RESEARCH STATEMENT

ALESSANDRO ANDRETTA

My main research interest in the last few years has been in descriptive set theory, and in particular in the structure of the Wadge hierarchy — which in essence is the general theory of boldface pointclasses, i.e., collections of sets of reals closed under continuous preimages. The axiom of determinacy imposes a detailed structure on these pointclasses, but in fact it seems that most of the properties follow from a seemingly weaker principle, the so-called semi-linear ordering principle (SLO): for any pair of sets of reals A and B,

$A \leq_{\mathrm{W}} B \ \lor \ \neg B \leq_{\mathrm{W}} A$

where \leq_{W} is the relation of continuous preimage. Solovay has conjectured that SLO is equivalent to AD, at least if $V = L(\mathbb{R})$. If instead of considering *continuous* preimages we use other kind of functions (e.g.: Borel) we obtain a coarser comparability relation, which are of interest in their own right. A curious phenomenon that occurs under AD is that there are more Σ_{β}^{0} than Σ_{α}^{0} when $\alpha < \beta$. The detailed analysis of the Wadge hierarchy has been used recently to pin-down the exact places at which a similar phenomenon occurs, by characterizing the pointclasses Γ which have a cardinality larger than any Λ contained in Γ . Finally, I should point out that the Wadge hierarchy, besides being interesting per se, is important for constructing models of AD.