Dr. René Mboro

Exercises, Algebra I (Commutative Algebra) – Week 10

Exercise 49. (Associated primes, 4 points)

Let A be a ring and M an A-module. A prime ideal $\mathfrak{p} \subset A$ is associated with M if there exists an $m \in M$ with $\mathrm{Ann}(m) = \mathfrak{p}$ or, equivalently, if there exists an injection $A/\mathfrak{p} \hookrightarrow M$. The set of associated prime ideals is denoted $\mathrm{Ass}(M)$.

- (i) Let N be a submodule of M. Prove that $\operatorname{Ass}(N) \subset \operatorname{Ass}(M) \subset \operatorname{Ass}(N) \cup \operatorname{Ass}(M/N)$.
- (ii) Show that for all $\mathfrak{p} \in \mathrm{Ass}(M)$ one has $M_{\mathfrak{p}} \neq 0$, i.e. $\mathfrak{p} \in \mathrm{Supp}(M)$.
- (iii) Assuming A to be Noetherian, prove that the natural map $M \to \prod_{\mathfrak{p} \in \mathrm{Ass}(M)} M_{\mathfrak{p}}$ is injective.

Hint: If the kernel is not trivial, find an element in the kernel whose annihilator is prime.

Exercise 50. (Discrete valuation rings (or not), 6 points)

Decide which of the following rings are discrete valuation rings:

$$\mathbb{Z}$$
; $k[[x]]$; $k[x]_x$; $k[x^2, x^3] \subset k[x]$; $\mathbb{F}_3[x, y]/(x^2 - y)$.

Assume $\nu \colon K^* \to \mathbb{Z}$ is a valuation (i.e. a map satisfying Lemma 13.4 (i) and (ii)) with associated valuation ring A. Is A a discrete valuation ring?

Exercise 51. (Rings that are not Dedekind rings, 5 points)

- (i) Show that $A := k[x_1, x_2]$ is not a Dedekind ring by describing a non-zero fractional ideal that is not invertible.
- (ii) We know that $A = k[x_1, x_2]/(x_2^2 x_1^3)$ is not normal and hence not a Dedekind ring. Find a non-zero fractional ideal that is not invertible.

Hint: One can try to find an equation satisfied by the ideal $(\overline{x_1}, \overline{x_2})$.

Exercise 52. (Absolute values, 4 points)

An absolute value on an integral domain A is a map $|\cdot|:A\to\mathbb{R}$ such that for all $a,b\in A$:

- (1) $|a| \ge 0$, (2) |a| = 0 if and only if a = 0, (3) $|ab| = |a| \cdot |b|$, and (4) $|a + b| \le |a| + |b|$.
- (i) Check that any absolute value on A extends to an absolute value on its fraction field Q(A) (define |a/b| = |a|/|b|).
- (ii) Suppose (4) is replaced by the stronger requirement $|a+b| \leq \max\{|a|,|b|\}$. Show that then for any $\alpha > 1$ the map $\nu \colon Q(A)^* \to \mathbb{R}, \ x \mapsto -\log_{\alpha}|x|$ is a valuation.
- (iii) What goes wrong for $\mathbb{C}^* \to \mathbb{R}$, $x \mapsto -\log_{\alpha} |x|$?
- (iv) Determine an absolute value giving rise to a valuation on \mathbb{Q} whose valuation ring is $\mathbb{Z}_{(p)}$.

Solutions to be handed in before Tuesday June 22, 4pm.

Exercise 53. (Picard group, 6 points)

For any ring A one defines $\operatorname{Pic}(A)$ as the set of all isomorphism classes of finite projective A-modules M such that $M_{\mathfrak{p}} \cong A_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(A)$.

- (i) Show that Pic(A) with $(M, N) \mapsto M \otimes_A N$ is an abelian group. (The *Picard group*.)
- (ii) Show that for a Dedekind ring the map $\mathrm{Cl}(A) \to \mathrm{Pic}(A)$ that forgets the inclusion $M \subset K = Q(A)$ of a fractional ideal is an isomorphism.

Exercise 54. (Class number, 5 points)

Prove that $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{-2})$ have class number one, i.e.

$$h_{-1} = 1$$
 and $h_{\sqrt{-2}} = 1$.

Hint: In each case, one can define an absolute value and imitate Euclidean algorithm.