Research Statement

Barnabás Farkas

My research area is forcing technics of adding new reals related to special MAD families and cardinal invariants of the continuum. My advisor, Lajos Soukup and I are working on the following paper right now:

Invariants of analytic P-ideals and related forcing problems. (only a possible title) An ideal \mathcal{I} on ω is *analytic* if as a subset of the space $\mathcal{P}(\omega)$ with the usual topology (i.e. Cantor-set) is analytic; \mathcal{I} is a *P*-ideal if for each countable $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \subseteq^* I$ (i.e. $|I_n \setminus I| < \omega$) for each n. It is well-known that each analytic P-ideal is of the form $\operatorname{Exh}(\varphi) = \{X \subseteq \omega : \lim \varphi(X \setminus n) = 0\}$ where $\varphi : \mathcal{P}(\omega) \to [0, \infty)$ is a finite lower semicontinuous submeasure. The main examples of such ideals are density and *summable* ideals.

Density ideals: Let $\{P_k : k \in \omega\}$ be a partition of ω into pairwise disjoint finite sets and let $\vec{\mu}$ be a sequence $\langle \mu_k : k \in \omega \rangle$ of measures such that μ_k is concentrated on P_k and $\limsup \mu_k(P_k) > 0$. Let $\mathcal{Z}_{\vec{\mu}}$ be the following ideal on ω :

$$\mathcal{Z}_{\vec{\mu}} = \{ X \subseteq \omega : \lim \mu_k (X \cap P_k) = 0 \}.$$

Ideals of this form are called density ideals. The ideal of asymptotic density zero sets, $\begin{aligned} \mathcal{Z} &= \{A \subseteq \omega : \lim \frac{|A \cap n|}{n} = 0\} \text{ is a density ideal.} \\ \text{Summable ideals: Let } h : \omega \to \mathbb{R}^+ \text{ be a function with } \sum_{n \in \omega} h(n) = \infty \text{ and let } \mathcal{I}_h \text{ be} \end{aligned}$

the following ideal on ω :

$$\mathcal{I}_h = \Big\{ A \subseteq \omega : \sum_{n \in A} h(n) < \omega \Big\}.$$

These ideals are called summable ideals. For example the ideal of finite sets is a summable ideal.

Let \mathcal{I} be an ideal on ω , and let $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$. An infinite family $\mathcal{M} \subseteq \mathcal{I}^+$ is \mathcal{I} -almost disjoint $(\mathcal{I} - AD)$ if $A \cap B \in \mathcal{I}$ for each distinct $A, B \in \mathcal{M}$. An \mathcal{I} -AD family \mathcal{M} is maximal $(\mathcal{I}-MAD)$ if for each $X \in \mathcal{I}^+$ there is an $A \in \mathcal{M}$ such that $X \cap A \in \mathcal{I}^+$, that is, \mathcal{M} is \subset -maximal among \mathcal{I} -AD families. The almost disjoint number of \mathcal{I} , denoted by $\mathfrak{a}_{\mathcal{I}}(\mathfrak{a}_{\mathcal{I}}^*)$. is the minimum of the cardinalities of (uncountable) \mathcal{I} -MAD families. We have proved the following results:

 $\mathfrak{a}_{\mathcal{I}_h} > \omega$ for each summable ideal \mathcal{I}_h and $\mathfrak{a}_{\mathcal{Z}_{\vec{\mu}}} = \omega$ for most density ideals.

 $\mathfrak{a}_{\mathcal{Z}_{\vec{\mu}}}^* \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$, where $\mathfrak{a} = \mathfrak{a}_{[\omega]^{<\omega}}$ is the well-known almost disjointness number.

 $\mathfrak{b} \leq \mathfrak{a}_{\mathcal{I}}^*$ for each analytic P-ideal, where \mathfrak{b} is the unbounding number of $\langle \omega^{\omega}, \leq^* \rangle$.

We are working on related forcing questions as well. Let V be a transitive model of (a large enough segment of) ZFC. An $X \subseteq \omega$ is a \mathbb{Z} -covering real over V if $X \in \mathbb{Z}$ and $A \subseteq^* X$ for each $A \in \mathcal{Z} \cap V$. Results:

If $V \subseteq W$ are models and W contains a \mathcal{Z} -covering real over V then W contains a dominating real over V as well.

If $V \subseteq W$ are models and W contains a slalom over V, that is, an $S \in W, S$: $\omega \to [\omega]^{<\omega}, |S(n)| \leq n$, and for each $f \in \omega^{\omega} \cap V$ $f(n) \in S(n)$ for all but finite n, then W contains a \mathbb{Z} -covering real over V. Specially the Localization-forcing (LOC) adds \mathcal{Z} -covering reals.

There is a natural ccc forcing too which adds a \mathcal{Z} -covering real over the ground model but a σ -centered forcing notion cannot add such a real.

A forcing notion \mathbb{P} has the Sacks-property if, and only if \mathbb{P} is \mathbb{Z} -bounding, that is, \mathbb{P} forces that for each new element of \mathcal{Z} can be covered by an element of \mathcal{Z} from the ground model.