Advanced Global Analysis I Exercise series 2

November 20, 2015 Due: November 27, 2015

Exercise 5. (2 points) Let $\Omega \subset \mathbb{R}^n$ be open and let

$$D = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$$

be a differential operator of order m on Ω .

1) Show that there is a unique differential operator P^* of order m on Ω , such that

$$\langle Pf,g\rangle=\langle f,P^*g\rangle$$

for all $f, g \in C_c^{\infty}(\Omega)$.

2) Let $p(x,\xi)$ be the complete symbol of P. Show that the symbol p^* of P^* is given by

$$p^*(x,\xi) = \sum_{|\alpha| \le m} \frac{i^{|\alpha|}}{\alpha!} D^{\alpha}_{\xi} D^{\alpha}_x \ \overline{p}(x,\xi).$$

Exercise 6. (2 points) Let $U, V \subset \mathbb{R}^n$ be open and $\varphi \colon U \to V$ a diffeomorphism. Define $\varphi^* \colon C^{\infty}(V) \to C^{\infty}(U)$ by $\varphi^*(f) = f \circ \varphi$. Let D be a differential operator of order m on U. Define

$$D^{\varphi} \colon C^{\infty}(V) \to C^{\infty}(V)$$

by

$$D^{\varphi}f = \left(\varphi^{-1}\right)^* D\varphi^*f.$$

Show that D^{φ} is a differential operator of order m on V. Determine the symbol of D^{φ} in terms of the symbol of D.

Exercise 7. (3 points) Let $\Delta = -\sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ be the Laplace operator in \mathbb{R}^n . Let $m \in \mathbb{R}^+$. Define $P := (\Delta + \mathrm{Id})^{-m} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$, using the Fourier transform. Show that for every $s \in \mathbb{R}$, P has a continuous extension

$$P_s \colon H^s(\mathbb{R}^n) \to H^{s+2m}(\mathbb{R}^n)$$

Exercise 8. (3 points) Show that for all $s, s' \in \mathbb{R}, s > s'$, the inclusion

$$H^{s}(\mathbb{R}^{n}) \to H^{s'}(\mathbb{R}^{n})$$

is not compact.