Advanced Global Analysis I Exercise series 6

December 18, 2015

Due: January 8, 2016

Exercise 21. (2 points)

Let $P \in \Psi DO_m(\mathbb{R}^n)$. Assume that P is elliptic in the sense that

$$\exists M > 0, A > 0 \; \forall (x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n \colon \parallel \xi \parallel > M \Rightarrow |a(x,\xi)| \ge A \parallel \xi \parallel^m.$$

Construct $Q_0 \in \Psi DO_{-m}(\mathbb{R}^n)$ such that

$$PQ_0 = \operatorname{Id} + E_1, \ Q_0P = \operatorname{Id} + E_2,$$

where $E_1, E_2 \in \Psi DO_{-1}(\mathbb{R}^n)$.

Exercise 22. (2 points)

Let \mathscr{H} be a Hilbert space and $T: \mathscr{H} \to \mathscr{H}$ a bounded linear operator. Show that the following conditions are equivalent:

- 1) T is a Fredholm operator.
- 2) dim ker T, dim ker $T^* < \infty$ and T is bounded from below, i.e. there exists $\varepsilon > 0$ such that

 $\forall x \in (\ker T)^{\perp} \colon \|T(x)\| \ge \varepsilon \|x\|.$

3) T^*T is a Fredholm operator.

Exercise 23. (3 points)

Let $a, b \in \mathbb{R}$, a < b. Let $D = i\frac{d}{dx}$. Consider D as operator in $L^2(a, b)$ with domain $\mathscr{D}(D) = C_c^{\infty}(a, b)$. Let \tilde{D} be a selfadjoint extension of D with domain $\mathscr{D}(\tilde{D}) \supset \mathscr{D}(D)$. Show that there exists $\lambda \in S^1$ such that

$$\mathscr{D}(\tilde{D}) = \{ f \in H^1(a, b) \colon f(b) = \lambda f(a) \}$$

Exercise 24. (3 points)

Let \mathscr{H} be a Hilbert space, $\mathscr{D} \subset \mathscr{H}$ a dense subspace and

$$A\colon \mathscr{D}\to \mathscr{H}$$

a linear operator. Recall that A is called symmetric if

$$\forall x, y \in \mathscr{D} \colon \langle Ax, y \rangle = \langle x, Ay \rangle.$$

Prove the following statements:

a) If A is symmetric, then A is closable. Let \overline{A} be the closure of A. Then \overline{A} is also symmetric.

Hint: Show that A^* is a closed operator and $A \subset A^*$.

- b) Assume that A is symmetric. Let $B \supset A$ be a symmetric extension of A. Then $B \subset A^*$.
- c) Let A be selfadjoint. Then A is closed and A has no nontrivial symmetric extensions.