Advanced Global Analysis I Exercise series 3

December 4, 2015

Due: December 11, 2015

Exercise 9. (3 points) Let $p \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$. Assume that p satisfies the following conditions:

- 1. $\forall \alpha \in \mathbb{N}_0^n, \exists C_\alpha > 0 \colon |D_x^\alpha p(x,\xi)| \le C_\alpha \text{ for all } x \in \mathbb{R}^n.$
- 2. For $\lambda \ge 1$ and $\|\xi\| \ge 1$ one has $p(x, \lambda\xi) = \lambda^m p(x, \xi)$.

Show that $p \in S^m(\mathbb{R}^n \times \mathbb{R}^n)$.

Hint: Use polar coordinates.

Exercise 10. (3 points) Let $a \in \widetilde{S}^m(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$. Assume that $\operatorname{supp}_{(x,y)} a$ is compact. Let $A: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ be the induced operator. As we know, A is a peudodifferential operator. Let $p \in S^m$ be the symbol of A. Show that

$$p(x,\xi) = e^{-\langle x,\xi \rangle} A(e^{i\langle \cdot,\xi \rangle}).$$

Schwartz kernel: Let $T: C_c^{\infty}(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$ be a linear continuous operator. Then there exists a unique distribution $K \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^n)$ such that $\langle Tu, v \rangle = \langle K, v \otimes u \rangle$ for all $u, v \in C_c^{\infty}(\mathbb{R}^n)$.

Exercise 11. (2 points) Let $a \in \widetilde{S}^m(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$ and let A be the operator defined by a. Show that the Schwartz kernel K_A of A is given by

$$K_A = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle x-y,\xi\rangle} a(x,y,\xi) \, dx.$$

Exercise 12. (2 points) Let $A: C_c^{\infty}(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$ be a continuous linear operator. Then the following statements are equivalent:

- 1. A is a pseudodifferential operator of order $-\infty$.
- 2. There exists $K \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ such that

$$(Au)(x) = \int_{\mathbb{R}^n} K(x, y)u(y) \, dy.$$