Exercise 16. For \(k \in \mathbb{Z}, k \geq 2 \), let \(G_{2k}(z) = \sum_{(m,n) \neq (0,0)} (mz + n)^{-2k} \). Show that:

(i) \(G_{2k}(z) = 2\zeta(2k) \sum_{\gamma \in B \setminus \text{Sl}_2(\mathbb{Z})} \left(\frac{d(\gamma z)}{dz} \right)^k \)

where \(\zeta \) is the Riemann zeta function and \(B = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sl}_2(\mathbb{Z}) \mid c = 0 \} \).

(ii) The Fourier expansion of \(G_{2k} \) is

\[G_{2k}(z) = 2\zeta(2k) + 2 \left(\frac{2\pi i}{2k - 1} \right)^{2k} \sum_{n \geq 1} \sigma_{2k-1}(n) e^{2\pi inz}, \]

where \(\sigma_k(n) = \sum_{m \in \mathbb{N}, m | n} m^k \).

(Hint: Use the cotangent identity \(\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z+n} + \frac{1}{z-n} \right) \).)

(iii) \(G_{2k}(z) \) is an automorphic form with respect to \(\text{Sl}_2(\mathbb{Z}) \) of weight \(2k \).

Exercise 17. Let \(f \neq 0 \) be a modular form of weight \(k \). For \(x \in \mathbb{H}^* \) let \(v_x(f) \) denote the order of \(f \), i.e., the integer \(m \) such that \((z-x)^{-m}f(z) \) is holomorphic and non-zero at \(z = x \). Let \(\Gamma = \text{Sl}_2(\mathbb{Z}) \) and denote by \(e_x \) the order of the stabiliser of \(x \in \mathbb{H} \) in \(\Gamma / \{ \pm 1 \} \). Show that

\[v_{\infty}(f) + \sum_{x \in \Gamma \setminus \mathbb{H}} \frac{1}{e_x} v_x(f) = \frac{k}{12}. \]

(Hint: Use Cauchy’s Theorem to \(\frac{df}{dz} \).)

Exercise 18. Use the previous exercises to compute the dimension of the space of modular forms of weight \(k \) for each \(k < 12 \).