be a sequence of lattices in G. Then by Theorem 4.3 it follows that
(Γn)n∈N satisfies (LM), if

(4.6) µΓn(f̂) → f(1), n → ∞,

for all f ∈ C∞
c,fin(G). A standard approach to verify (4.6) is to use the trace formula. In

the case of co-compact lattices this is rather simple. Let Γ be a cocompact lattice in G.
Then the Selberg trace formula is the following equality

vol(Γ\G)µΓ(f̂) = trRΓ(f) =
∑

{γ}∈C(Γ)

vol(Γγ\Gγ)

∫

Gγ\G

f(x−1γx) dx,

where C(Γ) denotes the Γ-conjugacy classes of Γ, and Gγ (resp. Γγ) denotes the centralizer
of γ in G (resp. Γ). Let Γ1 ⊂ Γ be a finite index subgroup. For γ ∈ Γ let

(4.7) cΓ1(γ) = |{δ ∈ Γ1\Γ: δγδ−1 ∈ Γ1}|.
In [Co], Corwin shows that the elements on the right hand side of the trace formula for Γ1

can be grouped together in a way to give

(4.8) µΓ1(f̂) =
1

vol(Γ\G)

∑

{γ}∈C(Γ)

vol(Γγ\Gγ)
cΓ1(γ)

[Γ : Γ1]

∫

Gγ\G

f(x−1γx) dx.

For a central element γ we obviously have cΓ1(γ) = [Γ: Γ1]. Assume that the center of Γ
is trivial. Let (Γn)n∈N be a sequence of finite index subgroups of Γ. Then we have

(4.9) µΓn(f̂) = f(1) +
1

vol(Γ\G)

∑

{γ}∈C(Γ)\{1}

vol(Γγ\Gγ)
cΓn(γ)

[Γ : Γn]

∫

Gγ\G

f(x−1γx) dx.

By dominated convergence, it follows that in order to establish (4.5) for the sequence
(Γn)n∈N, it suffices to show that for every γ ∈ Γ, γ 6= 1, we have

(4.10)
cΓn(γ)

[Γ : Γn]
→ 0, as n → ∞.

Now note that if Γ1 is a normal subgroup of Γ, then cΓ1(γ)/[Γ : Γ1] is the characteristic
function of Γ1. Thus for normal towers of finite index subgroups of Γ the condition (4.10)
holds trivially. This implies Delorme’s result.

If Γ is not co-compact, the Selberg trace formula is only available in the rank one case.
We have to switch to the adelic framework so that we can use the Arthur trace formula.

Thus let now G be an arbitrary reductive group defined over Q. Let A = R × Afin be
the locally compact adele ring of Q. For every place v of Q (i.e. v = ∞ or v = p a prime)
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let | · |v be the normalized absolute value of Q. As usual. G(R)1 denotes the intersection
of the kernels of the homomorphisms |χ| : G(R) → R+, where χ runs over the Q-rational
characters of G. Similarly we define the normal subgroup G(A)1 of G(A). Every π ∈
Π(G(A)1) can be written as π = π∞ ⊗ πfin, where π∞ ∈ Π(G(R)1) and πfin ∈ Π(G(Afin)).
Fix a Haar measure on G(A). For any open compact subgroup Kf of G(Afin), let µK = µG

K

be the measure on Π(G(R)1) defined by

µK =
1

vol(G(Q)\G(A)1/K)

∑

π∈Π(G(R)1)

HomG(R)1(π, L
2(G(Q)\G(A)1/K))δπ

=
vol(K)

vol(G(Q)\G(A)1)

∑

π∈Π(G(A)1)

dimHomG(A)1(π, L
2(G(Q)\G(A)1)) dim(πfin)

Kδπ∞
.

(4.11)

We say that a sequence (Kn)n∈N of open compact subgroups of G(Afin) has the limit
multiplicity property, if µKn → µpl, n → ∞, in the sense that

(1) For every Jordan measurable subset A ⊂ Π(G(R)1))temp we have µKn(A) → µpl(A)
as n → ∞, and

(2) For every bounded subset A ⊂ Π(G(R)1) \Π(G(R)1))temp, we have µKn(A) → 0 as
n → ∞.

Again we can rephrase the first condition by saying that for any Riemann integrable func-
tion f on Π(G(R)1)temp we have

(4.12) µKn(f) → µpl(f), as n → ∞.

Note that when G satisfies the strong approximation property (which is the case if G
is semisimple, simply connected, and without any Q-simple factor H for which H(R) is
compact) and K is an open compact subgroup of G(Afin), then we have

G(Q)\G(A)/K ∼= ΓK\G(R),

where ΓK = G(Q) ∩K is a lattice in the connected semisimple Lie group G(R).

Now for f ∈ C∞
c,fin(G(R)1) we have

(4.13) µK(f̂) =
1

vol(G(Q)\G(A)1)
trRdisc(f ⊗ 1K)

and

(4.14) µpl(f̂) = f(1).

Sauvageot’s density principle [Sau] can now be reformulated as follows.

Theorem 4.4. Let (Kn)n∈N be a sequence of open compact subgroups of G(Afin). Suppose
that for every f ∈ C∞

c,fin(G(R)1) we have

(4.15) µKn(f̂) → f(1), n → ∞.

Then (Kn)n∈N has the limit multiplicity property.



25

To try to verify (4.15), it is natural to use Arthur’s (non-invariant) trace formula, which
is an equality

Jspec(h) = Jgeo(h), h ∈ C∞
c (G(A)1),

of two distribution onG(A)1 [Ar1], [Ar2], [Ar3]. The distribution Jspec is expressed in terms
of spectral data and Jgeo in terms of geometric data. The main terms on the geometric
side are the elliptic orbital integrals. In particular, the contribution vol(G(Q)\G(A)1)h(1)
of the identity element occurs on the geometric side. The main term on the spectral side
is trRdisc(h). By (4.13) it follows that (4.15) can be broken down into the following two
statements. For every f ∈ C∞

c,fin(G(R)1) we have

(4.16) Jspec(f ⊗ 1Kn)− trRdisc(f ⊗ 1Kn) → 0, n → ∞,

and

(4.17) Jgeo(f ⊗ 1Kn) → vol(G(Q)\G(A)1)f(1), n → ∞.

We call (4.16) the spectral - and (4.17) the geometric limit property.

4.2. Bounds on co-rank one intertwining operators. In this section we formulate two
conditions on the behavior of the intertwining operators MQ|P which imply the spectral
limit property for a given G. They also imply Weyl’s law for the group G. We call these
properties (TWN) (tempered winding number) and (BD) (bounded degree). The first
property is global and second local. The first property is connected with analytic problems
in the theory of automorphic L-functions.

We will use the notation A ≪ B to mean that there exists a constant c (independent of
the parameters under consideration) such that A ≤ cB. If c depends on some parameters
(say F ) and not on others then we will write A ≪F B.

Fix a faithful Q-rational representation ρ : G → GL(V ) and an Z-lattice Λ in the

representation space V such that the stabilizer of Λ̂ = Ẑ ⊗ Λ ⊂ Afin ⊗ V in G(Afin) is
the group Kfin. (Since the maximal compact subgroups of GL(Afin ⊗ V ) are precisely the
stabilizers of lattices, it is easy to see that such a lattice exists.) For any N ∈ N let

(4.18) K(N) = {g ∈ G(Afin) : ρ(g)v ≡ v (mod NΛ̂), v ∈ Λ̂}
be the principal congruence subgroup of level N , an open normal subgroup of Kfin. The
groups K(N) form a neighborhood base of the identity element in G(Afin). For an open
subgroup K of Kfin let the level of K be the smallest integer N such that K(N) ⊂ K.
Analogously, define level(Kv) for open subgroups Kv ⊂ Kv.

As in [Mu6], for any π ∈ Π(M(R)) we define Λπ =
√

λ2
π + λ2

τ , where τ is a lowest K∞-

type of Ind
G(R)
P(R) (π∞) and λπ and λτ are the Casimir eigenvalues of π and τ , respectively.

Note that this is well-defined, because λτ is independent of τ . Roughly speaking, Λπ

measures the size of π. For M ∈ L, α ∈ ΣM and π ∈ Πdisc(M(A)) let nα(π, s) be the
global normalizing factor defined by (2.1).
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Definition 1. We say that the group G satisfies the property (TWN) (tempered winding
number) if for any M ∈ L, M 6= G, and any finite subset F ⊂ Π(KM,∞) there exists an
integer k > 1 such that for any α ∈ ΣM and any ǫ > 0 we have

(4.19)

∫

iR

∣∣∣∣
n′
α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−k ds ≪F ,ǫ (1 + Λπ∞
)k level(KM)ǫ

for all open compact subgroups KM of KM,fin and π ∈ Πdisc(M(A))F ,KM .

Since the normalizing factors nα(π, s) arise from co-rank one situations, the property
(TWN) is hereditary for Levi subgroups.

Remark 4.5. If we fix an open compact subgroup KM , then the corresponding bound
∫

iR

∣∣∣∣
n′
α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−k ds ≪KM
(1 + Λπ∞

)k

is the content of [Mu6, Theorem 5.3]. So, the point of (TWN) lies in the dependence of
the bound on KM .

Remark 4.6. In fact, we expect that

(4.20)

∫ T+1

T

∣∣∣∣
n′
α(π, it)

nα(π, it)

∣∣∣∣ dt ≪ 1 + log(1 + T ) + log(1 + Λπ∞
) + log level(KM)

for all T ∈ R and π ∈ Πdisc(M(A))KM . This would give the following strengthening of
(TWN): ∫

iR

∣∣∣∣
n′
α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−2 ds ≪ 1 + log(1 + Λπ∞
) + log level(KM)

for any π ∈ Πdisc(M(A))KM .

Remark 4.7. If G′ is simply connected, then by [Lub, Lemma 1.6] (cf. also [FLM2, Propo-
sition 1]) we can replace level(KM) by vol(KM)−1 in the definition of (TWN) (as well as
in (4.20)).

For GL(n) the the normalizing factors are expressed in terms of Rankin-Selberg L func-
tions (see (2.3)). The known properties of Rankin-Selberg L-functions lead to the esti-
mation (3.23), which implies the desired estimation. By [FLM2, Lemma 5.4], the case of
SL(n) can be reduced to GL(n). In this way we get

Theorem 4.8. The estimate (4.20) holds for G = GL(n) or SL(n) with an implied constant
depending only on n. In particular, the groups GL(n) and SL(n) satisfy the property
(TWN).

(see [FLM2]).
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Remark 4.9. For general groups G the normalizing factors are given, at least up to local
factors, by quotients of automorphic L-functions associated to the irreducible constituents
of the adjoint action of the L-group LM of M on the unipotent radical of the corresponding
parabolic subgroup of LG [La]. To argue as above, we would need to know that these L-
functions have finitely many poles and satisfy a functional equation with the associated
conductor bounded by an arbitrary power of level(KM) for automorphic representations
π ∈ Πdisc(M(A))KM . Unfortunately, finiteness of poles and the expected functional equation
are not known in general. It is possible that for classical groups these properties are within
reach.

Now we come to the second condition, which is a condition on the local intertwining
operators. Recall that for a finite prime p, the matrix coefficients of the local normalized
intertwining operators RQ|P (πp, s)

Kp are rational functions of ps. Moreover, their denomi-
nators can be controlled in terms of πp, and the degrees of these denominators are bounded
in terms of G only. For any Levi subgroup M ∈ L let GM be the closed subgroup of G
generated by the unipotent radicals UP , P ∈ P(M). It is a connected semisimple normal
subgroup of G

Definition 2. We say that G satisfies (BD) (bounded degree) if there exists a constant
c (depending only on G and ρ), such that for any M ∈ L, M 6= G, and adjacent par-
abolic groups P,Q ∈ P(M), any prime p, any open subgroup Kp ⊂ Kp and any smooth
irreducible representation πp of M(Qp), the degrees of the numerators of the linear op-

erators RQ|P (πp, s)
Kp are bounded by c logp level

GM (KP ) if Kp is hyperspecial, and by

c(1 + logp level
GM(Kp)), otherwise.

Property (BD) has been studied in [FLM3]. By [FLM3, Theorem 1, Proposition 6] we
have the following theorem.

Theorem 4.10. The groups GL(n) and SL(n) satisfy (BD).

The property (BD) has the following consequence.

Proposition 4.11. Suppose that G satisfies (BD). Let M ∈ L and let P,Q ∈ P(M)
be adjacent parabolic subgroups. Then for all π ∈ Πdisc(M(A)), for all open subgroups
K ⊂ Kfin and all τ ∈ Π(K∞) we have

∫

iR

∥∥∥∥RQ|P (π, s)
−1 d

ds
RQ|P (π, s)

∣∣∣
IGP (π)τ,K

∥∥∥∥(1 + |s|2)−1 ds

≪ 1 + log(‖τ‖+ level(K;G+
M
)).

(4.21)

The proof of the proposition follows from a generalization of Bernstein’s inequality [BE].
Suppose that G satisfies (TWN) and (BD). Combining (4.19) and (4.21) we get an appro-
priate estimate for the corresponding integral involving the logarithmic derivative of the
intertwining operators.
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4.3. Application to the limit multiplicity problem. The limit multiplicity property
is a consequence of properties (TWN) and (BD). The proof proceeds by induction over the
Levi subgroups of G. The property that is suitable for the induction procedure is not the
spectral limit property, but a property that we call polynomial boundedness (PB). This is
a weaker version of the statement of Conjecture 2.

We write D for the set of all conjugacy classes of pairs (M, δ) consisting of a Levi subgroup
M of G(R)1 and a discrete series representation δ of M1, where M = AM ×M1 and AM

is the largest central subgroup of M isomorphic to a power of R>0. For any δ ∈ D let
Π(G(R)1)δ be the set of all irreducible unitary representations which arise by the Langlands
quotient construction from the irreducible constituents of ILM(δ) for Levi subgroups L ⊃ M .
Here, ILM denotes (unitary) induction from an arbitrary parabolic subgroup of L with Levi
subgroup M to L.

Definition 3. Let M be a set of Borel measures on Π(G(R)1). We call M polynomially
bounded (PB), if for all δ ∈ D there exist Nδ > 0 such that

µ
(
{π ∈ Π(G(R)1)δ : |λπ| ≤ R}

)
≪δ (1 +R)Nδ

for all µ ∈ M and R > 0.

Now consider the measures µK defined by (4.11). Let M ∈ L and denote by KM(N)
the congruence subgroups of M(Afin), defined by (4.18). The key result is the following
lemma.

Lemma 4.12. Suppose that G satisfies (TWN) and (BD). Then for each M ∈ L, the
collection of measures {µM

KM(N)}, N ∈ N, is polynomially bounded.

This has the consequence that if G satisfies (TWN) and (BT), then for every M 6= G

and f ∈ C∞
c,fin(G(R)1) we have

Jspec,M(f ⊗ 1K(N)) → 0

as N → ∞. Thus by Theorem 1 it follows that if G satisfies (TWN) and (BT), then for
every f ∈ C∞

c,fin(G(R)1) we have

Jspec(f ⊗ 1K(N))− trRdisc(f ⊗ 1K(N)) → 0

for n → ∞. Thus the spectral limit property is satisfied in this case. By Theorems 4.8 and
4.10, the groups GL(n) and SL(n) satisfy (TWN) and (BD) and therefore, the spectral
limit property holds for GL(n) and SL(n).

To deal with the geometric limit property we use the coarse geometric expansion

(4.22) JT (h) =
∑

o∈O

JT
o (h), h ∈ C∞

c (G(A)1),

(see (2.4) for the notation). Write Jo(f) = JT0
o (f), which depends only on M0 and K.

Let JT
unip be the contribution of the unipotent elements of G(Q) to the trace formula (2.4),

which is a polynomial in T ∈ aM0 of degree at most d0 = dim aGM0
[Ar7]. It can be split
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into the contributions of the finitely many G(Q̄)-conjugacy classes of unipotent elements
of G(Q). It is well known ([ibid., Corollary 4.4]) that the contribution of the unit element
is simply the constant polynomial vol(G(Q)\G(A)1)h(1). Write

JT
unip−{1}(h) = JT

unip(h)− vol(G(Q)\G(A)1)h(1), h ∈ C∞
c (G(A)1).

The distribution Junip is defined as JT0
unip for a certain vector T0 ∈ aM0 depending only on

G, and analogously for Junip−{1}. Since the groups K(N) form a neighborhood base of the
identity element in G(Afin), it is easy to see that for a given h ∈ C∞

c (G(A)1), for all but
finitely many N one has

(4.23) J(h⊗ 1K(N)) = Junip(h⊗ 1K(N)).

For any compact subset Ω ⊂ G(R)1 we write C∞
Ω (G(R)1) for the Fréchet space of all

smooth functions on G(R)1 supported in Ω equipped with the seminorms supx∈Ω|(Xh)(x)|,
where X ranges over the left-invariant differential operators on G(R). The key result is
the following proposition.

Proposition 4.13. For any compact subset Ω ⊂ G(R)1 there exists a seminorm || · || on
C∞

Ω (G(R)1) such that

|Junip−{1}(hS ⊗ 1K(N))| ≤
(1 + log(N))

N
‖h‖

for all h ∈ C∞
Ω (G(R)1) and all N ∈ N.

The proof of Proposition 4.13 consists of a slight extension of Arthur’s arguments in
[Ar7]. Combining (4.23) and Proposition 4.13 the geometric limit property follows. This
completes the proof of Theorem 4.2 for F = Q. The case of a general F is proved similarly.
For details see [FLM2].

5. Analytic torsion and torsion in the cohomology of arithmetic groups

The theorem of DeGeorge and Wallach on limit multiplicities for discrete series [DW1]
implies the statement (1.4) on the approximation of L2-Betti numbers by normalized Betti
numbers of finite covers [AB2]. For towers of normal subgroups of finite index, Lück
[Lu1] proved this in the more general context of finite CW complexes. This is part of his
study of the approximation of L2-invariants by their classical counterparts [Lu2]. A more
sophisticated spectral invariant is the analytic torsion introduced by Ray and Singer [RS].
The study of the corresponding approximation problem has interesting applications to the
torsion in the cohomology of arithmetic groups.
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5.1. Analytic torsion and L2-torsion. Let X be a compact Riemannian manifold of
dimension n and let ρ : π1(X) → GL(V ) a finite dimensional representation of its funda-
mental group. Let Eρ → X be the flat vector bundle associated with ρ. Choose a Hermitian
fiber metric in Eρ. Let ∆p(ρ) be the Laplace operator on Eρ-valued p-forms with respect
to the metrics on X and in Eρ. It is an elliptic differential operator, which is formally
self-adjoint and non-negative. Since X is compact, ∆p(ρ) has a pure discrete spectrum
consisting of sequence of eigenvalues 0 ≤ λ0 ≤ λ1 ≤ · · · → ∞ of finite multiplicity. Let

(5.1) ζp(s; ρ) :=
∑

λj>0

λ−s
j

be the zeta function of ∆p(ρ). The series converges absolutely and uniformly on compact
subsets of the half-plane Re(s) > n/2 and admits a meromorphic extension to s ∈ C, which
is holomorphic at s = 0. Then the Ray-Singer analytic torsion TX(ρ) ∈ R+ is defined by

(5.2) TX(ρ) := exp

(
1

2

n∑

p=1

(−1)pp
d

ds
ζp(s; ρ)

∣∣
s=0

)
.

It depends on the metrics on X and Eρ. However, if dim(X) is odd and ρ acyclic, which
means that H∗(X,Eρ) = 0, then TX(ρ) is independent of the metrics [Mu3]. The analytic
torsion has a topological counterpart. This is the Reidemeister torsion T top

X (ρ) (usually
it is denoted by τX(ρ)), which is defined in terms of a smooth triangulation of X [RS],
[Mu1]. It is known that for unimodular representations ρ (meaning that | det ρ(γ)| = 1 for
all γ ∈ π1(X)) one has the equality

(5.3) TX(ρ) = T top

X (ρ)

[Ch], [Mu1]. The in general case of a non-unimodular representation the equality does not
hold, but the defect can be described [BMZ].

Let Xi → X , i ∈ N, be sequence of finite coverings of X . Let inf(Xj) denote the
injectivity radius of Xj and assume that inj(Xj) → ∞ as j → ∞. Then the question is:
Does

(5.4)
log TXj

(ρ)

vol(Xj)

converge as j → ∞ and if so, what is the limit? For a tower of normal coverings and the
trivial representation ρ0 a conjecture of Lück [Lu2, Conjecture 7.4] states that the sequence
(5.4) converges and the limit is the L2-torsion, first introduced by Lott [Lo] and Mathei
[MV]. The L2-torsion is defined as follows. Recall that the zeta function ζp(s) can be
expressed in terms of the heat operator

ζp(s) =
1

Γ(s)

∫ ∞

0

(Tr
(
e−t∆p

)
− bp)t

s−1 dt,

where bp is the p-th Betti number and Re(s) > n/2. Let e−t∆̃p be the heat operator of the

Laplace operator ∆̃p on p-forms on the universal covering X̃ of X . Let K̃p(t, x, y) be the
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kernel of e−t∆̃p . Note that K̃p(t, x, y) is a homomorphism of ΛpT ⋆
y (X) to ΛpT ⋆

x (X). Let

F ⊂ X̃ be a fundamental domain for the action of Γ := π1(X) on X̃ . Then the Γ-trace of

e−t∆̃p(ρ) is defined as

(5.5) TrΓ

(
e−t∆̃p

)
:=

∫

F

tr K̃p(t, x, x) dx.

The L2-Betti number b
(2)
p is defined as

b(2)p := lim
t→∞

TrΓ

(
e−t∆̃p

)
.

In order to be able to define the Mellin transform of the Γ-trace one needs to know the
asymptotic behavior of TrΓ(e

−t∆̃p) as t → 0 and t → ∞. Using a parametrix for the
heat kernel which is pulled back from a parametrix on X , one can show that for t → 0,

TrΓ(e
−t∆̃p) has an asymptotic expansion similar to the compact case [Lo]. For the large

time behavior we need to introduce the Novikov-Shubin invariants

(5.6) α̃p = sup
{
βp ∈ [0,∞) : TrΓ

(
e−t∆̃p

)
− b(2)p = O(t−βp/2) as t → ∞

}

Assume that α̃p > 0 for all p = 1, . . . , n. Then the L2- torsion T
(2)
X ∈ R+ can be defined by

log T
(2)
X =

1

2

n∑

p=1

(−1)pp

[
d

ds

(
1

Γ(s)

∫ 1

0

TrΓ

(
e−t∆̃′

p

)
ts−1 dt

)∣∣∣∣
s=0

+

∫ ∞

1

t−1TrΓ

(
e−t∆̃′

p

)
dt

]
,

(5.7)

where ∆̃′
p denotes the restriction of ∆̃p to the orthogonal complement of ker ∆̃p and the first

integral is defined near s = 0 by analytic continuation. This definition can be generalized to
all finite dimensional representations ρ of Γ, if the corresponding Novikov-Shubin invariants

are all positive. Then the L2-torsion T
(2)
X (ρ) is defined as in (5.7). If there exists c > 0

such that the spectrum of ∆p(ρ) is bounded from below by c, then the integral
∫ ∞

0

TrΓ

(
e−t∆̃p(ρ)

)
ts−1 dt

converges for Re(s) > n/2 and admits a meromorphic continuation to C which is holo-
morphic at s = 0. Thus, if there is a positive lower bound of the spectrum of all ∆p(ρ),

p = 1, . . . , n, then T
(2)
X (ρ) can be defined in the usual way by

log T
(2)
X (ρ) =

1

2

n∑

p=1

(−1)pp
d

ds

(
1

Γ(s)

∫ ∞

0

TrΓ

(
e−t∆̃p(ρ)

)
ts−1 dt

) ∣∣∣∣
s=0

.

Let Γ = π1(X, x0) and let (Γi)i∈N0 be a tower of normal subgroups of finite index of Γ = Γ0.

Let Xi = Γi\X̃ , i ∈ N0, be the corresponding covering of X . Let TX and T
(2)
X denote the

analytic torsion and L2-torsion with respect to the trivial representation. W. Lück [Lu2,
Conjecture 7.4] has made the following conjecture.
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Conjecture 3. For every closed Riemannian manifold X the L2-torsion T
(2)
X exists and

for a sequence of coverings (Xi → X)i∈N as above one has

lim
i→∞

log TXi

[Γ : Γi]
= log T

(2)
X .

One is tempted to make this conjecture for any finite dimensional representation ρ.

5.2. Compact locally symmetric spaces. Now we turn to the locally symmetric case.

LetX = Γ\X̃ , where X̃ = G/K is a Riemannian symmetric space of non-positive curvature
and Γ ⊂ G is a discrete, torsion free, cocompact subgroup. Let τ be an irreducible finite
dimensional complex representation ofG. Let Eτ → X be the flat vector bundle associated
to the representation τ |Γ of Γ. By [MM], Eτ can be equipped with a canonical Hermitian
fiber metric, called admissible, which is unique up to scaling. Let ∆p(τ) be the Laplace
operator on p-forms with values in Eτ , with respect to the choice of any admissible fiber

metric in Eτ . Let TX(τ) be the corresponding analytic torsion. Let ∆̃p(τ) be the Laplace

operator on Ẽτ -valued p-forms on X̃ . Let Ẽτ → X̃ be the homogeneous vector bundle
defined by τ |K . By [MM] there is a canonical isomorphism

Eτ
∼= Γ\Ẽτ

and the metric on Eτ is induced by the homogeneous metric on Ẽτ . Thus

(5.8) C∞(X̃, Ẽτ ) ∼= (C∞(G)⊗ Vτ )
K .

Let R be the right regular representation of G in C∞(G) and let let R(Ω) be the operator
in (C∞(G)⊗Vτ )

K induced by the Casimir element. Then with respect to the isomorphism
(5.8) we have

∆̃p(τ) = −R(Ω) + λτ Id

(see [MM]). This implies that the heat operator e−t∆̃p(τ) is a convolution operator given
by a kernel

Hp,τ
t : G → End(Λpp⋆ ⊗ Vτ ).

Let hp,τ
t ∈ C∞(G) be defined by hp,τ

t (g) = trHp,τ
t (g), g ∈ G. Then it follows from (5.5)

that

(5.9) TrΓ

(
e−t∆̃p(τ)

)
= vol(X)hp,τ

t (1).

Now one can use the Plancherel theorem to compute hp,τ
t (1) and determine its asymptotic

bahavior as t → 0 and t → ∞. For the trivial representation this was carried out in

[Ol] and for strongly acyclic τ in [BV]. So let ∆̃p(τ)
′ be the restriction of ∆̃p(τ) to the

orthogonal complement of the kernel of ∆̃p(τ). Now let

(5.10) α̃p(X, τ) := sup
{
βp ∈ [0,∞) : TrΓ

(
e−t∆̃p(τ)′

)
= O(t−βp/2) as t → ∞

}
,

p = 0, . . . , n, be the twisted Novikov-Shubin invariants. Assume that α̃p(X, τ) > 0, p =

0, . . . , n. Then the L2-torsion T
(2)
X (τ) is defined. By [Ol, Theorem 1.1] this is the case for
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the trivial representation. Furthermore, if τ is strongly acyclic, then α̃p(X, τ) = ∞ for all
p. Using the definition of the L2-torsion, it follows that

(5.11) log T
(2)
X (τ) = vol(X)t

(2)

X̃
(τ),

where t
(2)

X̃
(τ) is a constant that depends only on X̃ and τ .

Now let (Γj) be sequence of torsion free cocompact lattices in G. Let Xj = Γj\X̃ and
assume that inj(Xj) → ∞ if j → ∞. A representation τ : G → GL(V ) is called strongly
acyclic, if there is c > 0 such that the spectrum of ∆Xj ,p(τ) is contained in [c,∞) for all
j ∈ N and p = 0, . . . , n.

Now let G be a connected semisimple algebraic Q-group. Let G = G(R). Then it is
proved in [BV] that strongly acylic representations exist. For such representations Bergeron
and Venkatesh [BV, Theorem 4.5] established the following theorem.

Theorem 5.1. Let τ : G → GL(V ) be strongly acyclic. Then

(5.12) lim
j→∞

log(TXj
(τ))

vol(Xj)
= t

(2)
X (τ),

where Xj = Γj\X̃ and inj(Xj) → ∞ as j → ∞.

The number t
(2)
X (τ) can be computed using the Plancherel theorem. Let δ(G) = rank(G)−

rank(K) be the fundamental rank or “deficiency” of G. By [BV, Proposition 5.2] one has

Proposition 5.2. If δ(G) 6= 1, then t
(2)
X (τ) = 0. For δ(G) = 1 one has

(−1)
dim X̃−1

2 t
(2)
X (τ) > 0.

We note that the simple Lie groups G with δ(G) = 1 are SL3(R) and SO(p, q) with pq
odd, especially G = SO0(2m+ 1, 1) is a group with fundamental rank 1.

Next we briefly recall the main steps of the proof of Theorem 5.1. To indicate the
dependence of the heat operator and other quantities on the covering Xj, we use the
subscript Xj . The uniform spectral gap at 0 implies that there exist constants C, c > 0
such that for all p = 0, . . . , n, j ∈ N and t ≥ 1 one has

(5.13) Tr
(
e−t∆Xj,p

(τ)
)
≤ Ce−tc vol(Xj)

(see [BV]). This is the key result that makes the method to work. Let

(5.14) KXj
(t, τ) :=

1

2

n∑

p=1

(−1)ppTr
(
e−t∆Xj,p

(τ)
)
.

Using (5.13) it follows that the analytic torsion can be defined by

(5.15) log TXj
(τ) =

d

ds

(
1

Γ(s)

∫ ∞

0

KXj
(t, τ)ts−1 dt

) ∣∣∣∣
s=0

.
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Let T > 0. Then we can split the integral and rewrite the right hand side as

log TXj
(τ) =

d

ds

(
1

Γ(s)

∫ T

0

KXj
(t, τ)ts−1 dt

) ∣∣∣∣
s=0

+

∫ ∞

T

KXj
(t, τ)t−1 dt.

By (5.13) there exist C, c > 0 such that

(5.16)
1

vol(Xj)

∣∣∣∣
∫ ∞

T

KXj
(t, τ)t−1 dt

∣∣∣∣ ≤ Ce−cT

for all j ∈ N0 and T > 1. To deal with the first term one can use the Selberg trace formula.
Put

kτ
t :=

1

2

n∑

p=1

(−1)pphp,τ
t .

Then the Selberg trace formula gives

KXj
(t, τ) = vol(Xj)k

τ
t (1) +HXj

(kτ
t ),

where HXj
(kτ

t ) is the contribution of the hyperbolic conjugacy classes. Using (5.9) and the
definition of kτ

t , it follows that

d

ds

(
1

Γ(s)

∫ T

0

kτ
t (1)t

s−1 dt

) ∣∣∣∣
s=0

= t
(2)

X̃
(τ) +O

(
e−cT

)

as T → ∞. Regrouping the terms of the hyperbolic contribution HXj
(kτ

t ) as in (4.9) it
follows that the corresponding integral divided by vol(Xj) converges to 0 as j → ∞. This
proves the theorem.

One expects Theorem 5.1 to be true in general. However, if there is no spectral gap at
zero, one cannot argue as above. The key problem is to control the small eigenvalues as
j → ∞. Sufficient conditions on the behavior of the small eigenvalues are discussed in
[Lu2] and in the 3-dimensional case also in [BSV].

In view of the potential applications to the cohomology of arithmetic groups, discussed
in the next section, it is very desirable to extend Theorem 5.1 to the non-compact case.
The first problem one faces is that the corresponding Laplace operators have a nonempty
continuous spectrum and therefore, the heat operators are not trace class and the analytic
torsion can not be defined as above. This problem has been studied by Raimbault [Ra1]
for hyperbolic 3-manifolds and in [MP2] for hyperbolic manifolds of any dimension.

So let G = SO0(n, 1), K = SO(n) and X̃ = G/K. Equipped with a suitably normalized

G-invariant metric, X̃ becomes isometric to the n-dimensional hyperbolic space Hn. Let

Γ ⊂ G be a torsion free lattice. Then X = Γ\X̃ is an oriented n-dimensional hyperbolic
manifold of finite volume. As above, let τ : G → GL(V ) be a finite dimensional complex
representation of G. The first step is to define a regularized trace of the heat operators
e−t∆p(τ). To this end one uses an appropriate height function to truncate X at sufficient
high level Y > Y0 to get a compact manifold X(Y ) ⊂ X with boundary ∂X(Y ), which
consists of a disjoint union of n− 1-dimensional tori. Let Kp,τ(t, x, y) be the kernel of the
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heat operator e−t∆p(τ). Using the spectral resolution of ∆p(τ), it follows that there exist
α(t) ∈ R such that

∫
X(Y )

trKp,τ(t, x, x) dx − α(t) log Y has a limit as Y → ∞. Then we

define the regularized trace as

(5.17) Trreg
(
e−t∆p(τ)

)
:= lim

Y→∞

(∫

X(Y )

trKp,τ (t, x, x) dx− α(t) log Y

)
.

We note that the regularized trace is not uniquely defined. It depends on the choice
of truncation parameters on the manifold X . However, if X0 = Γ0\Hn is given and if
truncation parameters on X0 are fixed, then every finite covering X of X0 is canonically
equipped with truncation parameters, namely one simply pulls back the height function
on X0 to a height function on X via the covering map.

Let θ be the Cartan involution of G with respect to K = SO(n). Let τθ = τ ◦θ. If τ 6∼= τθ,
it can be shown that Trreg

(
e−t∆p(τ)

)
is exponentially decreasing as t → ∞ and admits

an asymptotic expansion as t → 0. Therefore, the regularized zeta function ζreg,p(s; τ) of
∆p(τ) can be defined as in the compact case by

(5.18) ζreg,p(s; τ) :=
1

Γ(s)

∫ ∞

0

Trreg
(
e−t∆p(τ)

)
ts−1 dt.

The integral converges absolutely and uniformly on compact subsets of the half-plane
Re(s) > n/2 and admits a meromorphic extension to the whole complex plane, which
is holomorphic at s = 0. So in analogy with the compact case, the regularized analytic
torsion TX(τ) ∈ R+ can be defined by the same formula (5.2).

In even dimension the analytic torsion is rather trivial. Therefore, we assume that n =
2m + 1. Furthermore, for technical reasons we assume that every lattice Γ ⊂ G satisfies
the following condition: For every Γ-cuspidal parabolic subgroup P of G one has

(5.19) Γ ∩ P = Γ ∩NP ,

where NP denotes the unipotent radical of P . Let Γ0 be a fixed lattice in G and let

X0 = Γ0\X̃ . Let Γj , j ∈ N, be a sequence of finite index torsion free subgroups of Γ0. This
sequence is called to be cusp uniform, if the tori which arise as cross sections of the cusps

of the manifolds XJ := Γj\X̃ satisfy some uniformity condition (see [MP2, Definition 8.2]).

The following theorem and its corollaries are established in [MP2]. One of the main
results of [MP2] is the following theorem which may be regarded as an analog of Theorem
5.1 for oriented finite volume hyperbolic manifolds.

Theorem 5.3. Let Γ0 be a lattice in G and let Γi, i ∈ N, be a sequence of finite-index
normal subgroups which is cusp uniform and such that each Γi, i ≥ 1, is torsion-free and
satisfies (5.19). If limi→∞[Γ0 : Γi] = ∞ and if each γ0 ∈ Γ0 − {1} only belongs to finitely
many Γi, then for each τ with τ 6= τθ one has

lim
i→∞

log TXi
(τ)

[Γ : Γi]
= t

(2)
Hn(τ) vol(X0).(5.20)
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In particular, if under the same assumptions Γi is a tower of normal subgroups, i.e. Γi+1 ⊂
Γi for each i and ∩iΓi = {1}, then (5.20) holds.

For hyperbolic 3-manifolds, Theorem 5.3 was proved by J. Raimbault [Ra1] under addi-
tional assumptions on the intertwining operators. We emphasize that the above theorem
holds without any additional assumptions.

Now we specialize to arithmetic groups. First consider Γ0 := SO0(n, 1)(Z). Then Γ0 is a
lattice in SO0(n, 1). For q ∈ N let Γ(q) be the principal congruence subgroup of Γ0 of level
q. Using a result of Deitmar and Hoffmann [DH], it follows that the family of principal
congruence subgroups Γ(q) is cusp uniform [MP2, Lemma 10.1]. Thus Theorem 5.3 implies
the following corollary (see [MP2, Corollary 1.3]).

Corollary 5.4. For any finite dimensional irreducible representation τ of SO0(n, 1) with
τ 6∼= τθ the principal congruence subgroups Γ(q), q ≥ 3, of Γ0 := SO0(n, 1)(Z) satisfy

lim
q→∞

log TXq(τ)

[Γ : Γ(q)]
= t

(2)
Hn(τ) vol(X0),

where Xq := Γ(q)\Hn and X0 := Γ0\Hn.

We recall that by Proposition 5.2 we have (−1)
n−1
2 t

(2)
Hn(τ) > 0.

Next we consider the 3-dimensional case. We note that every lattice Γ ⊂ SO0(3, 1) can
be lifted to a lattice Γ′ ⊂ Spin(3, 1). Moreover, recall that there is a natural isomorphism
Spin(3, 1) ∼= SL2(C). If ρ is the standard representation of SL2(C) on C2, then the finite
dimensional irreducible representations of SL2(C) are given by Symp ρ ⊗ Symq ρ̄, p, q ∈
N, where Symk denotes the k-th symmetric power and ρ̄ denotes the complex conjugate
representation to ρ. One has (Symp ρ ⊗ Symq ρ̄)θ = Symq ρ ⊗ Symp ρ̄. For D ∈ N square
free let OD be the ring of integers of the imaginary quadratic field Q(

√
−D) and let

Γ(D) := SL2(OD). Then Γ(D) is a lattice in SL2(C). If a is a non-zero ideal in OD, let
Γ(a) be the associated principal congruence subgroup of level a. Then Theorem 5.1 implies
the following corollary (see [MP2, Corollary 1.4].

Corollary 5.5. Let D ∈ N be square free. Let ai be a sequence of non-zero ideals in OD

such that each N(ai) is sufficiently large and such that limi→∞N(ai) = ∞. Put XD :=
Γ(D)\H3 and Xi := Γ(ai)\H3. Let τ = Symp ρ⊗ Symq ρ̄ with p 6= q. Then one has

lim
i→∞

log TXi
(τ)

[Γ(D) : Γ(ai)]
= t

(2)

H3 (τ) vol(XD).

5.3. Applications to the cohomology of arithmetic groups - the cocompact case.

Theorem 5.1 has interesting consequences for the cohomology of arithmetic groups. Let
Γ ⊂ G be a discrete, torsion free, cocompact subgroup. Let τ : G → GL(V ) be a finite
dimensional real representation and let E → X be the associated vector bundle. Choose
a fiber metric h in E. Assume that there exist a Γ-invariant lattice M ⊂ V . Let M be
the associated local system of free Z-modules over X . Then we have E = M ⊗ R. Let
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H⋆(X,M) be the cohomology of X with coefficients in M. Each Hq(X,M) is a finitely
generated Z-module. Let Hq(X,M)tors be the torsion subgroup and

Hq(X ;M)free = Hq(X,M)/Hq(X,M)tors.

We identify Hq(X,M)free with a subgroup of Hq(X,E). Let 〈·, ·〉q be the inner product in
Hq(X,E) induced by the L2-metric on Hq(X,E). Let e1, ..., erq be a basis of Hq(X,M)free
and let Gq be the Gram matrix with entries 〈ek, el〉. Put

Rq(τ, h) =
√
| detGq|, q = 0, ..., n.

Define the “regulator” R(τ, h) by

(5.21) R(τ, h) =

n∏

q=0

Rq(τ, h)
(−1)q .

Recall that the Reidemeister torsion T top

X (τ, h) depends on the metric h through the choice
of an orthonormal basis in the cohomologyH⋆(X,E), where the inner product inH⋆(X,Eτ )
is defined as above. The key result relating Reidemeister torsion and cohomology is the
following proposition.

Proposition 5.6. Let τ be a unimodular representation of Γ on a finite-dimensional R-
vector space V . Let M ⊂ V be a Γ-invariant lattice and let M be the associated local
system of finitely generated free Z-modules on X. Let h be a fiber metric in the flat vector
bundle E = M⊗ R. Then we have

(5.22) T top

X (τ, h) = R(τ, h) ·
n∏

q=0

|Hq(X,M)tors|(−1)q+1

.

Especially, if τ |Γ is acyclic, i.e., if H⋆(X,E) = 0, then T top

X (τ, h) is independent of h and
we denote it by T top

X (τ). Moreover, R(τ, h) = 1. Then H⋆(X,M) is a torsion group and
one has

T top

X (τ) =

n∏

q=0

|Hq(X,M)|(−1)q+1

.

Representations τ of G which admit a Γ-invariant lattice arise in the following arithmetic
situation. Let G be a semisimple algebraic group defined over Q and let G = G(R). Let
Γ ⊂ G(Q) be an arithmetic subgroup. Let V0 be a Q-vector space and let ρ : G → GL(V0)
be a rational representation. Then there exists a lattice M ⊂ V0 which is invariant under Γ
and V0 = M ⊗ZQ. Let V = V0⊗QR and let τ : G → GL(V ) be the representation induced
by ρ. Then M ⊂ V is a Γ-invariant lattice.

Assume that Γ ⊂ G(Q) is cocompact in G (equivalently assume that G is anisotropic).
Then it is proved in [BV] that strongly acyclic arithmetic Γ-modules M exist. Assume
that δ(G) = 1. Let M be a strongly acyclic arithmetic Γ-module. Then by (5.3), Theorem
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5.1 and Proposition 5.2 it follows that there exists a constant C > 0, which depends on G
and M , such that

(5.23) lim
j→∞

n∑

k=0

(−1)k+
dim(X̃)−1

2
log |Hk(Xj ,M)|

[Γ : Γj ]
= C vol(Γ\X̃)

(see [BV, (1.4.2)]). This implies the following theorem of Bergeron and Venkatesh. [BV,
Theorem 1.4].

Theorem 5.7. Suppose that δ(X̃) = 1. Then strongly acyclic arithmetic Γ-modules exist.
For any such

lim inf
j

∑

k≡a (mod 2)

log |Hk(Xj,M)|
[Γ : Γj]

≥ C vol(Γ\X̃)

where a = (dim(X̃)− 1)/2 and C > 0 depends only on G and M .

In Theorem 5.7, one cannot in general isolate the degree which produces torsion. A
conjecture of Bergeron and Venkatesh [BV, Conjecture 1.3] claims the following.

Conjecture 4. The limit

lim
j→∞

log |Hk(Xj,M)tors|
[Γ : Γj]

exists for each k and is zero unless δ(G) = 1 and k = dim(X̃)−1
2

. In that case, it is always
positive and equal to a positive constant CG,M , which can be explicitly described, times

vol(Γ\X̃).

An example, for which this conjecture can be verified is G = SL(2,C).

If the representation τ of G is not acyclic, various difficulties occur. First of all, the
spectrum of the Laplace operators has no positive lower bound which causes the problem
with the small eigenvalues discussed above in the context of analytic torsion. Secondly the
regulator R(τ, h) is in general nontrivial. It turns out to be rather difficult to control the
growth of the regulator. Of particular interest is the case of the trivial representation, i.e.,
the integer homology Hk(Xj ,Z). The 3-dimensional case has been studied in [BSV]. In this
paper the authors discuss conditions which imply that the results of [BV] on strongly acyclic
local systems can be extended to the case of the trivial local system. There are conditions on
the cohomology and the spectrum of the Laplace operator on 1-Forms. The conditions on
the spectrum are as follows. Let (Γi)i∈N be a sequence of cocompact congruence subgroups
of a fixed arithmetic subgroup Γ ⊂ SL(2,C). Let Xi = Γi\H3 and put Vi := vol(Xi). Let

λ
(i)
j j ∈ N, be the eigenvalues of the Laplace operator on 1-forms of Xi. Assume:

1) For every ε > 0 there exists c > 0 such that

lim sup
i→∞

1

Vi

∑

0<λ
(i)
j ≤c

| log λ(i)
j | ≤ ε.
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2) b1(Xi,Q) = o( Vi

log Vi
).

Let TXi
be the analytic torsion with respect to the trivial local system. As shown in [BSV],

conditions 1) and 2) imply that

log TXi

Vi
−→ t

(2)

H3 = − 1

6π
, i → ∞.

Unfortunately, it seems to be difficult to verify 1) and 2). The other problem is to estimate
the growth of the regulator (see [BSV]).

5.4. The finite volume case. Many important arithmetic groups are not cocompact. So
it is desirable to extend the results of the previous section to the finite volume case. In
order to achieve this one has to deal with the following problems.

1) Define an appropriate regularized version T reg

X (ρ) of the analytic torsion for a finite

volume locally symmetric space X = Γ\X̃ and establish the analog of (5.12). So let

Γj ⊂ Γ be a sequence of subgroups of finite index and Xj := Γj\X̃, j ∈ N. Assume
that vol(Vj) → ∞. Under appropriate additional assumptions on the sequence
(Γj)j∈N one has to show that

lim
j→∞

log T reg

Xj
(ρ)

vol(Xj)
= t

(2)

X̃
(ρ).

2) Show that T reg

X (ρ) has a topological counterpart T top

X (ρ), possibly the Reidemeister
torsion of an intersection complex.

3) If Eρ is arithmetic, i.e., if there is a local system of finite rank free Z-modules M
over X such that Eρ = M⊗ R, establish an analog of (5.22).

4) Estimate the growth of the regulator.

For hyperbolic manifolds 1) has been proved in [Ra1] in the 3-dimensional case and in
[MP1] and [MP2] in general. It would be very interesting to extend these results to the
higher rank case. SL(3,R) seems to be doable.

Raimbault [Ra2] has studied 2) in the 3-dimensional case and established a kind of
asymptotic equality of analytic and Reidemeister torsion, which is sufficient for the present
purpose. Of course, the goal is to prove an exact equality. For hyperbolic manifolds there
is some recent progress [AR]. Unfortunately, this paper does not cover the relevant flat
bundles. The method requires that the flat bundle can extended to the boundary at infinity.
This is not the case for the flat bundles which arise from representations of G by restriction
to Γ. J. Pfaff [Pf] has established a gluing formula for the regularized analytic torsion of a
hyperbolic manifold, which reduces the problem to the case of a cusp.

4) has been studied by Raimbault [Ra2] for 3-dimensional hyperbolic manifolds. It turns
out to be very difficult. The real cohomology never vanishes. There is always the part of
the cohomology coming from the boundary. This is the Eisenstein cohomology introduced
by Harder [Ha]. These cohomology classes are represented by Eisenstein classes, which are
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rational cohomology classes. The problem is to estimate the denominators of the Eisenstein
classes which seems to be a hard problem.
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