Advanced Global Analysis I Exercise series 4

December 4, 2015 Due: December 11, 2015

The Hodge *-operator

Let $(V, \langle \cdot, \cdot \rangle)$ be a Eucledean vector space of dimension n. The inner product $\langle \cdot, \cdot \rangle$ induces an inner product in $\Lambda^p V$ by

$$\langle v_1 \wedge \cdots \wedge v_p, w_1 \wedge \cdots \wedge w_p \rangle := \det \left(\langle v_i, w_j \rangle_{i,j=1}^n \right).$$

Let $e_1, \ldots, e_n \in V$ be an orthonormal basis of V. Let V be oriented by (e_1, \ldots, e_n) . The operator $*: \Lambda^p V \to \Lambda^{n-p} V$ is defined by

$$*(e_{i_1} \wedge \cdots \wedge e_{i_p}) = \varepsilon_{i_1,\dots,i_p,j_1,\dots,j_{n-p}} e_{j_1} \wedge \cdots \wedge e_{j_{n-p}},$$

where $\{j_1, ..., j_{n-p}\} = \{1, ..., n\} \setminus \{i_1, ..., i_p\}$ and

$$\varepsilon_{i_1,\dots,i_p,j_1,\dots,j_{n-p}} = \operatorname{sign} \begin{pmatrix} 1 \cdots p \, (p+1) \cdots n \\ i_1 \cdots i_p j_1 \cdots j_{n-p} \end{pmatrix}.$$

Exterior and inner multiplication: For $v \in V$ let $\varepsilon \colon \Lambda^* V \to \Lambda^* V$ be defined by

$$\varepsilon(v)\varphi=v\wedge\varphi,\quad\varphi\in\Lambda^*V\!.$$

Let $i(v): \Lambda^* V \to \Lambda^* V$ be the adjoint of ε , i.e., we have

$$\langle \varepsilon(v)\varphi,\psi\rangle=\langle \varphi,i(v)\psi\rangle,\quad\forall\;\varphi,\psi\in\Lambda^*V.$$

Exercise 13. (2 points) Show that

- 1. On $\Lambda^p V$ one has $** = (-1)^{p(n-p)}$ Id.
- 2. $\langle v, w \rangle = *(v \wedge *w) = *(w \wedge *v), v, w \in \Lambda^p V.$

Exercise 14. (2 points)

Let (M, g) be an oriented Riemannian manifold. Let $\langle \cdot, \cdot \rangle$ be the inner product in $\Lambda^p(M)$, which is induced by the Riemannian matric. Show that

$$\langle \varphi, \psi \rangle = \int_M \varphi \wedge * \bar{\psi}$$

for all $\varphi, \psi \in \Lambda^p_c(M)$.

Hint: Use Exercise 13, 2), and $*(1) = d\mu_g$ (the volume form).

Continuation on page 2

Exercise 15. (3 points) Let $d_p^* \colon \Lambda^p(M) \to \Lambda^{p-1}(M)$ be the formal adjoint operator of d_p . Show that

$$d_p^* = (-1)^{n(p+1)+1} * d * .$$

Hint: Use that $\int_M d\omega = 0$ for all $\omega \in \Lambda_c^{n-1}(M)$. (This follows from Stoke's theorem)

Exercise 16. (3 points) For $\xi \in T_x^*(M)$, let $i(\xi) \colon \Lambda^p T_x^*(M) \to \Lambda^{p-1} T_x^*(M)$ denote the interior multiplication by ξ . Show that the principal symbol σ_{d^*} of d^* is given by

$$\sigma_{d^*}(x,\xi) = -i(\xi).$$