Retry exam: Commutative Algebra (V3A1, Algebra I)

Exercise A. (Points: 3)

Let M be an A-module and $\mathfrak{a} \subset A$ an ideal such that $M_{\mathfrak{m}} = 0$ for all maximal ideals $\mathfrak{a} \subset \mathfrak{m} \subset A$. Show that then $M = \mathfrak{a}M$.

Exercise B. (Points: 3)

Show that a finitely generated ideal $\mathfrak{a} \subset A$ is a principal ideal and generated by an idempotent element if and only if $\mathfrak{a}^2 = \mathfrak{a}$.

Exercise C. (Points: 5)

Consider the ring $A := k[x, y, z]/(xy, z^2 - (x + y))$. Describe all irreducible components of Spec(A), i.e. the maximal closed irreducible subsets, and decide which of them have a non-empty intersection with $\text{Spec}(A_x)$.

Exercise D. (Points: 2+2) Describe explicitly a Noether normalization for the two k-algebras $k[x,y]/(x^2 + y^2)$ and $k[x,y,z]/(y-z^2,xz-y^2)$.

Exercise E. (Points: 2+4) Consider the ring $A = k[x, y, z]/(xy^2 - xz^2, x^2)$ where $char(k) \neq 2$.

(i) Show that the ideals $(\bar{z} - \bar{y}) \subset A$ and $(\bar{z} + \bar{y}) \subset A$ are both primary ideals and determine their radicals.

(ii) Determine a primary decomposition of the ideal $(0) \subset A$ and decide which associated prime ideals are isolated and which are embedded.

Exercise F. (Points: 5) Compute Ass(M) and Ann(M) of the kernel ker (ψ) of the following A-module homomorphism $\psi: A^{\oplus 2} \to A, (a, b) \mapsto a\bar{x} + b\bar{y}$, where $A := k[x, y]/(x^2y)$.

Exercise G. (Points: 4+4) Consider $A = k[x, y, z]/(xyz, z^2)$ as a graded ring with $\deg(\bar{x}) = \deg(\bar{y}) = \deg(\bar{z}) = 1$. (i) Compute the Poincaré series P(A, t) and determine the dimension of A^1

(ii) Is $A_{(x,y,z)}$ regular or Cohen–Macaulay?

All rings are commutative with a unit and $1 \neq 0$.

¹You will have to use that there are $\binom{2+n}{2}$ monomials of degree n in three variables.