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Abstract. On an odd-dimensional oriented hyperbolic manifold of finite volume with
strongly acyclic coefficient systems, we derive a formula relating analytic torsion with the
Reidemeister torsion of the Borel-Serre compactification of the manifold. In a compan-
ion paper, this formula is used to derive exponential growth of torsion in cohomology of
arithmetic groups.
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1. Introduction

Let M be a closed Riemannian manifold of dimension d, and % a finite dimensional complex
representation of the fundamental group π1(M,x0) of M . Let E% → X be the flat vector
bundle over X associated to %. Choose a Hermitian fiber metric in E% and let ∆p(%) be
the Laplace operator on E%-valued p-forms with respect to the metric on X and in E%. Let
ζp(s; %) be the zeta function of ∆p(%) (see [Shu01]). Then the analytic torsion TX(%) ∈ R+,
introduced by Ray and Singer [RS71], is defined by

(1.1) log TX(%) :=
1

2

d∑
q=1

(−1)qq
d

ds
ζq(s; %)

∣∣
s=0

.

A combinatorial counterpart is the Reidemeister torsion introduced by Reidemeister [Rei35]
and Franz [Fra35] to distinguish lens spaces that are homotopic but not homeomorphic. It
was conjectured by Ray and Singer and proved independently by Cheeger [Che79] and the
first named author [Mül78] that for unitary representations the invariants coincide. The
equality was extended by the first author to unimodular representations [Mül93]. The case
of a general representation was treated by Bismut and Zhang [BZ92]. In general the equality
does not hold. The defect was computed by Bismut and Zhang.

The equality of analytic and Reidemeister torsion has recently been used to study the
growth of torsion in the cohomology of arithmetic groups, see for instance [BV13, CV12,
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Mül12,MM13,MP14]. This application is based on a remarkable feature of the Reidemeister
torsion, and hence of the analytic torsion. When the complex of cochains, used to define
the Reidemeister torsion, is defined over Z, for instance when % is the trivial representation,
then the Reidemeister torsion can be expressed in terms of the size of the torsion subgroup
of the integer cohomology and the covolume of the lattice defined by the free part in the
real cohomology. For various sequences of manifolds or representations, this can be used to
establish exponential growth of torsion subgroups in cohomology by computing the limiting
behavior of analytic torsion via spectral methods.

In the context of arithmetic groups the manifolds are compact locally symmetric manifolds
Γ\G/K, where G is a semi-simple Lie group, K maximal compact subgroup and Γ a discrete
torsion free cocompact subgroup of G.

Since many arithmetic groups are not cocompact, it is very desirable to extend this method
to the non-compact case. The goal of the present paper is to study the relation between (reg-
ularized) analytic torsion and Reidemeister torsion for odd-dimensional hyperbolic manifolds
of finite volume.

There is related work in [ARS14]. For odd-dimensional manifolds with fibered cusps
ends, which is an important class of complete non-compact Riemannian manifolds of finite
volume including many examples of locally symmetric spaces of rank one, an identification of
analytic torsion with the Reidemeister torsion of the natural compactification by a manifold
with boundary was obtained in [ARS14] provided that the unimodular representation % :
π1(M)→ GL(V ) is ‘acyclic at infinity’ in a certain sense, that the links of the cusps at infinity
are even-dimensional, and that the Hermitian metric of the flat vector bundle associated to
% is even in the sense of [ARS14, Definition 7.6], the latter condition being automatically
satisfied when the representation % is unitary. The results of [ARS14] apply in particular to
odd-dimensional oriented hyperbolic manifolds of finite volume. However, they do not apply
to the representations % that we wish to consider and which are described as follows.

Let G = SO0(d, 1) and K = SO(d) or G = Spin(d, 1) and K = Spin(d). Then G/K,
equipped with the normalized invariant metric, is isometric to the d-dimensional hyperbolic
space Hd. Let Γ ⊂ G be a torsion free lattice in G. Then

X := Γ \G/K
is an oriented d-dimensional hyperbolic manifold of finite volume whose hyperbolic metric
will be denoted by gX . Let % : G → GL(V ) be an irreducible finite dimensional complex
representation such that

(1.2) % ◦ ϑ 6= %,

where ϑ is the standard Cartan involution with respect to K. By [Mül93, Lemma 4.3], the
restriction of % to Γ induces a unimodular representation %|Γ : Γ → GL(V ), where Γ is
identified with π1(X). If E = Hd ×%|Γ V is the associated flat vector bundle on X, then we
know from [MM63] that E comes equipped with a natural Hermitian metric hE well-defined
up to a scalar multiple. Notice however that this Hermitian metric is definitely not even in
the sense of [ARS14, Definition 7.6]. In fact, the Hermitian metric hE degenerates at infinity,
so the identification between analytic and Reidemeister torsions obtained in [ARS14] does
not apply.

On the other hand, using a different approach relying on the gluing formula of Lesch
[Les13], Pfaff was able in [Pfa17] to obtain a formula relating the analytic torsion of (X,E)
with the Reidemeister torsion of the natural compactification of X by a manifold with
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boundary X. One delicate point in the formula is that (X, gX , E, hE) always has trivial
L2-cohomology, but the cohomology groups Hq(X;E) are not all trivial. Thus, to define
Reidemeister torsion, one has to specify a basis of these cohomology groups. Pfaff does it
using Eisenstein series. When G = Spin(3, 1) ∼= SL(2,C) and Γ is a congruent subgroup of a
Bianchi group, the formula of [Pfa17] was subsequently used by Pfaff and Raimbault [PR15]
to obtain results about exponential growth of torsion in cohomology for the sequence of
symmetric powers of the standard representation of SL(2,C). However, beyond that, the
formula of [Pfa17] contains a term, namely the analytic torsion of the cusp ends, which so far
seems to have restricted the possible applications about the growth of torsion in cohomology.

In the present paper, we remedy this problem by obtaining a formula where the analytic
torsion of the cusp ends does not appear. To state our result more precisely, recall that the
analytic torsion T (X;E, gX , hE) of (X, gX , E, hE) is defined by the following formula which
is analogous to (1.1)

(1.3) log T (X;E, gX , hE) =
1

2

d∑
q=0

(−1)qq
d

ds
Rζq(s; %)

∣∣
s=0

,

where Rζq(s; %) is the regularized zeta function of the Laplace operator ∆q(%) acting on
E-valued q-forms. For Re s > d

2
, this function is defined by

(1.4) Rζq(s; %) =
1

Γ(s)

∫ ∞
0

R Tr(e−t∆q(%))ts
dt

t

and admits a meromorphic extension which is regular at s = 0, where R Tr is the regularized
trace as considered in [ARS14] or [MP12].

In order to define the Reidemeister torsion, we need to choose a basis of H∗(X,E). For
the flat bundles that we consider, the cohomology H∗(X,E) never vanishes. More precisely,
the L2-cohomology H∗(2)(X,E) vanishes (see [Pfa17, Prop. 8.1]), which corresponds to the
vanishing of the cohomology in the compact case. However, there is cohomology coming
from the boundary of X. This is the Eisenstein cohomology H∗Eis(X,E) introduced by
Harder [Har75]. In our case H∗(X,E) coincides with H∗Eis(X,E) and each cohomology class
is represented by a special value of an Eisenstein series, which is a lift of a cohomology class
on the boundary Z. Using an orthonormal basis µZ of H∗(Z,E), the theory of Eisenstein
series gives rise to a basis µX of H∗(X,E). For more details see [Pfa17, sect. 8] and §5
below. These are the bases of the cohomology that we use to define the Reidemeister torsion
τ(X,E, µX) and τ(Z,E, µZ).

We can now state our main result, referring to Theorem 6.2 below for further details.

Theorem 1.1. If the complex irreducible representation % : G→ GL(V ) satisfies (1.2) and
if the discrete subgroup Γ ⊂ G is such that Assumption 2.2 below holds, then

(1.5) log T (X;E, gX , hE) = log τ(X,E, µX)− 1

2
log τ(Z,E, µZ)− κ%Γc%,

where c% ∈ R is an explicit constant depending on %, κ%Γ is the number of connected com-
ponents of Z on which the cohomology with values in E is non-trivial, and µX and µZ are
cohomology bases of H∗(X;E) and H∗(Z;E) described above (cf. § 5 below). Furthermore,
if n is odd, then τ(Z,E, µZ) = 1 and the formula simplifies to

log T (X;E, gX , hE) = log τ(X,E, µX)− κ%Γc%.
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Remark 1.2. In a companion paper [MR19], this formula is used to establish exponential
growth of torsion in cohomology for various sequences of groups Γ or representations %.

Remark 1.3. When G = Spin(d, 1), Assumption 2.2 is slightly more general then what
the hypothesis [Pfa17, (2.11)] requires for the result of Pfaff. This allows in particular for
situations where κ%Γ = 0, in which case H∗(X;E) and H∗(Z;E) are trivial and our formula
simplifies to

log T (X;E, gX , hE) = log τ(X,E)− 1

2
log τ(Z,E).

Remark 1.4. When G = Spin(3, 1) ∼= SL(2,C) and X = Γ \ G/K is the complement of a
hyperbolic knot, we know from [MFP14] that κ%Γ = 0 when % is an odd symmetric power of
the standard representation of SL(2,C). Since n = 1 is odd in this case, this means that the
formula simplifies to

T (X;E, gX , hE) = τ(X,E).

Remark 1.5. When G = Spin(3, 1) ∼= SL(2,C) and % is an even symmetric power of the
standard representation, our formula agrees with the one obtained by Pfaff in [Pfa14] for
normalized analytic and Reidemeister torsions and yields the identity

(1.6)
c(`)

c(2)
=
b(`)

b(2)
for ` ≥ 2,

where

(1.7)

b(`) :=
1

2`+ 2

`−1∏
k=−`

( √
(`+ 1)2 + `2 − k2 − k − 1√

(`+ 1)2 + `2 − (k + 12) − k

) 1
2

,

c(`) :=

∏`−1
j=1(

√
(`+ 1)2 + `2 − j2 + `)∏`

j=1(
√

(`+ 1)2 + `2 − j2 + `+ 1)

( √
(`+ 1)2 + `2 + `√

(`+ 1)2 + `2 + `+ 1

) 1
2

.

Remark 1.6. Multiplying the boundary defining function by a constant changes the bases
µZ and µX as well as the right hand side of (1.5), which is consistent with the fact that
analytic torsion does depend on the choice of boundary defining function used to define the
regularized trace.

Combined with [MP12, Theorem 1.1], our results yield the following corollary, proved at
the end of § 6, about the exponential growth of the Reidemeister torsion for certain sequences
of representations.

Corollary 1.7. Assume that G = SO0(d, 1), that n is odd and that Γ satisfies Assump-
tion 2.2. Fix natural numbers τ1 ≥ τ2 ≥ · · · ≥ τn+1. For m ∈ N, let τ(m) be the finite-
dimensional irreducible representation of G with highest weight (τ1 + m, . . . , τn+1 + m) and
denote by Eτ(m) the corresponding flat vector bundle on X = Γ \G/K. Let also µX,m be the

corresponding basis of H∗(X;Eτ(m)). Then there is a constant Cn > 0 depending only on n
such that

(1.8) τ(X,Eτ(m), µX,m) = Cn vol(X)m
n(n+1)

2
+1 +O(m

n(n+1)
2 logm) as m→∞.
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Remark 1.8. If in fact n = 1 and G = SL(2,C), a formula similar to (1.8) was obtained
by Menal-Ferrer and Porti in [MFP14] using [Mül12] and suitable approximations of X by
compact hyperbolic manifolds.

Our strategy to prove Theorem 1.1 is to apply the general approach of [ARS14]. Indeed,
even if [ARS14, Theorem 1.3] does not apply since hE is not an even Hermitian metric, the
results of [ARS14] concerning the uniform constructions of the resolvent and heat kernel
under a degeneration to fibered cusps are formulated quite generally and do apply. This
is because the Hermitian metric hE degenerates at infinity in a similar way that gX does,
which ensures that this can be incorporated in the framework of [ARS14]. More precisely, if
M = X ∪∂X X is the double of X on which we consider a family gε of Riemannian metrics
degenerating to the hyperbolic metric on each copy of X inside M as ε ↘ 0, then recall
from [ARS14] that in a tubular neighborhood N ∼= ∂X× (−δ, δ)x, we can take gε of the form

gε =
dx2

x2 + ε2
+ (x2 + ε2)g∂X , x ∈ (−δ, δ),

where g∂X is the (flat) Riemannian metric on ∂X such that

gX =
dx2

x2
+ x2g∂X , x ∈ (0, δ),

outside a compact set of X. For the Hermitian metric hE, we can in a similar way introduce
a family of Hermitian metrics hε on the double of E on M degenerating to the Hermitian
metric hE on each copy of X as ε ↘ 0. This can be described in a systematic way using
the single surgery space of Mazzeo-Melrose [MM95]. The upshot is that we end up with a
family of Dirac-type operators for which the uniform constructions of the resolvent and heat
kernel of [ARS14, Theorem 4.5 and Theorem 7.1] do apply directly. The way the Hermitian
metric hE degenerates is then incorporated in the model operators Dv and Db of [ARS14],
cf. [ARS14, (2.7) and (2.8)] with (3.18) and (3.20) below. Taking this into account, we
can still show that the model operator Db is Fredholm, which ensures that the eigenspace of
eigenvalues of the Hodge Laplacian going to zero as ε↘ 0 is finite dimensional. Furthermore,
comparing the cohomology of M taking values in the double of E with the L2-kernel of Db

allows us to conclude that there is a spectral gap: no positive eigenvalue tends to zero as
ε↘ 0. This greatly simplifies the computation of the asymptotic behavior of analytic torsion
as ε↘ 0, since this amounts essentially to compute the analytic torsion of the operator D2

b .
To do this, we rely on the delicate computation in [ARS18, § 2.2] of regularized determinants
of Laplace-type operators on the real line.

For Reidemeister torsion, we can track relatively easily what happens under surgery using
the formula of Milnor [Mil66]. What is more delicate however is that as in [ARS18, §3.3], we
need to carefully compute what happens asymptotically to a basis of orthonormal harmonic
forms as ε↘ 0. One subtle point is that to understand what happens at the cohomological
level, it is not enough to determine the top order behavior. Indeed, there are lower other
terms in the expansion which are negligible in terms of L2-norm as ε↘ 0, but nevertheless
contribute non-trivially cohomologically, a phenomenon intimately related with the behavior
at infinity of the Eisenstein series used by Pfaff in [Pfa17].

The paper is organized as follows. In § 2, we recall basic properties of the canonical bundle
E associated to a choice of irreducible complex representation %. We then describe in § 3
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the cusp surgery metric and the corresponding degenerating family of Hermitian metrics
and compute explicitly what are the model operators Dv and Db. This is used in § 4 to
determine the asymptotic behavior of analytic torsion as ε ↘ 0. In § 5, we introduce the
basis µX and µZ of Theorem 1.1 and give a formula relating the Reidemeister torsions of M
and X. Finally, we prove our main result in § 6, while in § 7, we compute more precisely
the constant c% when G = Spin(3, 1) ∼= SL(2,C).

Acknowledgements. The authors are grateful to the hospitality of the Centre International
de Rencontres Mathématiques (CIRM) where this project started. The second author was
supported by NSERC and a Canada Research Chair.

2. The canonical bundle of Matsushima and Murakami

Let d = 2n + 1 be odd and consider the d-dimensional hyperbolic space seen as the
homogeneous space Hd = G/K with either G = Spin(d, 1) and K = Spin(d) or G = SOo(d, 1)
and K = SO(d). The hyperbolic metric ghyp on Hd can be described in terms of the Killing
form B of the Lie algebra g of G. Indeed, if k is the Lie algebra of K, ϑ is the standard
Cartan involution with respect to K and g = k ⊕ p is the Cartan decomposition of g, then
the restriction of

(2.1) 〈X, Y 〉ϑ := − 1

2(d− 1)
B(X,ϑ(Y )), X, Y ∈ g

to p induces aG-invariant metric on Hd which is precisely the hyperbolic metric ghyp. Suppose
now that (X, gX) is a complete finite volume oriented hyperbolic manifold of dimension d
such that

(2.2) X = Γ \Hd = Γ \G/K
for some discrete subgroup Γ ofG, so that the fundamental group π1(X) is naturally identified
with Γ and the metric gX on X lifts to give the hyperbolic metric ghyp on Hd. Let % : G→
GL(V ) be an irreducible representation on a complex vector space V of complex dimension
k. Then the restriction of % to Γ induces a unimodular representation of the fundamental
group of X, which in turn induces a flat vector bundle

(2.3) E := Hd ×%|Γ V on X.

We can instead restrict % to the maximal compact subgroup K and consider the associated
homogeneous vector bundle

(2.4) Ẽ := G×%|K V on Hd = G/K

and the corresponding locally homogeneous vector bundle Γ\ Ẽ over X = Γ\Hd. The space

of smooth sections C∞(Hd; Ẽ) of Ẽ is canonically identified with

(2.5) C∞(G; %) :=
{
f ∈ C∞(G;V ) | f(gk) = %(k−1)f(g) ∀g ∈ G, ∀k ∈ K

}
.

Similarly, the space of smooth sections of C∞(X; Γ \ Ẽ) is canonically isomorphic to

(2.6) C∞(Γ \G; %) := {f ∈ C∞(G; %) | f(γg) = f(g) ∀g ∈ G, ∀γ ∈ Γ} .
From [MM63, Proposition 3.1], we know that there is a canonical vector bundle isomor-

phism

(2.7) Φ : Γ \ Ẽ → E
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explicitly given by

(2.8)
Φ : Γ \G×%|K V → G/K ×%|Γ V

[g, v]Γ\Ẽ 7→ [g, %(g)v]E,

where [g, v]Γ\Ẽ and [g, v]E denote the corresponding points in Γ \ Ẽ and E after taking the
quotient by the actions of Γ and K. Using this natural isomorphism, we can equip E with
a canonical bundle metric. More precisely, by [MM63, Lemma 3.1], there exists an inner
product 〈·, ·〉 on V such that

〈%(Y )u, v〉 = −〈u, %(Y )v〉 ∀Y ∈ k, ∀u, v ∈ V ;(2.9)

〈%(Y )u, v〉 = 〈u, %(Y )v〉 ∀Y ∈ p, ∀u, v ∈ V.(2.10)

Clearly, %|K is unitary with respect to this inner product, which means that 〈·, ·〉 induces a

bundle metric hΓ\Ẽ on Γ \ Ẽ,

(2.11) hΓ\Ẽ

(
[g, v]Γ\Ẽ, [g, w]Γ\Ẽ

)
:= 〈v, w〉,

and hence a corresponding bundle metric hE on E via the isomorphism (2.7). This bundle
metric hE and the flat connection on E allow to define a de Rham operator and a Hodge
Laplacian,

(2.12) ðE = dE + d∗E, ∆E = ð2
E = dEd

∗
E + d∗EdE,

where dE : Ω∗(X;E) → Ω∗+1(X;E) is the exterior derivative acting on differential forms
taking values in E and d∗E is its formal adjoint with respect to the L2-inner product induced
by gX and hE.

Let G = NAK be the Iwasawa decomposition of G as in [MP12, §2] and let M be the
centralizer of A in K. Let n, a and m be the Lie algebras of N , A and M respectively.
Consider the group P0 := NAM . Recall that dimR a = 1. Equip a with the norm induced
by the restriction of (2.1). Let H1 be the unique vector of norm 1 such that the positive
restricted root, implicit in the choice of N , is positive on H1. Then every a ∈ A can be
written as a = exp(log a) for a unique log a ∈ a, where exp : a→ A is the exponential map.
For t ∈ R, set a(t) := exp(tH1). Given g ∈ G, we define n(g) ∈ N , H(g) ∈ R and κ(g) ∈ K
by

g = n(g)a(H(g))κ(g).

If P is a parabolic subgroup of G, then there is kP ∈ K such that P = NPAPMP with
NP = kPNk

−1
P , AP = kPAk

−1
P and MP = kPMk−1

P . For instance, for P = P0, we can take
kP0 = 1. For such a choice of kP , let aP (t) = kPa(t)k−1

P . For g ∈ G, define nP (g) ∈ NP ,
HP (g) ∈ R and κP (g) ∈ K by

g = nP (g)aP (HP (g))κP (g)

and consider the group isomorphism

(2.13)
RP : R+ → AP

t 7→ aP (log t).

We set A0
P [Y ] := RP (Y,∞) for Y > 0.

Definition 2.1. A parabolic subgroup P of G is said to be Γ-cuspidal if Γ∩NP is a lattice
in NP . Let PΓ be a set of representatives of the Γ-conjugacy classes of Γ-cuspidal parabolic
subgroups of G.
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Note that PΓ is a finite set with cardinality equal to the number of cusps of X.

Assumption 2.2. When G = SOo(d, 1), we will assume that for all P ∈ PΓ we have

(2.14) Γ ∩ P = Γ ∩NP ,

while when G = Spin(d, 1), we will be more flexible and only assume that for all P ∈ PΓ we
have

(2.15) π(Γ) ∩ π(P ) = π(Γ) ∩ π(NP ),

where π : Spin(d, 1) → SOo(d, 1) is the canonical covering map. Furthermore, when G =
Spin(d, 1) and (2.14) does not hold for all Γ-cuspidal groups, we will also assume that

(2.16) %(e−1) = ± Id,

where e−1 ∈ Spin(d, 1) denotes the element different from the identity such that π(e−1) gives
the identity element in SO0(d, 1).

For a choice of PΓ, there exists Y0 > 0 such that for each Y ≥ Y0, there is a compact
connected subset C(Y ) of G and a decomposition

(2.17) G = Γ · C(Y ) t
⊔
P∈PΓ

Γ ·NPA
0
P [Y ]K

such that for each P ∈ PΓ, one has that

(2.18)
(
γ ·NPA

0
P [Y ]K

)
∩NPA

0
P [Y ]K 6= ∅ ⇐⇒ γ ∈ Γ ∩ P.

Set ΓP := Γ ∩ NP = Γ ∩ P when G = SOo(d, 1) and ΓP := π(Γ) ∩ π(NP ) = π(Γ) ∩ π(P )
when G = Spin(d, 1). In the latter case, notice that NP is canonically identified with π(NP )
via the canonical covering map, so that we will often denote π(NP ) by NP to lighten the
notation. With this notation understood, if we set

(2.19) FP (Y ) := A0
P [Y ]× (ΓP \NP ) ∼= (Y,∞)× (ΓP \NP ) ,

then there is a corresponding decomposition of X, namely, there exists a compact manifold
with smooth boundary X(Y ) such that

(2.20) X = X(Y ) t
⊔
P∈PΓ

FP (Y )

with X(Y )∩FP (Y ) = ∂X(Y ) = ∂FP (Y ) and FP1(Y )∩FP2(Y ) = ∅ for P1 6= P2 in PΓ. If gP
is the invariant metric on NP induced by (2.1) and gTP is the corresponding metric on the
quotient TP = ΓP \NP , then the restriction of the hyperbolic metric on FP (Y ) is given by

(2.21)
dt2 + gTP

t2
, t ∈ (Y,∞).

Since NP is abelian, notice that gP and gTP are flat. Since the hyperbolic metric is G-
invariant, notice also that this description is consistent with the adjoint action of AP on the
Lie algebra nP of NP ,

(2.22) Ad(aP (r))η = erη, η ∈ nP , Ad∗(aP (r))µ = e−rµ, µ ∈ n∗P .

By condition (2.10) and the fact that a ⊂ p, there exists a basis {vP,1, . . . , vP,k} of V or-
thonormal with respect to the admissible inner product 〈·, ·〉 which is compatible with the
weight decomposition of V in terms of the action of AP . Thus, we suppose that

(2.23) %(aP (r))vP,i = ewirvP,i for some wi ∈ R.
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Remark 2.3. Since AP = kPAk
−1
P , we can assume that the weight wi does not depend on

P .

If (2.14) holds or %(e−1) = Id, let ΞP : NP → {1} be the trivial group homomorphism,
and otherwise let ΞP : π(NP ) → S1 ⊂ C∗ ⊂ End(V ) be a choice of group homomorphism
such that ΞP (π(γ)) Id = %(κP (γ)) for all γ ∈ Γ ∩ P . In particular, by (2.16), it is such
that Ξ(ΓP ) ⊂ {1,−1} and %(γ) = %(nP (γ))ΞP (π(γ)) for all γ ∈ Γ ∩ P . Notice that using
the decomposition G = NPAPK, the basis {vP,1, . . . , vP,k} yields an orthonormal basis of
sections

g 7→ [nP (g)aP (HP (g)),ΞP (π(nP (g)))vP,i]Γ\Ẽ

of Γ \ Ẽ over the cusp FP (Y ), and hence under the isomorphism (2.7), an orthonormal basis
of sections
(2.24)
νP,i(gK) := [nP (g)aP (HP (g)),ΞP (π(nP (g)))%(nP (g)aP (HP (g)))vP,i]E of E over FP (Y ).

Let %P : NP → End(V ) be the restriction of % to NP twisted by ΞP , so that

%P (n) = ΞP (π(n))%(n) ∀n ∈ NP .

The representation %P defines by restriction to ΓP a flat vector bundle EP := NP ×%P |ΓP
V

on ∂FP (1) = ΓP \NP = TP and the basis {vP,i} induces a basis of sections

(2.25) νNP ,i(ΓPn) := [n, %P (n)vP,i]EP .

The admissible product 〈·, ·〉 naturally induces a bundle metric hEP on EP , namely the one
obtained by declaring {νNP ,i} to be an orthonormal basis of sections. By our choice of basis
{vP,i}, notice that on FP (Y ), we have the following relation,

(2.26) νP,i(ΓnaP (r)) = ewirνNP ,i(ΓPn) ∀n ∈ NP .

Let

(2.27) ðEP = dEP + d∗EP and ∆EP = ð2
EP

be the corresponding de Rham operator and Hodge Laplacian, where dEP : Ω∗(TP ;EP ) →
Ω∗+1(TP ;EP ) is the exterior derivative and d∗EP is its formal adjoint with respect to the
L2-inner product induced by gTP and hEP . There is a natural inclusion

(2.28)
ιP : Λpn∗P ⊗ V ↪→ Ωp(TP ;EP )

ω ⊗ v 7→ ω̂ ⊗ v̂,

where v̂(ΓPn) := [n, %P (n)v]EP and ω̂|ΓPn = ω under the natural identification

(2.29) Λp(T ∗(TP )) = TP × Λpn∗P .

In fact , Λ∗n∗P ⊗ V is a V -valued Lie algebra complex with differential dP = dnP + dΞP given
by

dnPΦ(T1, . . . , Tq+1) =

q+1∑
i=1

(−1)i+1%(Ti)Φ(T1, . . . , T̂i, . . . , Tq+1), Φ ∈ Λqn∗P ⊗ V,(2.30)

dΞPΦ(T1, . . . , Tq+1) =

q+1∑
i=1

(−1)i+1ΞP (Ti)Φ(T1, . . . , T̂i, . . . , Tq+1), Φ ∈ Λqn∗P ⊗ V,(2.31)
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where the “ ̂ ” above a variable denotes omission. Of course, the map (2.30) is also a
differential inducing another Lie algebra complex structure on Λ∗n∗P ⊗ V , in fact the same
whenever ΞP is the trivial homomorphism.

Now, the inner product (2.1) and the admissible inner product 〈·, ·〉 on V induce an inner
product on Λqn∗P⊗V for each q. Let d∗nP : Λ∗n∗P⊗V → Λ∗−1n∗P⊗V be the adjoint of dnP with
respect to this inner product. Following Kostant [Kos61], we can consider the corresponding
de Rham and Hodge operators

(2.32) KP := dnP + d∗nP , LP := K2
P = dnP d

∗
nP

+ d∗nP dnP

and identify the Lie algebra cohomology H∗(nP ;V ) induced by the differential dnP of (2.30)
with the kernel of LP ,

(2.33) Hq(nP ;V ) ∼= Hq(nP ;V ) := {Φ ∈ Λqn∗P ⊗ V | LPΦ = 0} .
On Λqn∗P ⊗ V , there is also a natural action of AP an its Lie algebra aP induced by

(2.34) Λq Ad∗⊗%(HP )Φ(T1, . . . , Tq) = %(HP )Φ(T1, . . . , Tq)−
q∑
i=1

Φ(T1, . . . , [HP , Ti], . . . , Tq)

for Φ ∈ Λqn∗P ⊗ V and HP := kPH1k
−1
P ∈ aP .

Proposition 2.4. The operators dnP and d∗nP are equivariant with respect to the actions of
AP and aP .

Proof. A direct computation shows that

(2.35) dnP ◦ (Λ∗Ad∗⊗%)(HP ) = (Λ∗+1 Ad∗⊗%)(HP ) ◦ dnP .
Now, by property (2.10) of the admissible product and (2.22), the operator (Λq Ad∗⊗%)(HP )
is self-adjoint, so taking the adjoint of (2.35) gives

(2.36) d∗nP ◦ (Λ∗Ad∗⊗%)(HP ) = (Λ∗−1 Ad∗⊗%)(HP ) ◦ d∗nP .
�

Corollary 2.5. The operators KP and LP are equivariant with respect to the action of AP
and aP .

However, unless ΞP is the trivial homomorphism, the operator dΞP and its adjoint d∗ΞP are
not equivariant with respect to the action of AP and aP . A direct computation using (2.22)
shows that we have instead

(2.37)
dΞP ◦ (Λ∗Ad∗⊗%)(HP )− (Λ∗Ad∗⊗%)(HP ) ◦ dΞP = dΞP ,

d∗ΞP ◦ (Λ∗Ad∗⊗%)(HP )− (Λ∗Ad∗⊗%)(HP ) ◦ d∗ΞP = −d∗ΞP .

Lemma 2.6 (van Est’s theorem). If ΞP is the trivial homomorphism, then the map (2.28)
is a map of complexes which induces an isomorphism in cohomology. If instead ΞP is a
non-trivial homomorphism, then H∗(TP ;EP ) = {0}.

Proof. This is one of the many manifestations of van Est’s theorem [vE58]. First, fixing a

basis {w1
q , . . . , w

kq
q } of Λqn∗P ⊗ V , we can write a general element λ ∈ Ωq(TP ;EP ) as

(2.38) λ =
∑
j

hjwjq, hj ∈ C∞(TP ).
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We can in this way extend the definition of dnP to a differential on all of Ω∗(TP ;EP ) by

dnPλ =
∑
j

hjdnPw
j
q.

We can also introduce another differential df on the complex Ω∗(TP ;EP ) defined by

dfλ :=
∑
j

(dhj ∧ wjq + hjdΞPw
j
q).

In other words, the differential df corresponds to the differential of the flat vector bundle

(2.39) NP ×ΞP |ΓP
V ∼= (NP ×ΞP |ΓP

C)k.

Then a simple computation shows that dnP and df anti-commute. Moreover, in terms of
these differentials, we have that

dEP = df + dnP .

Using the action (2.34) as well as Proposition 2.4 and (2.37), the complex of dEP = df + dnP
can be seen as a double complex with bigrading given by declaring an element ιP (ω⊗vP,i) of
bidegree (−wi+q, wi) whenever ω ∈ Λqn∗P , where we recall that the weight wi was introduced
in equation (2.23). If ΞP is the trivial homomorphism, then the first page of the associated
spectral sequence is E1 = Λ∗nP ⊗ V with differential d1 = dnP , so that the spectral sequence
degenerates at the second page E2 = H∗(nP ;V ), yielding the result. If instead ΞP is a non-
trivial homomorphism, then the complex of the differential df is acyclic. Indeed, by (2.39),
it suffices to show that the flat line bundle L := NP ×ΞP |ΓP

C on TP has trivial cohomology.

Now, if {γ1, . . . , γ2n} is a basis of ΓP , let Li → S1 be the flat line bundle with holonomy
given by ΞP (γi). By the Künneth theorem, we have that

H∗(TP ;L) ∼=
2n⊗
i=0

H∗(S1;Li).

Since ΞP is non-trivial, at least one of the Li must have non-trivial holonomy, that is, trivial
cohomology, and therefore H∗(TP ;L) must vanish as claimed. Thus, coming back to the
spectral sequence, this means in this case that it degenerates at the first page E1 = {0},
from which the second statement follows. �

3. The cusp surgery metric and and the cusp surgery bundle

The hyperbolic manifold (X, gX) has a natural compactification by a manifold with bound-
ary X obtained from the decomposition (2.20) by replacing FP (Y ) ∼= (Y,∞) × TP by

F̂P (Y ) ∼= (Y,∞]× TP ,

(3.1) X = X(Y )
⊔
P∈BΓ

F̂P (Y ), ∂X =
⊔
P∈PΓ

{∞} × TP .

On X, we can choose a boundary defining function x such that for each P ∈ PΓ, x = t−1

on F̂P (Y ) = (Y,∞]× TP with t the coordinate on the first factor. Hence, in terms of x, the
hyperbolic metric on FP (Y ) is given by

(3.2)
dx2

x2 + x2gTP
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and {x−wiνNP ,i} is an orthonormal basis of sections of E. Let

(3.3) M = X
⋃
∂X

X

be the double of X obtained by gluing two copies of X along their boundary. Let us denote
by X1 and X2 the copies of X in M intersecting on their boundary and let x1 and x2 be
there corresponding boundary defining functions. We can equip M with an orientation by
declaring that X1 has the same orientation as X and X2 has the opposite orientation. The
closed manifold M has a distinguished hypersurface Z ⊂M corresponding to the intersection
of X1 and X2,

(3.4) Z := X1 ∩X2 = ∂X1 = ∂X2
∼= ∂X =

⊔
P∈PΓ

TP .

The hypersurface Z has a tubular neighborhood νZ : (−Y −1, Y −1)× Z ↪→M defined by

νZ(s, τ) = (s−1, τ) ∈ F̂P (Y ) ⊂ X1 for τ ∈ TP , s ≥ 0

and by

νZ(s, τ) = (−s−1, τ) ∈ F̂P (Y ) ⊂ X2 for τ ∈ TP , s ≤ 0.

Let x ∈ C∞(M) be the function which restricts to x1 on X1 and to −x2 on X2, so that ν∗Zx
is just the projection (−Y −1, Y −1)× Z → (−Y −1, Y −1) on the first factor. Taking Y bigger
if needed, consider then on M a smooth family of metrics gε parametrized by ε > 0 such
that ν∗Zgε is given by

(3.5)
dx2

x2 + ε2
+ (x2 + ε2)gTP on (−e−Y , e−Y )× TP for P ∈ PΓ,

and which away from Z converges smoothly to the hyperbolic metric gXi on each copy Xi

of X inside M . To see that such families of metrics exist, let χ ∈ C∞(M) be a function
taking values in [0, 1], of compact support in the image of νZ and identically equal to 1 in a
neighborhood of Z. Then we can take

(3.6) gε = (1− χ)g0 + χ

(
(νZ)∗

(
dx2

x2 + ε2
+ (x2 + ε2)gTP

))
where g0 is the hyperbolic metric on each copy of X in M . For such a family of metrics, it
is useful to consider the single surgery space of Mazzeo and Melrose [MM95]

(3.7) Xs := [M × [0, 1]ε, Z × {0}]
obtained by blowing up Z × {0} inside M × [0, 1]ε in the sense of Melrose [Mel93].

It is a manifold with corners with natural blow-down map βs : Xs → M × [0, 1]ε. We
denote by Bsb := β−1

s (Z × {0}) the new boundary hypersurface introduced by the blow-up

and by Bsm := β−1
s (M \ Z)× {0} the lift of the old boundary hypersurface at ε = 0.

There is also a boundary hypersurface at ε = 1, but it will not play any role in what
follows. Notice then that the function

(3.8) ρ :=
√
x2 + ε2

is a boundary defining function for Bsb, so that ε
ρ

is a boundary defining function for Bsm.

Let Ei → Xi be the flat vector bundle E → X on the copy Xi of X in M . On Xs, we
can then consider the vector bundle Es → Xs which away from β−1

s (Z × [0, 1]ε) is just the
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Bsb

Bsm

ε

x

Figure 1. The single surgery space Xs

pull-back of Ei → Xi on Xi × [0, 1]ε ⊂ Xs, and near β−1
s (TP × [0, 1]ε), is spanned by the

sections

(3.9) ρ−wiνNP ,i, i ∈ {1, . . . , k},

which we declare to be linearly independent in each fiber of Es where they take values, as
well as smooth and bounded near Bsb. Consider on Es a smooth bundle metric hs such that
the sections (3.9) form an orthonormal basis of sections of Es near β−1

s (TP × [0, 1]ε) for each
P ∈ PΓ and such that away from Bsb, hs converges smoothly to the bundle metric hEi on
each copy Xi of X in M as ε ↘ 0. As in (3.6), such a bundle metric can be constructed
using cut-off functions. Notice that the flat connections on E and EP for P ∈ PΓ induce a
flat connection dε on Es on level sets of ε for ε > 0. For instance, in terms of the local basis
of sections (3.9),

(3.10) dε(ρ
−wiνNP ,i) = −xwi

ρ

(
dx

ρ
⊗ ρ−wiνNP ,i

)
+ ρ−widEP νNP ,i,

while away from β−1
s (Z × [0, 1]ε) it converges smoothly to the flat connection of Ei on each

copy Xi of X inside M . In particular, in terms of the usual cotangent bundle on Xs, this flat
connection develops singularities at Bsb. However, it is more useful to describe it in terms
of the ε, d-cotangent bundle ε,dT ∗Xs of [ARS14], which in νZ((−e−Y , e−Y )TP ) is spanned by
the sections

(3.11)
dx

ρ
, ρdτ1, . . . , ρdτ2n,

considered as smooth, bounded and non-vanishing all the way to Bsb as sections of ε,dT ∗Xs,
where the τi are a choice of coordinates on TP .

Proposition 3.1. The family of flat connections dε on Es induces an operator

dε : C∞(Xs; Λ∗(ε,dT ∗Xs)⊗ Es)→ ρ−1C∞(Xs; Λ∗+1(ε,dT ∗Xs)⊗ Es)

which is an ε, d-differential operator of order 1 in the sense of [ARS14], that is,

dε ∈ Diff1
ε,d(Xs; Λ∗(ε,dT ∗Xs)⊗ Es) = ρ−1 Diff1

ε,φ(Xs; Λ∗(ε,dT ∗Xs)⊗ Es),

where φ : Z → PΓ is the projection which sends the connected component TP ⊂ Z onto
P ∈ PΓ.
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Proof. When the exterior derivative hits the ‘form part’, this can be treated as in [ARS14,
§ 2.2]. When we differentiate sections, the first term on the right hand side of (3.10) can
also be treated as in [ARS14, § 2.2], so the only delicate point is the second term in (3.10).
However, since νNP ,i is in the image of (2.28), we see by Proposition 2.4 and (2.37), that
dEP νNP ,i has a part of weight wi (coming from dnP ) and a part of weight wi − 1 (coming
from dΞP ) with respect to the action of AP and aP , which means that the pointwise norm of
ρ−wi+1dEP νNP ,i with respect to gε and hs is bounded and that ρ−wi+1dEP νNP ,i is a smooth
bounded section of Es. In fact, for the part of weight wi, it is even better, namely ρ−widnP νNP ,i
is a smooth bounded section of Es. �

Using the family of metrics gε and the bundle metric hs, we can define an L2-inner product
for each ε > 0 and consider the formal adjoint d∗ε, as well as the corresponding de Rham
operators and Hodge Laplacians,

(3.12) ðε = dε + d∗ε, ∆ε = ð2
ε.

We deduce the following from Proposition 3.1.

Corollary 3.2. The family of de Rham operator ðε induces an operator

ðε : C∞(Xs; Λ∗(ε,dT ∗Xs)⊗ Es)→ ρ−1C∞(Xs; Λ∗+1(ε,dT ∗Xs)⊗ Es).

which is an ε, d-differential operator of order 1. Similarly, ∆ε induces an operator

∆ε : C∞(Xs; Λ∗(ε,dT ∗Xs)⊗ Es)→ ρ−2C∞(Xs; Λ∗+1(ε,dT ∗Xs)⊗ Es)

which is an ε, d-differential operator of order 2, that is,

∆ε ∈ Diff2
ε,d(Xs; Λ∗(ε,dT ∗Xs)⊗ Es) = ρ−2 Diff1

ε,φ(Xs; Λ∗(ε,dT ∗Xs)⊗ Es).

To check that the uniform construction of the resolvent of [ARS14, Theorem 4.5] does
apply to these operators, we need however to analyze more carefully the limiting behavior of
ðε as ε↘ 0. First, to work with b-densities, we proceed as in [ARS14] and consider instead
the conjugated family of operators

(3.13) Dε := ρnðερ−n,

where we recall that dimX = d = 2n+ 1. On C∞(TP ; Λ∗(T ∗TP )⊗EP ), let W be the weight
operator with respect to the action Λ∗Ad∗⊗% of AP , so that

(3.14) W (ω ⊗ νNP ,i) = (wi − q)(ω ⊗ νNP ,i) for ω ∈ Ωq(TP ).

Now, the section νNP ,i is not necessarily flat, but we see from Proposition 2.4 and (2.37) that

W (dnP νNP ,i) = widnP νNP ,i, W (dΞP νNP ,i) = (wi − 1)dΞP νNP ,i.

Hence, in terms of the decomposition

(3.15) Λq(ε,dT ∗Xs)⊗ Es = ρqΛq(T ∗TP )⊗ Es ⊕
dx

ρ
∧ ρq−1Λq−1(T ∗TP )⊗ Es

in a tubular neighborhood of TP in Xs and with respect to the basis of sections (3.9) and
the basis of forms (3.11), one computes using (3.10) that the operator Dε takes the form

(3.16) Dε =

( 1
ρ
ðTP +KP −ρ∂x − (W + n)x

ρ

ρ∂x − (W + n)x
ρ

−1
ρ
ðTP −KP

)
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near β−1
s (TP × [0, 1]), where ðTP is the de Rham operator on (TP , gTP ) acting on the vector

bundle EP with flat connection obtained by declaring the sections νNP ,i to have differential

(3.17) dνNP ,i :=
dΞP

ΞP

⊗ νNP ,i,

while the de Rham operator of Kostant KP acts pointwise via the identification

ρ−WΩq(TP ;EP ) = ρ−WC∞(TP ; Λqn∗P ⊗ V ),

keeping in mind that KP commutes with W by Corollary 2.5. Notice that EP , equipped
with the flat connection given by (3.17), corresponds to the flat vector bundle

NP ×ΞP |ΓP
V

with holonomy representation given by the restriction of ΞP to ΓP ∼= π1(TP ). In particular,
it is a trivial flat vector bundle when ΞP is the trivial group homomorphism, but otherwise
has no flat section and gives rise to an acyclic complex of differential forms.

The vertical operator of [ARS14, Definition 4.1] is then obtained by restricting the action
of ρDε to Bsb in Xs. Now, when we restrict the action of

ρDε =

(
ðTP + ρKP −ρ2∂x − (W + n)x

ρ2∂x − (W + n)x −ðTP − ρKP

)
to the connected component Bsb,P := β−1

s (TP ) of Bsb, we get the constant family

(3.18) Dv,P =

(
ðTP 0
0 −ðTP

)
.

More precisely, using the angle θ = arctan x
ε

gives a natural identification Bsb,P = [−π
2
, π

2
]×

TP , andDv,P is seen as a family of operators on TP parametrized by θ ∈ [−π
2
, π

2
]. In particular,

by Lemma 2.6, the kernel of Dv,P is trivial if the homomorphism ΞP is non-trivial, and
otherwise is a vector bundle over [−π

2
, π

2
] with space of smooth sections canonically identified

with C∞([−π
2
, π

2
]; Λ∗n∗P ⊗ V ⊕ Λ∗n∗P ⊗ V ) via the isomorphism

(3.19) ΨP : C∞([−π
2
,
π

2
]; Λ∗n∗P ⊗ V ⊕ Λ∗n∗P ⊗ V )→ C∞([−π

2
,
π

2
]; kerDv)

defined by

ΨP ((ω, vi), (η, vj)) = (ρp−wiω ⊗ νNP ,i, ρq−wj
dx

ρ
∧ η ∧ νNP ,j)

for ω ∈ C∞([−π
2
, π

2
]; Λpn∗P ) and η ∈ C∞([−π

2
, π

2
]; Λqn∗P ).

Let Πh be the fiberwise L2-orthogonal projection onto the kernel of Dv with respect to the
fiber bundle

Bsb,P = [−π
2
,
π

2
]× TP → [−π

2
,
π

2
].

Then the model operator Db of [ARS14, Definition 4.2] is obtained by looking at the action
of Dε on the sections of kerDv,

Dbu := Πh (Dεũ)|Bsb for u ∈ C∞(Bsb; kerDv),

where ũ ∈ C∞(Xs; Λ∗(ε,dT ∗Xs) ⊗ Es) is any smooth extension which restricts to give u on
Bsb. Hence, using the identification (3.19) and the variable X = x

ε
= tan θ on the interior of
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Bsb,P , we see that on Bsb,P , the model operator Db is trivial when the homomorphism ΞP

is non-trivial, and otherwise is given by

(3.20) Db,P =

(
KP −〈X〉∂X − (W + n) X

〈X〉
〈X〉∂X − (W + n) X

〈X〉 −KP

)
,

where KP is the de Rham operator of Kostant given in (2.32) and 〈X〉 =
√

1 +X2 . Using
the notation

(3.21) D(a) := 〈X〉−a〈X〉∂X〈X〉a = 〈X〉∂X +
aX

〈X〉
for a ∈ R,

this can be rewritten as

(3.22) Db,P =

(
KP −D(W + n)

D(−W − n) −KP

)
.

By Corollary 2.5, the operator KP commutes with the weight operator W , so that

(3.23) D2
b,P =

(
K2
P −D(W + n)D(−W − n) 0

0 K2
P −D(−W − n)D(W + n)

)
.

The behavior is clearly different whether the homomorphism ΞP is trivial or not. For this
reason, we will denote by P%

Γ the subset of PΓ consisting of parabolic subgroups P such that
ΞP is the trivial homomorphism.

Lemma 3.3. The operators Db and D2
b are Fredholm as b-operators for the b-density dX

〈X〉 for

X ∈ R provided % ◦ ϑ 6= %, where ϑ is the Cartan involution.

Proof. By [Mel93], it suffices to check that the indicial family I(D2
b , λ) is invertible for all

λ ∈ R. Clearly, it suffices to check that I(D2
b,P , λ) is invertible for each P ∈ P%

Γ and λ ∈ R.
Now, as shown in [ARS18, (2.12)], the indicial family of D(a) is I(D(a), λ) = ±(a − iλ) at
X = ±∞, so that the indicial family of Db,P is given by

(3.24) I(D2
b,P , λ) =

(
K2
P + (W + n)2 + λ2 0

0 K2
P + (W + n)2 + λ2

)
at both ends. Clearly, this is invertible for λ ∈ R \ {0}, while at λ = 0, it is invertible
provided W + n 6= 0 on the nullspace of KP ,

kerKP = H∗(nP ;V ) ∼= H∗(nP ;V ).

Recall that the highest weight Λ(%) of % is given by

Λ(%) = k1(%)e1 + · · ·+ kn+1(%)en+1, k1(%) ≥ k2(%) ≥ · · · ≥ kn(%) ≥ |kn+1(%)|,
where (k1(%), . . . , kn+1(%)) belongs to Z[1

2
]n+1 ifG = Spin(d, 1), and to Zn+1, ifG = SO0(d, 1).

For q = 0, . . . , n let

λ%,q := kq+1(%) + n− q,
and for q = n+ 1, . . . , 2n, let

λ%,q := −λ%,2n−q.
Furthermore, let {

λ+
%,n := λ%,q, λ−%,q = −λ%,q; if kn+1(%) ≥ 0,

λ+
%,n := −λ%,q, λ−%,q = λ%,q; if kn+1(%) < 0.
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Now, by [Pfa17, (6.4), (6.7)], cf. [BW80, ChapterVI.3], we have that for q 6= n

(3.25) W + n = λ%,q when acting on Hq(nP ;V ),

while for q = n, there is a decomposition

(3.26) Hn(nP ;V ) = Hn
+(nP ;V )⊕Hn

−(nP ;V )

into eigenspaces of W +n in such a way that W +n = λ±%,n when acting on Hn(nP ;V )± with
λ+
%,n = −λ−%,n. Furthermore, if %◦ϑ 6= % where ϑ is the Cartan involution, we see, for instance

from [Pfa17, (2.4) and (2.7)], that

(3.27) λ%,q > 0 for 0 ≤ q < n and λ+
%,n > 0.

This implies that W + n 6= 0 on kerKP and that I(D2
b,P , 0) is invertible as desired.

�

Remark 3.4. From [Pfa17, (2.4) and (6.6)], we see that

λ%,k ≥ λ%,k+1 + 1, for 0 ≤ k ≤ n− 2, and that λ%,n−1 ≥ λ+
%,n + 1.

To make use of Lemma 3.3, we will therefore assume that

(3.28) % ◦ ϑ 6= %,

where ϑ is the Cartan involution. The operator Db is then Fredholm and the uniform
construction of the resolvent of [ARS14, Theorem 4.5] does apply.

Theorem 3.5. Suppose that the representation % satisfies condition (3.28). Then the family
of operator Dε has finitely many small eigenvalues, that is, there are finitely many eigenval-
ues of Dε tending to 0 as ε ↘ 0. Furthermore, the projection Πsmall on the eigenspace
of small eigenvalues is a polyhomogeneous operator of oder −∞ in the surgery calculus
of [MM95]. More precisely, Πsmall ∈ Ψ−∞,Kb,s (Xs; Λ∗(ε,dT ∗Xs) ⊗ Es) for some index family
K with inf K ≥ 0. Moreover, at ε = 0, Πsmall corresponds to the projection on kerL2 Db on
Bsb and to the projection on the L2-kernel of DEi = xni ðEix−ni (using b-densities) on each
connected component X i of Bsm. In particular, the number of small eigenvalues counted
with multiplicity is given by

(3.29) rank Πsmall = dim kerL2 Db + 2 dim kerL2 ðE.

Proof. Assumption 1 of [ARS14, Theorem 4.5] is automatically satisfied by Dε, while As-
sumption 2 is a consequence of Lemma 3.3. We can therefore apply [ARS14, Theorem 4.5]
to conclude that there are finitely many eigenvalues, while the properties of the projections
Πsmall follows from [ARS14, Theorem 4.5 and Corollary 5.2]. For the formula for rank Πsmall,
it is clear that

rank Πsmall = dim kerL2 Db + 2 dim kerL2 DE,

so it suffices to notice that the L2-kernel of DE = xnðEx−n in terms of the b-density dgX
x2n is,

via multiplication by x−n, naturally isomorphic to the L2-kernel of ðE with respect to the
density dgX of the hyperbolic metric. �
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4. Cusp degeneration of analytic torsion

To study the behavior of analytic torsion as ε ↘ 0, we need to give a more precise
description of the small eigenvalues of Dε. For this, we must determine the L2-kernel of ðE,
Db, and Dε for ε > 0. For ðE, it is a standard result.

Proposition 4.1. If % satisfies condition (3.28) then kerL2 ðE = {0}.

Proof. See for instance [Pfa17, Proposition 8.1]. �

However, the L2-kernel of Db is non-trivial in general.

Proposition 4.2. If (3.28) holds, then the L2-kernel of Db is given by

(4.1)
⊕
P∈P%Γ

((⊕
q<n

(
0

〈X〉−λ%,q
)
ρn−λ%,qHq(nP ;V )

)
⊕
(

0

〈X〉−λ+
%,n

)
ρn−λ

+
%,nHn

+(nP ;V )

⊕
(
〈X〉λ−%,n

0

)
ρn−λ

−
%,nHn

−(nP ;V )⊕

(⊕
q>n

(
〈X〉λ%,q

0

)
ρn−λ%,qHq(nP ;V )

))
.

Proof. Fix P ∈ P%
Γ. Since −D(−a) is the adjoint of D(a), the operator (3.23) is positive

when restricted to a positive eigenspace of K2
P . Hence, the L2-kernel of Db,P is the same as

the operator

(4.2)

(
0 −D(W + n)

D(−W − n) 0

)
acting on sections on R taking values in kerKP . Since the kernel of D(a) is spanned by
〈X〉−a, which is in L2 with respect to the b-density dX

〈X〉 if and only if a > 0, the result follows

from the description of the action of (W + n) on Hq(n;V ) given in (3.25), (3.26) and (3.27)
together with the fact that λ%,q = −λ%,2n−q for q < n and that λ+

%,n = −λ−%,n. �

To determine the kernel of Dε for ε > 0, we need to give a description of the cohomology
groups Hq(X(Y );E). In order to do this, we shall first compute the L2-cohomology of FP (Y )
with coefficients in E.

Lemma 4.3. The L2-cohomology H∗(2)(FP (Y );E) of (FP (Y ),
dt2+gTP

t2
) with coefficients in E

is trivial if ΞP is the trivial homomorphism, and otherwise is given by

(4.3) Hq
(2)(FP (Y );E) =

 Hq(TP ;E), if q < n,
Hn

+(nP ;V ), if q = n,
{0}, if q > n.

Proof. Unfortunately, we cannot use the L2-Künneth formula of Zucker [Zuc83] as in the
proof [HHM04, Proposition 2], the reason being that in our setting, the function ζ of [Zuc83,
(2.3)] also depends on w in [Zuc83, (2.3)]. We will instead use spectral sequences.

First, consider the space L2AphgΩq(F̂P (Y );E) of L2-sections of Λq(ε,dT ∗Xs) ⊗ Es on

F̂P (Y ) ⊂ X ⊂ Xs at ε = 0 that have a polyhomogeneous expansion in x in the sense
of [Mel93]. Then the subspaces

L2A′phgΩq(F̂P (Y );E) := {ν ∈ L2AphgΩq(F̂P (Y );E) | dν ∈ L2AphgΩq+1(F̂P (Y );E)}
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form a complex

(4.4) · · · d // L2A′phgΩq(F̂P (Y );E)
d // L2A′phgΩq+1(F̂P (Y );E)

d // · · ·

whose cohomology is precisely H∗(2)(FP (Y );E). Indeed, given a closed L2-form with value in

E on FP (Y ), it always admits an L2-polyhomogneous representative, namely its harmonic
part in the Hodge decomposition (the polyhomogeneity of L2-harmonic forms can be seen
for instance from [ARS14, Corollary 5.2] restricted to the face Bsm). Moreover, if ω is a
L2-form such that η = dω is L2-polyhomogeneous, then replacing ω by its part in the image
of d∗ in the Hodge decomposition, we can assume that d∗ω = 0 as well. Hence, (d+d∗)ω = η.
From [HHM04] and [ARS14], we thus see that ω has to be polyhomogeneous, showing that
the cohomology of (4.4) is precisely L2-cohomology.

Now, d can be decomposed in three differentials,

d = dt + dnP + df ,

where dnP and df are the differentials of the proof of Lemma 2.6 acting on the second factor
in FP (Y ) = (Y,∞)× TP and

dtν = dt ∧ ∂ν
∂t
,

where t ∈ (Y,∞) is the coordinate on the first factor. If we rewrite this as d = dA + dB with
dA = df and dB = dnP + dt, this can be seen as a double complex with bigrading given by
declaring the elements twi−q−διP (ω ⊗ vP,i) and twi−q−δ dt

t
∧ ιP (ω ⊗ vP,i) for δ > 0 respectively

of bidegrees (q − wi, wi) and (q − wi, wi + 1) whenever ω ∈ Λqn∗P . A subtle point in the
definition of double complex is that we need the projection onto a bidegree component to
still be in the space. This is the reason why we are using polyhomogeneous L2-form, since
then dt automatically preserves such a space, which ensures in turn that the projection of an

element of L2A′phgΩq(F̂P (Y );E) onto one of its bidegree components is again in that space.
If ΞP is a non-trivial homomorphism, then by Lemma 2.6, the corresponding spectral

sequence degenerates at the first page with E1 = {0}, so the result follows. If instead ΞP is
the trivial homomorphism, then the first page is

E1 = L2A′phgΩ∗((Y,∞); Λ∗(n∗P )⊗ V )

with differential d1 = dB = dnP + dt. Moreover, the spectral sequence degenerates at the
second page, which is just the cohomology of (E1, d1). To compute this cohomology, we can
notice that the decomposition d1 = dnP + dt induces a structure of double complex with
bigrading obtained by declaring ω⊗ vP,i and dt

t
⊗ω⊗ vP,i respectively of bidegrees (q, 0) and

(q, 1) whenever ω ∈ Λqn∗P . The corresponding spectral sequence has first page given by

E1 = L2A′phgΩ∗((Y,∞);H∗(nP ;V ))

with differential d1 = dt. Hence, the spectral sequence degenerates at the second page E2,
which shows that the L2-cohomology is identified with E2, which is just the cohomology of
L2A′phgΩ∗((Y,∞);H∗(nP ;V )) with differential dt.

Now, let

WH(α) := {f ∈ tαL2((Y,∞);
dt

t
) | df = 0}
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be the weighted L2 cohomology of degree zero and weight α ∈ R\{0} on the interval (Y,∞)
for the measure dt

t
. Recall from [HHM04] that

WH(α) =

{
C, if α > 0,
{0}, otherwise,

while the corresponding cohomology group in degree 1 vanishes unless α = 0, in which case
it is infinite dimensional. Hence, the above discussion shows that H∗(2)(FP (Y );E) is always

trivial for q = 2n+ 1, while using (3.25) is given by

(4.5) Hq
(2)(FP (Y ));E) = WH(λ%,q)⊗Hq(TP ;E) ∼=

{
Hq(TP ;E), q < n,
{0}, q > n,

for q /∈ {n, 2n+ 1} and by

(4.6)
Hn

(2)(FP (Y );E) = WH(λ+
%,q)⊗Hn

+(nP ;V )⊕WH(λ−%,q)⊗Hn
−(nP ;V )

= Hn
+(nP ;V )

for q = n, giving the desired result when ΞP is the trivial homomorphism.
�

Proposition 4.4. The cohomology group Hq(X(Y );E) is trivial for q < n and q = 2n+ 1,
while the inclusion ιY : ∂X(Y ) ↪→ X(Y ) induces an isomorphism

(4.7) ι∗Y : Hk(X(Y );E)→ Hk(∂X(Y );E) for n < k ≤ 2n

and an inclusion

(4.8) ι∗Y : Hn(X(Y );E) ↪→ Hn(∂X(Y );E)

such that dimHn(X(Y );E) = 1
2

dimHn(∂X(Y );E).

Proof. The result follows from Lemma 4.3, the fact implied by Proposition 4.1 that

(4.9) H∗(2)(X;E) = ker ðE = {0}
and the Mayer-Vietoris long exact sequence in L2-cohomology
(4.10)

// Hq
(2)(X;E) // Hq(X(Y );E)⊕

( ⊕
P∈PΓ

Hq
(2)(FP (Y );E)

)
// Hq(∂X(Y );E) //

induced by the decomposition (2.20) of X. �

Remark 4.5. When (2.14) holds for each P ∈ PΓ, Proposition 4.4 is proved by Pfaff
in [Pfa17, § 8] using the approach of Harder [Har75]. See also [MFP12] for a proof when
n = 1 and G = Spin(3, 1) ∼= SL(2,C).

Proposition 4.6. For ε > 0, consider the restriction Eε = Es|β−1
s (M×{ε}) of Es on β−1

s (M ×
{ε}) ∼= M . Then the cohomology H∗(M ;Eε) of the complex induced by the flat connection
dε is such that

(4.11) dimHq(M ;Eε) =


0, if q ∈ {0, 2n+ 1};
κ%Γ dimHq−1(n;V ), if 1 ≤ q < n;
κ%Γ
(
dimHn−1(n;V ) + 1

2
dimHn(n;V )

)
, if q = n;

κ%Γ
(
dimHn+1(n;V ) + 1

2
dimHn(n;V )

)
, if q = n+ 1;

κ%Γ dimHq(n;V ), if n+ 1 < q ≤ 2n;
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where κ%Γ := #P%
Γ.

Proof. Consider the Mayer-Vietoris long exact sequence in cohomology

(4.12) · · ·
∂q−1 // Hq(M ;Eε)

iq // Hq(X;Eε)⊕Hq(X;Eε)
jq // Hq(Z;Eε)

∂q // · · ·

coming from a decomposition M = U
⋃
V , where U and V are open sets of M containing

X1 and X2 in M such that

U ∩ V = νZ((−δ, δ)× Z)

is a tubular neighborhood of Z ∼= ∂X in M . In particular, the map jq is defined by
jq(ω1, ω2) = ι∗Y ω1 − ι∗Y ω2. Now, by Lemma 2.6, we have that

(4.13) Hq(Z;Eε) ∼= Hq(∂X(Y );E) ∼=
⊕
P∈P%Γ

Hq(TP ;EP ) ∼=
⊕
P∈P%Γ

Hq(nP ;V ) ∼= (Hq(n;V ))κ
%
Γ ,

where the last isomorphism follows from the fact nP = Ad(kP )n. Hence, the result fol-
lows by plugging this into the long exact sequence (4.12), as well as the description of
H∗(X(Y );Eε) ∼= H∗(X(Y );E) given above, using the fact that the map ι∗Y : Hq(X(Y );E)→
Hq(∂X(Y );E) is an inclusion for all q.

�

This yields the following useful fact about the small eigenvalues of Dε.

Corollary 4.7. If the representation % satisfies condition (3.28), then Dε has no small
eigenvalues that are positive and Πsmall is the projection on the kernel of Dε for ε > 0 and
the projection on the L2-kernel of Db for ε = 0.

Proof. It follows from Proposition 4.2 and Proposition 4.6 that

dim kerL2 Db = dimH∗(M ;Eε) = kerDε for ε > 0.

Since kerL2 ðE = 0 by Proposition 4.1, we see from (3.29) that rank Πsmall = dim kerDε for
ε > 0. Since kerDε is obviously included in the range of Πsmall, the result follows. �

The fact that there are no positive small eigenvalues as ε ↘ 0 greatly simplifies the
description of the limiting behavior of analytic torsion as ε↘ 0.

Theorem 4.8. For ε > 0, let us denote by hε the bundle metric on Eε induced by hs. Then
as ε ↘ 0, the logarithm of the analytic torsion of (M, gε, Eε, hε) has a polyhomogeneous
expansion and its finite part is given by

(4.14) FP
ε=0

log T (M ;Eε, gε, hε) = 2 log T (X;E, gX , hE) + log T (D2
b ).

Proof. This is a particular case of [ARS14, Corollary 11.3] except for the fact that the bundle
metric is not even in the sense of [ARS14, Definition 7.6]. This later condition was there to
invoke [ARS14, Corollary 7.8]. However, in the present setting, the same argument works
to prove the analog of [ARS14, Corollary 7.8] if we substitute the number operator NH/Y

occurring in the definition of the even and odd expansions of [ARS14, (7.33) and (7.34)] by
the weight operator W of (3.14). Indeed, once we choose normalized sections as in (3.9), the
only effect on the model operator (3.16) is to add terms of order zero which do not depend
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on ρ1 and these extra terms do not affect the parity of the operator. In particular, for the
part given by KP , this latter point is a consequence Corollary 2.5.

�

To compute the contribution of T (D2
b ) coming from TP for P ∈ P%

Γ, notice from (3.23)
that

log T (D2
b,P ) = AP +BP ,

where AP denotes the contributions coming from kerKP ⊕ kerKP , while BP denotes the
contribution coming from kerK⊥P ⊕ kerK⊥P .

Lemma 4.9. The number AP does not depend on P ∈ P%
Γ and is given by

(4.15)

AP =
1

2

∑
q<n

(−1)q
[
log cλ%,q − (2q + 1) log (2λ%,q)

]
dimHq(n;V )

+
1

2

∑
q>n

(−1)q
[
log c−λ%,q + (2q + 1) log (−2λ%,q)

]
dimHq(n;V )

+
(−1)n log cλ+

%,q

2
dimHn(n;V ).

where

(4.16) cb :=

∫
R
〈X〉−2b dX

〈X〉
=

Γ(b)Γ(1
2
)

Γ(b+ 1
2
)
, for b > 0.

Furthermore, if n is odd, this formula simplifies to
(4.17)

AP =
(−1)n log cλ+

%,q

2
dimHn(n;V ) +

∑
q<n

(−1)q
[
log cλ%,q + (2n− 2q) log (2λ%,q)

]
dimHq(n;V ).

Proof. When we restrict the action of D2
b,P to the kernel of kerKP , we obtain the operator(

−D(W + n)D(−W − n) 0
0 −D(−W − n)D(W + n)

)
.

Setting ∆(a) := −D(−a)D(a), we know from [ARS18, equation (2.16)] that

(4.18) log det ∆(a) = log c|a| − sign(a) log(2|a|) for a 6= 0.

1Since x
ρ = sin θ in the coordinates of [ARS14].
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Hence, using the decomposition of kerKP into eigenspaces of W + n given in (3.25) and
(3.26), we see that
(4.19)

AP = −1

2

∑
q 6=n

[
(−1)qq log det ∆(−λ%,q) + (−1)q+1(q + 1) log det ∆(λ%,q)

]
dimHq(nP ;V )

− 1

2

[
(−1)nn log det ∆(−λ+

%,n) + (−1)n+1(n+ 1) log det ∆(λ+
%,n)
]

dimHn
+(nP ;V )

− 1

2

[
(−1)nn log det ∆(−λ−%,n) + (−1)n+1(n+ 1) log det ∆(λ−%,n)

]
dimHn

−(nP ;V )

= −1

2

∑
q<n

[
(−1)qq log

(
2λ%,qcλ%,q

)
+ (−1)q+1(q + 1) log

(
cλ%,q
2λ%,q

)]
dimHq(nP ;V )

− 1

2

∑
q>n

[
(−1)qq log

(
c−λ%,q
−2λ%,q

)
+ (−1)q+1(q + 1) log

(
−2λ%,qc−λ%,q

)]
dimHq(nP ;V )

− 1

2

[
(−1)nn log

(
2λ+

%,ncλ+
%,n

)
+ (−1)n+1(n+ 1) log

(
cλ+

%,n

2λ+
%,n

)]
dimHn(nP ;V )

2

− 1

2

[
(−1)nn log

(
cλ+

%,n

2λ+
%,n

)
+ (−1)n+1(n+ 1) log

(
2λ+

%,ncλ+
%,n

)] dimHn(nP ;V )

2

=
1

2

∑
q<n

(−1)q
[
log cλ%,q − (2q + 1) log (2λ%,q)

]
dimHq(nP ;V )

+
1

2

∑
q>n

(−1)q
[
log c−λ%,q + (2q + 1) log (−2λ%,q)

]
dimHq(nP ;V )

+
(−1)n log cλ+

%,n

2
dimHn(nP ;V ).

Since nP = Ad kP (n), we see that dimHq(nP ;V ) = dimHq(n;V ) and the result follows.
Furthermore, when n is odd, we know from [Oni04, Theorem 8.3 p.68] or [GW09, § 3.2.5]
that the representation ρ is self-dual, which implies that there is a canonical isomorphism
E∗P
∼= EP which is an isomorphism of flat vector bundles and of Hermitian vector bundles.

Hence, we see by Poincaré duality that

(4.20) dimH2n−q(nP ;V ) = dimH2n−q(TP ;EP ) = dimHq(TP ;EP ) ∼= dimHq(nP ;V ),

from which (4.17) follows. �

To compute BP , we need the following result.

Lemma 4.10. For a ∈ R and b > 0, we have that

log det
(
∆(a) + b2

)
− log det

(
∆(−a) + b2

)
= −2 log

(
a+
√
a2 + b2

b

)

Proof. By the proof of [ARS18, (2.14)], we have that

R Tr(e−t∆(a))− R Tr(e−t∆(−a)) = 2

∫ a

0

√
t

π
e−tu

2

du.
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Hence, for Re s > −1
2
, the difference of the regularized zeta function of ∆(a) + b2 and

∆(−a) + b2 is given by
(4.21)

ζ(s) =
2

Γ(s)

∫ ∞
0

tse−tb
2

(∫ a

0

√
t

π
e−tu

2

du

)
dt

t
=

2

Γ(s)

∫ a

0

(∫ ∞
0

ts
√
t

π
e−t(u

2+b2)dt

t

)
du

=
2Γ(s+ 1

2
)

√
π Γ(s)

∫ a

0

du

(u2 + b2)s+
1
2

=
2Γ(1

2
)s

√
π

∫ a

0

du

(u2 + b2)
1
2

+O(s2)

= 2s log

(
a+
√
a2 + b2

b

)
+O(s2)

as s→ 0. Hence, we see that

ζ ′(0) = 2 log

(
a+
√
a2 + b2

b

)
,

from which the result follows.
�

We will also need the fact that the positive eigenvalues of K2
P come in pairs. Indeed, if

v ∈ Λqn∗P ⊗V is such that d∗nP v = 0 and K2
Pv = b2v with b > 0, then v′ := dnP v ∈ Λq+1n∗P ⊗V

is such that

K2
Pv
′ = b2v′, d∗nP v

′ = K2
Pv = b2v.

Furthermore, by Proposition 2.4, we have that

(W + n)v = av =⇒ (W + n)v′ = av′.

Hence, for q ∈ N, a ∈ R and b > 0, let Vq,a,b be the subspace of elements v in ker(d∗nP ) ∩
Λqn∗P ⊗ V such that

(W + n)v = av and K2
Pv = b2v,

so that we have the decomposition

(4.22) (kerKP )⊥ =
⊕
q,a,b

(Vq,a,b ⊕ dnPVq,a,b)

Remark 4.11. Conjugating with kP ∈ K, we see that dimVq,a,b does not depend on P ∈ P%
Γ.

Lemma 4.12. The term BP does not depend on P and is given by

BP =
∑
q,a,b

(−1)q log

(
a+
√
a2 + b2

b

)
dimVq,a,b.
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Proof. Set d(a, b) = log det (∆(a) + b2). From (3.23) and the decomposition (4.22), we see
that

(4.23)

BP =
∑
q,a,b

−dimVq,a,b
2

[
((−1)qq + (−1)q+1(q + 1))d(−a, b)

+((−1)q+1(q + 1) + (−1)q+2(q + 2))d(a, b)
]

=
∑
q,a,b

(−1)q+1 dimVq,a,b
2

[d(a, b)− d(−a, b)] ,

so that the result follows by applying Lemma 4.10. �

Thus, we deduce from Theorem 4.8 that,

(4.24) FP
ε=0

log T (M ;E, gε, hε) = 2 log T (X;E, g, h) +
∑
P∈P%Γ

(AP +BP ) ,

where AP and BP do not in fact depend on P ∈ P%
Γ and are computed explicitly in Lemma 4.9

and Lemma 4.12.

5. Cusp degeneration of the Reidemeister torsion

To study the behavior of the Reidemeister torsion under the above cusp degeneration, we
can use the Mayer-Vietoris long exact sequence (4.12). For q 6= n, let µqZ be an orthonormal
basis of

Hq(Z;Eε) ∼=
⊕
P∈P%Γ

Hq(TP ;EP )

with respect to the metrics gTP and bundle metrics hEP for P ∈ P%
Γ. For q = n, using the

decomposition (3.26) and Lemma 2.6, we have a decomposition

(5.1) Hn(Z;Eε) = Hn
+(Z;Eε)⊕Hn

−(Z;Eε)

with

Hn(Z;Eε)± =
⊕
P∈P%Γ

Hn(TP ;EP )±,

where Hn(TP ;EP )± is the image of Hn(nP ;V )± under the map (2.28). Let µn± be an or-
thonormal basis of Hn(Z;Eε)± with respect to the metrics gTP and the bundle metrics hEP
for P ∈ P%

Γ. Notice that, combining (4.6) and (4.9) with (4.10), we see that the map

(5.2) pr− ◦ι∗Y : Hn(X(Y );E)→ Hn
−(Z;Eε)

is an isomorphism, where pr− : Hn(Z;Eε) → Hn
−(Z;Eε) is the projection induced by the

decomposition (5.1). We consider then on Hn(Z;Eε) the basis

µnZ := (ι∗Y µ
n
X , µ

n
+),

where µnX is the basis of Hn(X;Eε) ∼= Hn(X(Y );E) chosen such that pr− ◦ι∗Y (µnX) = µn−.

Remark 5.1. The basis µnZ is typically not orthonormal with respect to gTP and hEP , but
the change of basis from µnZ to (µn−, µ

n
+) has determinant 1.
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One advantage of the basis µqZ is that it is compatible with decomposition

Hq(Z;Eε) = ker ∂q ⊕ Im ∂q

induced by the long exact sequence (4.12). Now, the map jq is explicitly given by

jq(u, v) = ι∗Y u− ι∗Y v,

so

ker ∂q = Im jq = Im ι∗Y .

Hence, on Hq(X(Y );E), we have an induced basis µqX such that ι∗Y (µqX) = µqZ |ker ∂q
(which

gives back µnX above when q = n). This basis in turn induces a basis µqX⊕µ
q
X on Hq(X;Eε)⊕

Hq(X;Eε). Similarly, the map iq is given by

iq(u) = (ι∗1u, ι
∗
2u),

where ιi : X ↪→M for i = 1, 2 is the inclusion of each copy of X in M . In particular, we see
that Im iq ∼= Im(ι∗Y ι

∗
1) since ι∗Y is injective. We have in particular a natural decomposition

Hq(M ;Eε) = Im ∂q−1 ⊕ Im(ι∗Y ι
∗
1),

and the basis µ∗Z induces a basis µqM of Hq(M ;Eε) compatible with this decomposition given
by

µqM = (∂q−1(µq−1
Z

∣∣
Hq−1(Z;Eε)/ ker ∂q−1

), (ι∗Y ι
∗
1)−1(µqZ |ker ∂q

).

With these choices of bases, we see that | det((∂q)⊥)| := | det(∂q : (ker ∂q)
⊥ → Im ∂q)| = 1.

For the map iq and jq, there are some factors of
√

2 to take into account. Indeed, if
µqX = {u1, . . . u`} so that µqX ⊕ µ

q
X = {(u1, 0), . . . , (u`, 0), (0, u1), . . . , (0, u`)}, then one can

consider instead the orthonormal change of basis

(
u1√

2
,
u1√

2
), . . . , (

u`√
2
,
u`√
2

), (
u1√

2
,− u1√

2
), . . . , (

u`√
2
,− u`√

2
)

compatible with the decomposition Hq(X;Eε)⊕Hq(X;Eε) = ker jq ⊕ Im jq since

ker jq = span{( u1√
2
,
u1√

2
), . . . , (

u`√
2
,
u`√
2

)}.

Since jq(
uj√

2
,− uj√

2
) =
√

2 uj and iq((ι
∗
1)−1(uj)) =

√
2 (

uj√
2
,
uj√

2
), we thus see that

(5.3) | det((jq)⊥)| = | det((iq)⊥)| = 2
dimHq(X;Eε)

2 .

Theorem 5.2. With the above choices of bases in cohomology, we have that the Reidemeister
torsions of M and X ∼= X(Y ) are related by

τ(M,Eε, µM) =
τ(X(Y ), E, µX)2

τ(Z,E, µZ)
.

Furthermore, if n is odd, then τ(Z,E, µZ) = 1 and the formula simplifies to

τ(M,Eε, µM) = τ(X(Y ), E, µX)2.
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Proof. By the formula of Milnor, we have that

τ(X(Y ), E, µX)2

τ(M,Eε, µM)τ(Z,E, µZ)
= τ(H),

where τ(H) is the torsion of the complex (4.12) with preferred basis given by µM , µX ⊕ µX
and µZ . Using (5.3), one computes that in fact

τ(H) =
∏
q

(
| det((jq)⊥)|(−1)q+1| det((iq)⊥)|(−1)q

)
= 1,

from which the first formula follows. For the second formula, notice first that by Remark 5.1,
we can replace the basis µZ with an orthonormal basis without changing the torsion. Now,
when n is odd, we know from [GW09, § 3.2.5] that the representation % is self-dual. This
means that there is a canonical isomorphism E∗ ∼= E which is an isomorphism of flat
vector bundles and of Hermitian vector bundles. Thus, by Poincaré duality, Milnor duality
and [Mül93, Proposition 1.12], we have that

τ(Z,E, µZ)2 = 1 =⇒ τ(Z,E, µZ) = 1.

�

6. Formula relating Analytic and Reidemeister torsions

By [Mül93, Theorem 1], we know that for ε > 0,

(6.1) log τ(M,Eε, µM) = log T (M,E, gε, hε)− log

(∏
q

[µqM |ω
q](−1)q

)
,

where ωq is an orthonormal basis of harmonic forms with respect to gε and hε and [µqM |ωq] =
| detW q| with W q the matrix describing the change of basis

(µqM)i =
∑
j

W q
ijω

q
j .

To obtain a formula relating analytic torsion and Reidemeister torsion on the hyperbolic
manifold (X, g), we will take the finite part at ε = 0 of the right hand side of (6.1). By
formula (4.24), we know how to compute the finite part of log T (M,E, gε, hε) as ε↘ 0. To

compute the finite part of log
(∏

q[µ
q
M |ωq](−1)q

)
, we will proceed as in [ARS18, § 3.3].

First, by the definition of cb given in (4.16) and using (3.25), we see that an orthonormal
basis of kerL2 Db is given by
(6.2)

1
√
cλ%,q−1

(
0

〈X〉−λ%,q−1

)
ρn−λ%,q−1µq−1

Z , in degree 1 ≤ q < n;(
1

√
cλ%,n−1

(
0

〈X〉−λ%,n−1

)
ρn−λ%,n−1µn−1

Z ,
1

√cλ+
%,n

(
〈X〉−λ+

%,n

0

)
ρn+λ+

%,nµn−

)
, in degree q = n;(

1
√cλ+

%,n

(
0

〈X〉−λ+
%,n

)
ρn−λ

+
%,nµn+,

1
√
c−λ%,n+1

(
〈X〉λ%,n+1

0

)
ρn−λ%,n+1µn+1

Z

)
in degree q = n+ 1;

1
√
c−λ%,q

(
〈X〉λ%,q

0

)
ρn−λ%,qµqZ , in degree n+ 1 ≤ q ≤ 2n.
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Extending this basis smoothly to (Xs, Es) and then applying ΠkerDε = Πsmall to them gives,
for ε small enough, a basis of kerDε made of polyhomogeneous sections of Λ∗ε,dT ∗Xs ⊗
Es. Applying the Gram-Schmidt process, we can assume furthermore that this basis is
orthonormal. Hence, we see that there is an orthonormal basis µqXs of kerDε in degree q of
polyhomogeneous sections which restricts on Bsb to give the basis (6.2) in degree q.

Now for 1 ≤ q ≤ n and vq−1 ∈ µq−1
Z , consider the family of harmonic forms ωqε of degree q

with respect to ðε such that in terms of the operator Dε = ρnðερ−n, we have that ρnωqε ∈ µ
q
Xs

restricts to

(6.3)
1

√
cλ%,q−1

(
0

〈X〉−λ%,q−1

)
ρn−λ%,q−1vq−1 =

ρnε−λ%,q−1

√
cλ%,q−1

〈X〉−2λ%,q−1
dX

〈X〉
∧ vq−1 at ε = 0.

If εµw for µ > 0 is a higher order term in the expansion of ωqε as ε ↘ 0, then since Dε

commutes with ε, we see that ρnw ∈ kerDε, so in particular the restriction ρnwsb,P of ρnw
to Bsb,P is in kerDb,P . As opposed to the L2-kernel of Db,P , the full kernel of Db,P is more
complicated and involves more substantially the operator KP . For us, what is important is
that it decomposes into two parts,

kerDb,P = ker1Db,P ⊕ ker2Db,P ,

where ker1Db,P and ker2Db,P correspond to the elements of kerDb,P which are sections on
R taking values in kerKP and (kerKP )⊥ respectively. Thus, the first factor contains the
L2-kernel and corresponds to the kernel of the operator in (4.2) for sections on R taking
values in kerKP . This part can be written explicitly using the fact that the kernel of D(a)
is spanned by 〈X〉−a. The second part is more intricate to describe, but the key observation
for us will be that, since it comes from (kerKP )⊥, it leads to no cohomological contributions
as we will see.

Thus, if q < n, the above discussion implies that

(6.4) ρnwsb,P =

(
0

〈X〉−λ%,q−1

)
ρn−λ%,q−1wq−1,P +

(
〈X〉λ%,q

0

)
ρn−λ%,qwq,P + aq,P ,

with wq,P ∈ Hq(TP ;EP ), where the first two terms are in ker1Db,P and aq,P ∈ ker2Db,P .
This means that

(6.5) εµwsb,P = εµ−λ%,q−1〈X〉−2λ%,q−1
dX

〈X〉
∧ wq−1,P + εµ−λ%,qwq,P + εµρ−naq,P .

Moreover, by Proposition 4.6 and its proof, only the first term contributes cohomologically.
If instead q = n, we must replace (6.4) by

(6.6) ρnwsb,P =

(
0

〈X〉−λ%,n−1

)
ρn−λ%,n−1wq−1,P

+

(
〈X〉λ+

%,n

0

)
ρn−λ

+
%,nw+

n,P +

(
〈X〉−λ+

%,n

0

)
ρn+λ+

%,nw−n,P + an,P

with w±n,P ∈ Hn(TP ;EP )± and an,P ∈ ker2Db,P . Hence, in this case,

(6.7) εµwsb,P = εµ−λ%,n−1〈X〉−2λ%,n−1
dX

〈X〉
∧ wq−1,P + εµ−λ

+
%,nw+

n,P + εµ+λ+
%,nw−n,P + εµρ−nan,P .

Clearly the last term does not contribute cohomologically. Hence, since µ > 0 and λ%,n−1 >
λ+
%,n > 0 by Remark 3.4, we see that (6.5) and (6.7) are cohomologically negligible compared
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to (6.3) multiplied by ρ−n as ε↘ 0. Hence, asymptotically, as ε↘ 0, we have that

ωqε ∼
〈X〉−λ%,q−1

√
cλ%,q−1

dx

ρ
∧ ρ−λ%,q−1vq−1 =

ε−λ%,q−1

√
cλ%,q−1

〈X〉−2λ%,q−1
dX

〈X〉
∧ vq−1.

Since ∫ ∞
−∞

ε−λ%,q−1

√
cλ%,q−1

〈X〉−2λ%,q−1
dX

〈X〉
= ε−λ%,q−1

√
cλ%,q−1 ,

this means that, in terms of cohomology classes,

(6.8) [ωqε ] ∼ ε−λ%,q−1
√
cλ%,q−1 ∂q−1

[
vq−1

]
as ε↘ 0.

Similarly, for q = n+1, if vn+ ∈ µn+, let ωn+1
ε be the family of L2-harmonic forms with respect

to ðε such that ρnωn+1
ε ∈ µn+1

Xs
restricts to

(6.9)
1

√cλ+
%,n

(
0

〈X〉−λ+
%,n

)
ρn−λ

+
%,nvn+ =

ρnε−λ
+
%,n

√cλ+
%,n

〈X〉−2λ+
%,n
dX

〈X〉
∧ vn+ at ε = 0.

Again, if εµw is a higher order term in the expansion of ωn+1
ε as ε ↘ 0, then again the

restriction ρnwsb,P of ρnw to Bsb,P is in kerDb, so that

(6.10) ρnwsb,P =

(
0

〈X〉−λ+
%,n

)
ρn−λ

+
%,nw+

n,P

+

(
0

〈X〉λ+
%,n

)
ρn+λ+

%,nw−n,P +

(
〈X〉λ%,n+1

0

)
ρn−λ%,n+1wn+1,P + an+1,P

with w±n,P ∈ Hn
±(nP ;V ), wn+1,P ∈ Hn+1(nP ;V ) and an+1,P ∈ ker2Db,P . Hence, we have that

(6.11) εµwsb,P = εµ−λ
+
%,n〈X〉−2λ+

%,n
dX

〈X〉
∧ w+

n,P + εµ+λ+
%,n〈X〉2λ

+
%,n
dX

〈X〉
∧ w−n,P

+ εµ−λ%,n+1wn+1,P + εµρ−nan+1,P .

Clearly, the last term does not contribute cohomologically. Moreover, if w−n,P is non-zero,

we must have that µ > λ+
%,n, otherwise ρnωn+1

ε would not vanish at Bsm as a section of

Λ∗(ε,dT ∗Xs) ⊗ Es. Since µ > 0 and λ%,n+1 < 0, we thus see that the other terms are
cohomologically negligible compared to (6.9) as ε↘ 0. Hence, proceeding as before, we see
that in terms of cohomology classes,

(6.12) [ωn+1
ε,+ ] ∼ ε−λ

+
%,n
√
cλ+

%,n
∂n
[
vn+
]

as ε↘ 0.

Now, since the representation % is self-dual when n is odd and %∗ ∼= % ◦ ϑ if n is even, we
see that the above results holds for the dual representation ρ∗ and the corresponding dual
vector bundle E∗. Now, Poincaré duality gives a canonical isomorphism

Hn(TP ;EP )∗±
∼= Hn(TP ;E∗P )∓.

Hence, applying Poincaré duality on M and Z, we can dualize (6.8). More precisely, for
n + 1 ≤ q ≤ 2n and v ∈ µqZ , let ωqε be the family of L2-harmonic forms of degree q with
respect to ðε such that ρnωqε ∈ µ

q
Xs

restricts to

1
√
c−λ%,q

(
〈X〉λ%,q

0

)
ρn−λ%,qv at ε = 0.
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Then, the dual statement of (6.8) is that asymptotically, in terms of cohomology classes,

(6.13) [ωqε ] ∼
ε−λ%,q
√
c−λ%,q

(ι∗Y ι
∗
1)−1 [v] as ε↘ 0.

Finally, for q = n and vn− ∈ µn−, let ωnε,− be a family of L2-harmonic forms with respect to
ðε such that ρnωnε,− ∈ µnXs restricts to

(6.14)
1

√cλ+
%,n

(
〈X〉−λ+

%,n

0

)
ρn+λ+

%,nvn− at ε = 0.

In this case, it is delicate to take the Poincaré dual of (6.12), since the Poincaré duality
on M behaves differently from the Poincaré duality on TP . On the other hand, computing
the asymptotic behavior of the cohomology class [ωnε,−] is slightly more complicated. This
is due to the fact that in the asymptotic expansion of ωnε,− as ε ↘ 0, there is a lower order

term which in terms of L2 norm becomes negligible, but in terms of cohomology, is of the
same order as the top order term in the expansion.

To compute this term in the expansion of ωnε,−, recall first that on the single surgery space

Xs, ρ is a boundary defining function for Bsb and xsm := ε
ρ

= 1
〈X〉 is a boundary defining

function for Bsm. Hence, we see from (6.14) that the restriction of ρnωnε,− at Bsb has a term

of order x
λ+
%,n
sm at Bsm,

ρnωnε,− ∼ xλ
+
%,n
sm f = ελ

+
ρ,n f̃ as xsm ↘ 0,

where f̃ = f

ρλ
+
%,n

and f is a bounded polyhomogeneous section of Λn(ε,dT ∗Xs)⊗ Es on Bsm.

In particular, since f |Bsm∩Bsb 6= 0, we see that f̃ is not in L2. Moreover, since Dε(ρ
nωnε,−) = 0

and Dε commutes with ε, we see that D0f̃ = 0, where D0 is the restriction of Dε to Bsm.
On the other hand, if ρnωnε,− has a term of the form ρµ(log ρ)`w in its expansion at Bsb,P

with µ > 0, ` ∈ N0 and w ∈ Aphg(Xs; Λn(ε,dT ∗Xs)⊗Es) a bounded polyhomogeneous section,
then since Dε commutes with ε, we see that

〈X〉µ(log〈X〉)jw
∣∣
Bsb
∈ kerDb, j ∈ {0, . . . , `},

though it is not necessarily in kerL2 Db. In particular, 〈X〉µw|Bsb ∈ kerDb. From the indicial
family (3.24), we see that the elements of the kernel of kerDb only involve powers of 〈X〉
and logarithmic term log〈X〉 in their expansion at X = ±∞, which implies that ` = 0.

Then, from (3.20) and (4.1), this means that

(6.15) 〈X〉µw|Bsb,P =
1

√
cλ%,n−1

(
0

〈X〉−λ%,n−1

)
ρn−λ%,n−1w′P + a′n,P

+
1

√cλ+
%,n

(
〈X〉λ+

%,n

0

)
ρn−λ

+
%,nw+

P +
1

√cλ+
%,n

(
〈X〉−λ+

%,n

0

)
ρn+λ+

%,nw−P

with w′P ∈ Hn−1(TP ;EP ), a′n,P ∈ ker2Db,P and w±P ∈ Hn(TP ;EP )±. Clearly, the second term
does not contribute cohmologically and can be forgotten. Now, the term coming from w′P in
the expansion of ωnε,− is asymptotically of the form

(6.16) εµ
1

√
cλ%,n−1

(
0

〈X〉−λ%,n−1

)
ρ−λ%,n−1w′P,0 =

1
√
cλ%,n−1

εµ−λ%,n−1〈X〉−2λ%,n−1
dX

〈X〉
∧ w′P ,
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so that at the cohomological level,
(6.17)[

1
√
cλ%,n−1

εµ−λ%,n−1〈X〉−2λ%,n−1
dX

〈X〉
∧ w′P

]
∼ εµ−λ%,n−1

√
cλ%,n−1 ∂n−1 [w′P ] as ε↘ 0

using the same argument leading to (6.8).

Remark 6.1. Notice that (6.17) is not negligible in the expansion of ωnε , but it is when we
compared to (6.8) since we assume µ > 0.

On the other hand, for the term coming from w−P , it is of the form εµ times a term
comparable to ρnωnε,−, so will be negligible cohomologically in the limit ε↘ 0.

Finally, if w+
P 6= 0, we see that the term coming from w+

P in the expansion of ωnε,− is

εµ
√cλ+

%,n

〈X〉λ
+
%,nρ−λ

+
%,nw+

P,0 =
εµ−λ

+
%,n

√cλ+
%,n

w+
P,0 as ε↘ 0.

When we pull-back to Z, this gives at the cohomological level

(6.18) [ι∗Zω
n
ε,−] ∼ ελ

+
%,n

√cλ+
%,n

[vn−] +
∑
P∈PΓ

εµ−λ
+
%,n

√cλ+
%,n

[w+
P,0] as ε↘ 0.

However, since (5.2) is an isomorphism in cohomology, we must have that µ = 2λ+
%,n and

that

(6.19) [ι∗Zω
n
ε,−] ∼ ελ

+
%,n

√cλ+
%,n

ι∗Zw
n
M as ε↘ 0,

where wnM ∈ Hn(X(Y );E) is the unique cohomology class such that pr− ◦ι∗Y (wnM) = [vn−].
Combining (6.8), (6.12), (6.13), (6.17), (6.19) and keeping in mind Remark 6.1, we finally

obtain

(6.20)

FP
ε=0

log

(∏
q

[µqM |ω
q](−1)q

)
=
κ%Γ
2

∑
q<n

(−1)q
[
log cλ%,q

]
dimHq(n;V )

+
κ%Γ
2

∑
q>n

(−1)q
[
log c−λ%,q

]
dimHq(n;V )

+
κ%Γ(−1)n log cλ+

%,q

2
dimHn(n;V ).

This yields the following formula relating analytic torsion and Reidemeister torsion.

Theorem 6.2. If the irreducible representation % is such that Assumption 2.2 and (3.28)
hold, then the analytic torsion of (X, gX , E, hE) and the Reidemeister torsion of (X(Y ), E, µX)
are related by

(6.21) log T (X;E, gX , hE) = log τ(X(Y ), E, µX)− 1

2
log τ(Z,E, µZ)− κ%Γ

2
(α% + β%)

where κ%Γ = #P%
Γ is the number of connected components TP of ∂X for which H∗(TP ;EP ) is

non-trivial,

(6.22) α% :=
1

2

∑
q 6=n

(−1)q(2q + 1) sign(q − n) log (2|λ%,q|) dimHq(n;V )
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and

(6.23) β% :=
∑
q,a

∑
b>0

(−1)q dimVq,a,b log

(
a+
√
a2 + b2

b

)
with Vq,a,b the vector spaces occurring in the decomposition (4.22) for the parabolic subgroup
P = P0.

Proof. The formula follows by taking the finite part as ε↘ 0 of the right hand side of (6.1)
via (4.24) and (6.20) and by applying Theorem 5.2 to the left hand side of (6.1). �

Corollary 6.3. If n is odd, then the formula of Theorem 6.2 simplifies to

(6.24) log T (X;E, gX , h) = log τ(X(Y ), E, µX)− κ%Γ
2

(α% + β%)

with α% given more simply by

(6.25) α% := 2
∑
q<n

(−1)q(n− q) log (2λ%,q) dimHq(n;V )

Proof. This follows from Theorem 5.2 and (4.17). �

Comparing our formula with [Pfa17, Theorem 1.1] gives the following formula for the
analytic torsion of the cusps.

Corollary 6.4. If (2.14) holds, then

(6.26) log Treg(FX , ∂FX ;E) = −1

2
log τ(Z,E, µZ)− κΓ

2
(α% + β%) + c(n)(rankE) vol(∂FX)

− κΓ
(−1)n

4
log(λ+

%,n) dimHn(n, V )− κΓ

4

∑
q 6=n

(−1)q log |λ%,q| dimHq(n;V )

where c(n) is defined in [Pfa17, (15.10)] and κΓ = #PΓ is the number of cusps of (X, gX).

To conclude this section, let us give a proof of Corollary 1.7.

Proof of Corollary 1.7. In this case, κ
τ(m)
Γ = #PΓ does not depend on m and is simply the

number of cusp ends of X. By Corollary 6.3 and [MP12, Theorem 1.1], the results will follow

provided we can show that the defect −#PΓ

2

(
ατ(m) + βτ(m)

)
in (6.24) is O(m

n(n+1)
2 logm) as

m→∞. To see this, recall that by Weyl’s dimension formula, there exists a constant C > 0
such that

dim(τ(m)) = Cm
n(n+1)

2 +O(m
n(n+1)

2
−1) as m→∞.

Hence, we easily see that

dimH∗(n; τ(m)) = O(dim τ(m)) = O(m
n(n+1)

2 ) as m→∞.
Thus, since by definition λτ(m),q = τq+1 +m+ n− q, we see directly from (6.25) that

ατ(m) = O(m
n(n+1)

2 logm) as m→∞.
Similarly, (kerKP )⊥ in (4.22) is clearly such that

dim(kerKP )⊥ = O(dim τ(m)) = O(m
n(n+1)

2 ) as m→∞,
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while the weights wi in (2.23) are all O(m) as m → ∞. Indeed, the wi are obtained by
restricting the weights of % to a, so this follows from the description of the weights of % in
terms of the highest weight, see for instance [GW09, §3.2.2]. Therefore, we see from (6.23)
that

βτ(m) = O(m
n(n+1)

2 logm) as m→∞,
from which the result follows. �

7. Examples in dimension 3

We will now apply focus on the case d = 3 and n = 1 with G = SL(2,C) and K = SU(2).
The standard Iwasawa decomposition of G = NAK is then given by

N =

{(
1 z
0 1

)
∈ SL(2,C) | z ∈ C

}
with Lie algebra

n =

{(
0 z
0 0

)
∈ sl(2,C) | z ∈ C

}
∼= C

and

A =

{(
a

1
2 0

0 a−
1
2

)
∈ SL(2,C) | a > 0

}
with Lie algebra

a =

{(
α
2

0
0 −α

2

)
∈ sl(2,C) | α ∈ R

}
∼= R.

In this case, the generator H1 of a is explicitly given by

H1 =

(
1
2

0
0 −1

2

)
.

The standard parabolic subgroup with respect to this decomposition is then given by P0 =
NAM with

M =

{(
eiθ 0
0 e−iθ

)
∈ SL(2,C) | θ ∈ R

}
.

Now, the irreducible real representations of SL(2,C) are given by the complex symmetric
powers of the standard representation,

%m : SL(2,C)→ GL(Vm), Vm := Symm(C2), m ∈ N.

If we let e1 =

(
1
0

)
and e2 =

(
0
1

)
be the standard basis of C2, then

vj = ej1e
m−j
2 , j ∈ {0, 1, . . . ,m}

is a basis of Vm. An admissible inner product on Vm is obtained by declaring the basis {vj}
to be orthonormal. Regarding dz and dz as elements of n∗⊗C, a simple computation shows
that

(7.1) Hq(n;Vm) =

 Cvm, q = 0,
Cvmdz ⊕ Cv0dz, q = 1
Cv0dz ∧ dz, q = 2,
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with H1
+(n;Vm) = Cvmdz and H1

−(n;Vm) = Cv0dz. Moreover, the number λ%m,q describing
the action of H1 ∈ a on these spaces are given by

(7.2) λ%m,0 =
m

2
+ 1, λ+

%m,1 =
m

2
, λ−%m,1 = −m

2
, λ%m,2 = −m

2
− 1.

We also compute that

(7.3)

dnvk = (m− k)vk+1dz, dnvkdz = 0,

dnvkdz = (m− k)vk+1dz ∧ dz, dnvk
i

2
dz ∧ dz = 0,

d∗nvk = 0, d∗nvkdz = 2kvk−1,

d∗nvkdz = 0, d∗nvk
i

2
dz ∧ dz = ikvk−1dz,

so that the Kostant Laplacian K2
P0

= (dn + d∗n)
2 is given by

K2
P0

(vk(dz)p ∧ (dz)q) = 2(k + 1− p)(m− k + p)vk(dz)p ∧ (dz)q.

Moreover, we have that

ker d∗n ∩ (Λqn∗ ⊗ Vm) =

 Vm, q = 0,
Vm ⊗ dz ⊕ Cv0 ⊗ dz, q = 1,
Cv0 ⊗ dz ∧ dz, q = 2,

so that
V

0,j−m
2

+1,
√

2(j+1)(m−j) = Cvj, V
1,j−m

2
,
√

2(j+1)(m−j) Cvjdz,

and otherwise Vq,a,b = {0} for other values of q and a when b > 0.
Now, let Γ ⊂ SL(2,C) be a discrete subgroup such that X = Γ \ G/K = Γ \ H3 is

a hyperbolic manifold of finite volume. In this setting, the assumption (2.14) does not
necessarily hold, but (2.15) will. Furthermore, %m(− Id) = (−1)m Id, so that (2.16) holds.
We can therefore apply Corollary 6.3, giving the following formula.

Theorem 7.1. For d = 3, let X = Γ \ SL(2,C)/ SU(2) a finite volume 3-dimensional
hyperbolic manifold, where Γ is a discrete subgroup of SL(2,C). Let E → X be the canonical
bundle of [MM63] associated to the irreducible representation %m : SL(2,C) → GL(Vm) and
equipped with the admissible metric hE. Then we have the following relation between the
analytic torsion of (X,E, gX , hE) and Reidemeister torsion of (X(Y ), E),

log T (X,E, gX , hE) = log τ(X(Y ), E, µX)− κm(X)

(
log(m+ 2) +

B(m)

2

)
where

(7.4) B(m) =
m−1∑
κ=0

log

(
m
2
− κ+

√
(m

2
− κ)2 + 2(1 + κ)(m− κ)

m
2
− κ− 1 +

√
(m

2
− κ− 1)2 + 2(1 + κ)(m− κ)

)
and κm(X) is the number of connected components TP of ∂X for which H∗(TP ;EP ) is non-
trivial. In particular, κm(X) is equal to the number of cusps when m is even, but can be
smaller when m is odd.

Corollary 7.2. If m is odd and H∗(TP ;EP ) = {0} for each P ∈ PΓ, then the formula
simplifies to

log T (X,E, g, h) = log τ(X,E).
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In particular, when ∂X = TP is connected (e.g. X is the complement of a hyperbolic
knot), we know from [MFP12] that H∗(TP ;EP ) = {0} when m is odd, so Corollary 7.2
applies.

Instead, when m = 2n is even, the formula gives.

Corollary 7.3. When m = 2` is even, this gives the following formula

log T (X,E, g, h) = log τ(X,E, µX) + κΓ log (b(`)) .

where

b(`) :=
1

2`+ 2

`−1∏
k=−`

( √
(`+ 1)2 + `2 − k2 − k − 1√

(`+ 1)2 + `2 − (k + 12) − k

) 1
2

.

Proof. If we set k = κ− m
2

= κ− ` in (7.4), one computes that

B(2`) = − log

(
`−1∏
k=−`

( √
(`+ 1)2 + `2 − k2 − k − 1√

(`+ 1)2 + `2 − (k + 12) − k

))
,

from which the result follows. �

This should be compared with [Pfa14, Theorem1.1]. In this formula, the torsion of X is
defined in terms of homology with basis specified in [MFP14]. As one can check, the ratio of
torsions considered in [Pfa14, Theorem1.1] remains the same if we define it instead in terms
of cohomology using the bases specified in Theorem 7.1. Hence, we deduce the following
identity from Corollary 7.3 and [Pfa14, Theorem1.1],

(7.5)
c(`)

c(2)
=
b(`)

b(2)
for ` ≥ 2,

where

c(`) :=

∏`−1
j=1(

√
(`+ 1)2 + `2 − j2 + `)∏`

j=1(
√

(`+ 1)2 + `2 − j2 + `+ 1)

( √
(`+ 1)2 + `2 + `√

(`+ 1)2 + `2 + `+ 1

) 1
2
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