Research statement, Brian Semmes

In my thesis, I introduce a two-player game $G(f)$ which "characterizes" the Borel functions on the Baire space, in the sense that Player II has a winning strategy in $G(f)$ if and only if f is Borel. In this game, there are two players who alternate moves for ω rounds. Player I plays natural numbers $x_{i} \in \omega$ and Player II plays functions $\phi_{i}: T_{i} \rightarrow{ }^{<\omega} \omega$ such that $T_{i} \subset{ }^{<\omega} \omega$ is a finite tree, ϕ_{i} is monotone and length-preserving, and $i<j \Rightarrow \phi_{i} \subseteq \phi_{j}$.

$$
\begin{array}{llllll}
\text { I: } & x_{0} & x_{1} & x_{2} & & x=\left\langle x_{0}, x_{1}, \ldots\right\rangle \\
\text { II: } & \phi_{0} & \phi_{1} & \phi_{2} & & \\
& & & & =\bigcup \phi_{i}
\end{array}
$$

After infinitely many rounds, Player I produces x and Player II produces ϕ as shown. Player II wins the game if and only if $\operatorname{dom}(\phi)$ has a unique infinite branch z and

$$
\bigcup_{s \subset z} \phi(s)=f(x)
$$

One of the results of my thesis is that Player II can guarantee victory in this game precisely when f is Borel. This is a generalization of the Wadge game, which characterizes the continuous functions in a similar way.

By adding extra rules for Player II, it is possible to characterize subclasses of Borel functions. In particular, it is possible to characterize Baire class 1 and Baire class 2. Using game-theoretic methods, I proved decomposition theorems for two subclasses of Baire class 2 (see notation section for what is meant by $n \rightarrow m)$:

A function $f:{ }^{\omega} \omega \rightarrow{ }^{\omega} \omega$ is $2 \rightarrow 3 \Leftrightarrow$ there is a $\boldsymbol{\Pi}_{2}^{0}$ partition $\left\langle A_{n}: n \in \omega\right\rangle$ of ${ }^{\omega} \omega$ such that $f \upharpoonright A_{n}$ is Baire class 1 .

A function $f:{ }^{\omega} \omega \rightarrow{ }^{\omega} \omega$ is $3 \rightarrow 3 \Leftrightarrow$ there is a $\boldsymbol{\Pi}_{2}^{0}$ partition $\left\langle A_{n}: n \in \omega\right\rangle$ of ${ }^{\omega} \omega$ such that $f \upharpoonright A_{n}$ is continuous.

At least for the Baire space, this extends the result of Jayne and Rogers (1982) that f is $2 \rightarrow 2$ if and only if there is a closed partition A_{n} such that $f \upharpoonright A_{n}$ is continuous.

Notation:
The symbol ω denotes the set of natural numbers,
${ }^{<\omega} \omega$ is the set of finite sequences of natural numbers,
${ }^{\omega} \omega$ is the set of infinite sequences of natural numbers,
$T \subseteq{ }^{<\omega} \omega$ is a tree if $t \in T$ and $s \subset t \Rightarrow s \in T$,
$\phi: T \rightarrow{ }^{<\omega} \omega$ is monotone if $s \subseteq t \Rightarrow \phi(s) \subseteq \phi(t)$,
ϕ is length-preserving if $\operatorname{lh}(\phi(s))=\operatorname{lh}(s)$, and
f is $n \rightarrow m$ if $f^{-1}[X] \in \Sigma_{m}^{0}$ for every $X \in \Sigma_{n}^{0}$.

