Problem 1 (6 Points). Recall the definitions of \models and \vdash and the basic properties of these relations from the Introduction to Mathematical Logic lecture course.

Problem 2 (4 Points). Prove Lemma 1.1.2. from the lecture course: Let $\mathcal{L} \subseteq \mathcal{L}_*$ be first-order languages, let \mathcal{M} be an \mathcal{L}_* -structure, let $a_1, \ldots, a_n \in |\mathcal{M}|$ and let $\psi(v_0,\ldots,v_n)$ be an \mathcal{L}_* -formula with the following properties:

- (a) $\mathcal{M} \models \exists x \ \psi(\frac{x}{v_0} \frac{a_1}{v_1} \dots \frac{a_n}{v_n}).$ (b) $\mathcal{M} \models \psi(\frac{c}{v_0} \frac{a_1}{v_1} \dots \frac{a_n}{v_n})$ for every constant symbol c in \mathcal{L} .
- (c) If f is an (m+1)-ary function symbom in \mathcal{L} , then

$$\mathcal{M} \models \forall x_0 \dots x_m \left[\left(\psi \left(\frac{x_0}{v_0} \frac{a_1}{v_1} \dots \frac{a_n}{v_n} \right) \wedge \dots \wedge \psi \left(\frac{x_m}{v_0} \frac{a_1}{v_1} \dots \frac{a_n}{v_n} \right) \right) \\ \longrightarrow \psi \left(\frac{f(x_0, \dots, x_m)}{v_0} \frac{a_1}{v_1} \dots \frac{a_n}{v_n} \right) \right].$$

Then there exists a unique \mathcal{L} -substructure \mathcal{N} of \mathcal{M} with the following proper-

- (1) $|\mathcal{N}| = \left\{ a \in |\mathcal{M}| \mid \mathcal{M} \models \psi\left(\frac{a}{v_0} \frac{a_1}{v_1} \dots \frac{a_n}{v_n}\right) \right\}.$ (2) If $\varphi(w_0, \dots, w_{m-1})$ is an \mathcal{L} -formula with $v_i \neq w_j$ for all $i \leq n$ and j < mand $b_0, \ldots, b_{m-1} \in |\mathcal{N}|$, then

$$\mathcal{N} \models \varphi \left(\frac{b_0}{w_0} \dots \frac{b_{m-1}}{w_{m-1}} \right) \iff \mathcal{M} \models \varphi^{\psi} \left(\frac{a_1}{v_1} \dots \frac{a_n}{v_n} \frac{b_0}{w_0} \dots \frac{b_{m-1}}{w_{m-1}} \right).$$

Problem 3 (8 points). Prove Lemma 1.1.3. from the lecture course: Let $\mathcal{L} \subseteq \mathcal{L}_*$ be first-order languages. Given a collection Γ of \mathcal{L} -formulas, an \mathcal{L} -formula φ and an \mathcal{L}_* -formula $\psi(v_0, \ldots, v_n)$ with $v_i \notin \text{free}(\Gamma \cup \{\varphi\})$ for all $i \leq n$, we define

$$\Gamma^{\psi,\varphi} = \Gamma^{\psi} \cup \left\{ \psi\left(\frac{w}{v_0}\right) \mid w \in \text{free}(\Gamma \cup \{\varphi\}) \right\} \cup \left\{ \exists x \ \psi\left(\frac{x}{v_0}\right) \right\} \\
\cup \left\{ \psi\left(\frac{c}{v_0}\right) \mid c \text{ constant symbol in } \mathcal{L} \right\} \\
\cup \left\{ \forall x_0, \dots, x_m \left[\left(\psi\left(\frac{x_0}{v_0}\right) \wedge \dots \wedge \psi\left(\frac{x_0}{v_0}\right) \right) \right. \\
\longrightarrow \psi\left(\frac{f(x_0, \dots, x_m)}{v_0}\right) \right] \mid f \ (m+1) \text{-ary function symbol in } \mathcal{L} \right\}.$$

If Γ is a collection of \mathcal{L} -formulas, φ is an \mathcal{L} -formula with $\Gamma \vdash \varphi$ and $\psi(v_0, \ldots, v_n)$ is an \mathcal{L}_* -formula with $v_i \notin \text{free}(\Gamma \cup \{\varphi\})$ for all $i \leq n$, then $\Gamma^{\psi, \varphi} \vdash \varphi^{\psi}$.

Problem 4 (4 Points). In the setting of the previsous exercise, show that it is in general not true that $\Gamma \vdash \varphi$ implies $\Gamma^{\psi} \vdash \varphi^{\psi}$.

Please hand in your solutions on Monday, April 08, before the lecture.