Advanced Global Analysis I Exercise series 1

November 13, 2015 Due: November 20, 2015

Exercise 1. (2 points) Let $\alpha, \beta \in \mathbb{N}_0^n$ be multiindeces. Put $\beta \leq \alpha$, if $\beta_i \leq \alpha_i$ for all $i = 1, \ldots, n$. Let $\alpha! := \alpha_1! \cdots \alpha_n!$ and

$$\binom{\alpha}{\beta} = \frac{\alpha!}{\beta!(\alpha - \beta)!}, \quad \beta \le \alpha.$$

Let $\Omega \subset \mathbb{R}^n$ be open and $f, g \in C^{\infty}(\Omega)$. Show that

$$D^{\alpha}(fg) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} \left(D^{\beta} f \right) \left(D^{\alpha-\beta} g \right).$$

Exercise 2. (2 points) Let

$$P = \sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha}$$
 and $Q = \sum_{|\beta| \le m} b_{\beta}(x) D^{\beta}$.

be differential operators in an open subset $\Omega \subset \mathbb{R}^n$ with $a_{\alpha}, b_{\beta} \in C^{\infty}(\Omega)$ for all α and β . Let

$$p(x,\xi) = \sum_{|\alpha| \le k} a_{\alpha}(x)\xi^{\alpha}$$
 and $q(x,\xi) = \sum_{|\beta| \le m} b_{\beta}(x)\xi^{\beta}$, $x \in \Omega, \xi \in \mathbb{R}^{n}$,

be the symbols of P and Q, respectively. Show that the symbol $r(x,\xi)$ of $P \circ Q$ is given by

$$r(x,\xi) = \sum_{|\gamma| \le k} \frac{i^{|\gamma|}}{\gamma!} D_{\xi}^{\gamma} p(x,\xi) \cdot D_{x}^{\gamma} q(x,\xi).$$

Exercise 3. (3 points) Let M be a manifold and $E, F \to M$ complex vector bundles. Let

$$D\colon \Gamma(M,E)\to \Gamma(M,F)$$

be a differential operator of order $m \in \mathbb{N}_0$. Let $p \in M, \xi \in T_p^*M, e \in E_p$. Choose $f \in C_c^{\infty}(M), s \in \Gamma(M, E)$ such that $f(p) = 0, df|_p = \xi, s(p) = e$. Show that the principal symbol σ_D of D is given by

$$\sigma_D(p,\xi)e = \frac{i^m}{m!}D(f^m s)(p).$$

Exercise 4. (3 points) Compute the principal symbols of the operators $d: \Lambda^p(M) \to \Lambda^{p+1}(M)$ and

$$\Delta = d^* d \colon C^\infty(M) \to C^\infty(M).$$