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Die Mengenlehre ist das Fundament
der gesamten Mathematik

(Felix Hausdorff,
Grundzüge der Mengenlehre, 1914 )

1 Introduction

1.1 The origin of set theory

Georg Cantor characterized sets as follows:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten,
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens
(welche die “Elemente” von M genannt werden) zu einem Ganzen.

Felix Hausdorff in Grundzüge formulated shorter:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h. zu
einem neuen Ding.

Sets are ubiquitous in mathematics. According to Hausdorff

Differential- und Integralrechnung, Analysis und Geometrie arbeiten in Wirklich-
keit, wenn auch vielleicht in verschleiernder Ausdrucksweise, beständig mit unend-
lichen Mengen.

1.2 Set theoretic foundations of mathematics

In current mathematics, many notions are explicitly defined using sets. The following example
indicates that notions which are not set-theoretical prima facie can be construed set-theoretic-
ally:

f is a real funktion ≡ f is a set of ordered pairs (x, f(x)) of real numbers, such
that ... ;

(x, y) is an ordered pair ≡ (x, y) is a set ...{x, y}... ;
x is a real number ≡ x is a left half of a Dedekind cut in Q ≡ x is a subset of
Q, such that ... ;

r is a rational number ≡ r is an ordered pair of integers, such that ... ;

z is an integer ≡ z is an ordered pair of natural numbers (= non-negative
integers);

N= {0, 1, 2, ...};
0 is the empty set;

1 is the set {0};
2 is the set {0, 1}; etc. etc.

We shall see that all mathematical notions can be reduced to the notion of set .
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Besides this foundational role, set theory is also the mathematical study of the infinite. There
are infinite sets like N, Q, R which can be subjected to the constructions and analyses of set
theory; there are various degrees of infinity which lead to a rich theory of infinitary combinat-
orics.
In this course, we shall first apply set theory to obtain the standard foundation of mathematics
and then turn towards “pure” set theory.

1.3 The language of set theory

If m is an element of M one writes m ∈ M . If all mathematical objects are reducible to sets,
both sides of these relation have to be sets. This means that set theory studies the ∈-relation
m ∈ M for arbitrary sets m and M . As it turns out, this is sufficient for the purposes of set
theory and mathematics. In set theory variables range over the class of all sets, the ∈-relation is
the only undefined structural component, every other notion will be defined from the ∈-relation.
Basically, set theoretical statement will thus be of the form

...∀x...∃y......x∈ y...u≡ v...,
belonging to the first-order predicate language with the only given predicate ∈.
To deal with the complexities of set theory and mathematics one develops a comprehensive and
intuitive language of abbreviations and definitions which, eventually, allows to write familiar
statements like

eiπ=−1
and to view them as statements within set theory.
The language of set theory may be seen as a low-level, internal language. The language of math-
ematics possesses high-level “macro” expressions which abbreviate low-level statements in an effi-
cient and intuitive way.

1.4 Russell’s paradox

Cantor’s naive description of the notion of set suggests that for any mathematical statement
ϕ(x) in one free variable x there is a set y such that

x∈ y↔ ϕ(x) ,

i.e., y is the collection of all sets x which satisfy ϕ .
This axiom is a basic principle in Gottlob Frege’s Grundgesetze der Arithmetik, 1893 ,
Grundgesetz V, Grundgesetz der Wertverläufe.
Bertrand Russell noted in 1902 that setting ϕ(x) to be x∈/ x this becomes

x∈ y↔ x∈/ x ,
and in particular for x= y :

y ∈ y↔ y ∈/ y.
Contradiction.
This contradiction is usually called Russell’s paradox, antinomy, contradiction. It was also dis-
coved slightly earlier by Ernst Zermelo. The paradox shows that the formation of sets as col-
lections of sets by arbitrary formulas is not consistent.

2 The Zermelo-Fraenkel Axioms

The difficulties around Russell’s paradox and also around the axiom of choice lead Zermelo
to the formulation of axioms for set theory in the spirit of the axiomatics of David Hilbert of
whom Zermelo was an assistant at the time.
Zermelo’s main idea was to restrict Frege’s Axiom V to formulas which correspond to math-
ematically important formations of collections, but to avoid arbitrary formulas which can lead to
paradoxes like the one exhibited by Russell.
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The original axiom system of Zermelo was extended and detailed by Abraham Fraenkel
(1922), Dmitry Mirimanoff (1917/20), and Thoralf Skolem.
We shall discuss the axioms one by one and simultaneously introduce the logical language and
useful conventions.

2.1 Set Existence

The set existence axiom

∃x∀y ¬y ∈ x ,
like all axioms, is expressed in a language with quantifiers ∃ (“there exists”) and ∀ (“for all”),
which is familiar from the ǫ-δ-statements in analysis. The language of set theory uses variables
x, y, ... which may satisfy the binary relations ∈ or =: x ∈ y (“x is an element of y”) or x = y .
These elementary formulas may be connected by the propositional connectives ∧ (“and”), ∨
(“or”), → (“implies”), ↔ (“is equivalent”), and ¬ (“not”). The use of this language will be demon-
strated by the subsequent axioms.
The axiom expresses the existence of a set which has no elements, i.e., the existence of the
empty set .

2.2 Extensionality

The axiom of extensionality

∀x∀x′(∀y(y ∈ x↔ y ∈ x′)→x= x′)

expresses that a set is exactly determined by the collection of its elements. This allows to prove
that there is exactly one empty set.

Lemma 1. ∀x∀x′(∀y ¬y ∈x∧∀y ¬y ∈ x′→x= x′).

Proof. Consider x, x′ such that ∀y ¬y ∈ x∧∀y ¬y ∈ x′. Consider y . Then ¬y ∈ x and ¬y ∈ x′.
This implies ∀y(y ∈ x↔ y ∈ x′). The axiom of extensionality implies x=x′. �

Note that this proof is a usual mathematical argument, and it is also a formal proof in the sense
of mathematical logic. The sentences of the proof can be derived from earlier ones by purely
formal deduction rules. The rules of natural deduction correspond to common sense figures of
argumentation which treat hypothetical objects as if they would concretely exist.

2.3 Pairing

The pairing axiom

∀x∀y∃z∀u(u∈ z↔u= x∨u= y)

postulates that for all sets x, y there is set z which may be denoted as

z= {x, y}.
This formula, including the new notation, is equivalent to the formula

∀u(u∈ z↔u= x∨u= y).

In the sequel we shall extend the small language of set theory by hundreds of symbols and con-
ventions, in order to get to the ordinary language of mathematics with notations like

N,R, 385
√

, π,

(

1 0
0 1

)

,

∫

a

b

f ′(x)dx=f(b)− f(a), etc.

Such notations are chosen for intuitive, pragmatic, or historical reasons.
Using the notation for unordered pairs, the pairing axiom may be written as

∀x∀y∃z z= {x, y}.
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By the axiom of extensionality, the term-like notation has the expected behaviour. E.g.:

Lemma 2. ∀x∀y∀z∀z ′ (z= {x, y}∧ z ′= {x, y}→z= z ′).

Proof. Exercise. �

Note that we implicitly use several notational conventions: variables have to be chosen in a reas-
onable way, for example the symbols z and z ′ in the lemma have to be taken different and dif-
ferent from x and y. We also assume some operator priorities to reduce the number of brackets:
we let ∧ bind stronger than ∨, and ∨ stronger than → and ↔.

We used the “term” {x, y} to occur within set theoretical formulas. This abbreviation is than to
be expanded in a natural way, so that officially all mathematical formulas are formulas in the
“pure” ∈-language. We want to see the notation {x, y} as an example of a class term . We define
uniform notations and convention for such abbreviation terms.

2.4 Class Terms

The extended language of set theory contains class terms and notations for them. There are
axioms for class terms that fix how extended formulas can be reduced to formulas in the unex-
tended ∈-language of set theory.

Definition 3. A class term is of the form {x|ϕ} where x is a variable and ϕ ∈ L∈. The usage
of these class terms is defined recursively by the following axioms: If {x|ϕ} and {y |ψ} are class
terms then

− u ∈ {x|ϕ} ↔ ϕ
u

x
, where ϕ

u

x
is obtained from ϕ by (resonably) substituting the variable x

by the variable u ;

− u= {x|ϕ}↔∀v (v ∈u↔ ϕ
v

x
);

− {x|ϕ}= u↔∀v (ϕ v
x
↔ v ∈u);

− {x|ϕ}= {y |ψ}↔∀v (ϕ v
x
↔ ψ

v

y
);

− {x|ϕ}∈ u↔∃v(v ∈u∧ v= {x|ϕ};
− {x|ϕ}∈ {y |ψ}↔∃v(ψ v

y
∧ v= {x|ϕ}).

A term is either a variable or a class term.

Definition 4.

a) ∅ := {x|x=/ x} is the empty set;

b) V := {x|x= x} is the universe (of all sets);

c) {x, y} := {u|u= x∨ u= y} is the unordered pair of x and y .

Lemma 5.

a) ∅∈V.
b) ∀x, y {x, y}∈ V.

Proof. a) By the axioms for the reduction of abstraction terms, ∅ ∈ V is equivalent to the fol-
lowing formulas

∃v(v= v ∧ v= ∅)
∃v v= ∅
∃v ∀w (w ∈ v↔w=/ w)

∃v∀ww∈/ v
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which is equivalent to the axiom of set existence. So ∅ ∈ V is another way to write the axiom of
set existence.
b) ∀x, y {x, y}∈V abbreviates the formula

∀x, y∃z(z= z ∧ z= {x, y}).

This can be expanded equivalently to the pairing axiom

∀x, y∃z∀u(u∈ z↔u= x∨ u= y). �

So a) and b) are concise equivalent formulations of the axiom Ex and Pair.

We also introduce bounded quantifiers to simplify notation.

Definition 6. Let A be a term. Then ∀x∈Aϕ↔∀x(x∈A→ ϕ) and ∃x∈Aϕ↔∃x (x∈A∧ ϕ).

Definition 7. Let x, y, z, ... be variables and X,Y , Z , ... be class terms. Define

a) X ⊆ Y ↔∀x∈X x∈Y, X is a subclass of Y ;

b) X ∪Y := {x|x∈X ∨ x∈Y } is the union of X and Y ;

c) X ∩Y := {x|x∈X ∧ x∈Y } is the intersection of X and Y ;

d) X \Y := {x|x∈X ∧x∈/ Y } is the difference of X and Y ;

e)
⋃

X := {x|∃y ∈X x∈ y} is the union of X ;

f )
⋂

X := {x|∀y ∈X x∈ y} is the intersection of X ;

g) P(X): ={x|x⊆X} is the power class of X;

h) {X}: ={x|x=X} is the singleton set of X;

i) {X,Y }: ={x|x=X ∨ x= Y } is the (unordered) pair of X and Y;

j ) {X0, ..., Xn−1}: ={x|x=X0∨ ...∨x=Xn−1}.

One can prove the well-known boolean properties for these operations. We only give a few
examples.

Proposition 8. X ⊆Y ∧Y ⊆X→X = Y.

Proposition 9.
⋃ {x, y}= x∪ y.

Proof. We show the equality by two inclusions:
(⊆). Let u∈⋃ {x, y}. ∃v(v ∈{x, y}∧ u∈ v). Let v ∈{x, y}∧ u∈ v. (v=x∨ v= y)∧ u∈ v.
Case 1 . v= x. Then u∈ x. u∈x∨u∈ y. Hence u∈ x∪ y.
Case 2 . v= y. Then u∈ y. u∈ x∨ u∈ y. Hence u∈x∪ y.
Conversely let u∈x∪ y. u∈x∨u∈ y.
Case 1 . u∈x. Then x∈{x, y}∧u∈ x. ∃v(v ∈{x, y}∧ u∈ v) and u∈⋃ {x, y}.
Case 2 . u∈ y. Then x∈ {x, y}∧u∈x. ∃v(v ∈{x, y}∧ u∈ v) and u∈⋃ {x, y}. �

Exercise 1. Show: a)
⋃

V =V . b)
⋂

V = ∅ . c)
⋃
∅= ∅ . d)

⋂
∅=V .

2.5 Ordered Pairs

Combining objects into ordered pairs (x, y) is taken as an undefined fundamental operation of
mathematics. We cannot use the unordered pair {x, y} for this purpose, since it does not
respect the order of entries:

{x, y}= {y, x}.

We have to introduce some asymmetry between x and y to make them distinguishable. Fol-
lowing Kuratowski and Wiener we define:
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Definition 10. (x, y): ={{x}, {x, y}} is the ordered pair of x and y.

The definition involves substituting class terms within class terms. We shall see in the following
how these class terms are eliminated to yield pure ∈-formulas.

Lemma 11. ∀x∀y∃z z=(x, y).

Proof. Consider sets x and y. By the pairing axiom choose u and v such that u= {x} and v =
{x, y}. Again by pairing choose z such that z= {u, v}. We argue that z=(x, y). Note that
(x, y)= {{x}, {x, y}}= {w |w= {x}∨w= {x, y}}.
Then z=(x, y) is equivalent to
∀w(w ∈ z↔w= {x}∨w= {x, y}),
∀w(w=u∨w= v↔ (w= {x}∨w= {x, y}),
and this is true by the choice of u and v. �

The Kuratowski-pair satisfies the fundamental property of ordered pairs:

Lemma 12. (x, y)= (x′, y ′)→x=x′∧ y= y ′.

Proof. Assume (x, y)= (x′, y ′), i.e.,
(1) {{x}, {x, y}}= {{x′}, {x′, y ′}}.
Case 1 . x= y. Then
{x}= {x, y},
{{x}, {x, y}}= {{x}, {x}}= {{x}},
{{x}}= {{x′}, {x′, y ′}},
{x}= {x′} and x= x′,
{x}= {x′, y ′} and y ′= x.
Hence x= x′ and y=x= y ′ as required.
Case 2 . x=/ y. (1) implies
{x′}= {x} or {x′}= {x, y}.
The right-hand side would imply x=x′= y, contradicting the case assumption. Hence
{x′}= {x} and x′= x.
Then (1) implies
{x, y}= {x′, y ′}= {x, y ′} and y= y ′. �

Exercise 2.

a) Show that 〈x, y〉 := {{x, ∅}, {y, {∅}}} also satisfies the fundamental property of ordered pairs (F.

Hausdorff).

b) Can {x, {y, ∅}} be used as an ordered pair?

Exercise 3. Give a set-theoretical formalization of an ordered-triple operation.

2.6 Relations and Functions

Ordered pairs allow to introduce relations and functions in the usual way. One has to distin-
guish between sets which are relations and functions, and class terms which are relations and
functions.

Definition 13. A term R is a relation if all elements of R are ordered pairs, i.e., R ⊆ V × V.
Also write Rxy or xRy instead of (x, y) ∈ R . If A is a term and R ⊆ A × A then R is a rela-
tion on A.

Note that this definition is really an infinite schema of definitions, with instances for all terms R
and A . The subsequent extensions of our language are also infinite definition schemas. We
extend the term language by parametrized collections of terms.

Definition 14. Let t(x~ ) be a term in the variables x~ and let ϕ be an ∈-formula. Then {t(x~ )|ϕ}
stands for {z |∃x~ (ϕ∧ z= t(x~ )}.
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Definition 15. Let R,S,A be terms.

a) The domain of R is dom(R) := {x |∃yxRy}.
b) The range of R is ran(R) := {y |∃xxRy}.
c) The field of R is field(R) :=dom(R)∪ ran(R).
d) The restriction of R to A is R ↾A := {(x, y)|xRy∧x∈A}.
e) The image of A under R is R[A] :=R′′A := {y |∃x∈AxRy}.
f ) The preimage of A under R is R−1[A] := {x|∃y ∈AxRy}.
g) The composition of S and R (“S after R”) is S ◦R := {(x, z)|∃y (xRy∧ySz)}.
h) The inverse of R is R−1: ={(y, x)|xRy}.

Relations can play different roles in mathematics.

Definition 16. Let R be a relation.

a) R is reflexive iff ∀x∈field(R) xRx .
b) R is irreflexive iff ∀x∈field(R) ¬xRx .
c) R is symmetric iff ∀x, y (xRy→yRx).

d) R is antisymmetric iff ∀x, y (xRy ∧ yRx→x= y).

e) R is transitive iff ∀x, y, z (xRy∧yRz→xRz).

f ) R is connex iff ∀x, y ∈ field(R) (xRy ∨ yRx∨x= y).

g) R is an equivalence relation iff R is reflexive, symmetric and transitive.

h) Let R be an equivalence relation. Then [x]R : ={y |yRx} is the equivalence class of x
modulo R .

It is possible that an equivalence class [x]R is not a set: [x]R∈/ V . Then the formation of the col-
lection of all equivalence classes modulo R may lead to contradictions. Another important
family of relations is given by order relations .

Definition 17. Let R be a relation.

a) R is a partial order iff R is reflexive, transitive and antisymmetric.

b) R is a linear order iff R is a connex partial order.

c) Let A be a term. Then R is a partial order on A iff R is a partial order and field(R) =
A .

d) R is a strict partial order iff R is transitive and irreflexive.

e) R is a strict linear order iff R is a connex strict partial order.

Partial orders are often denoted by symbols like 6, and strict partial orders by <. A common
notation in the context of (strict) partial orders R is to write

∃pRqϕ and ∀pRqϕ for ∃p(pRq ∧ ϕ) and ∀p(pRq→ϕ) resp.

One of the most important notions in mathematics is that of a function.

Definition 18. Let F be a term. Then F is a function if it is a relation which satisfies

∀x, y, y ′ (xFy∧xFy ′→y= y ′).

If F is a function then

F (x): ={u|∀y (xFy→u∈ y)}
is the value of F at x.
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If F is a function and xFy then y=F (x). If there is no y such that xFy then

F (x)=
⋂

xFy

y=
⋂

∅=V .

The “value” V at x may be read as “undefined”. A function can also be considered as the
(indexed) sequence of its values, and we also write

(F (x))x∈A or (Fx)x∈A instead of F :A→V .

We define further notions associated with functions.

Definition 19. Let F ,A,B be terms.

a) F is a function from A to B, or F : A → B, iff F is a function, dom(F ) = A, and
range(F )⊆B .

b) F is a partial function from A to B, or F : A⇀ B, iff F is a function, dom(F ) ⊆ A, and
range(F )⊆B .

c) F is a surjective function from A to B iff F :A→B and range(F )=B.

d) F is an injective function from A to B iff F :A→B and

∀x, x′∈A (x=/ x′→F (x) =/ F (x′))

e) F is a bijective function from A to B, or F : A ↔ B, iff F : A → B is surjective and
injective.

f ) AB: ={f |f :A→B} is the class of all functions from A to B.

One can check that these functional notions are consistent and agree with common usage:

Exercise 4. Define a relation ∼ on V by

x∼ y←→∃f f : x↔ y.

One say that x and y are equinumerous or equipollent. Show that ∼ is an equivalence relation on V . What is

the equivalence class of ∅ ? What is the equivalence class of {∅} ?

Exercise 5. Consider functions F :A→B and F ′:A→B. Show that

F =F ′ iff ∀a∈A F (a) =F ′(a).

2.7 Unions

The union axiom reads

∀x∃y∀z(z ∈ y↔∃w(w ∈x∧ z ∈w)).

Lemma 20. The union axiom is equivalent to ∀x⋃ x∈ V.

Proof. Observe the following equivalences:
∀x⋃ x∈V
↔∀x∃y (y= y ∧ y=⋃ x)
↔∀x∃y∀z(z ∈ y↔ z ∈⋃ x)
↔∀x∃y∀z(z ∈ y↔∃w ∈ x z ∈w)
which is equivalent to the union axiom. �

Note that the union of x is usually viewed as the union of all elements of x:
⋃

x=
⋃

w∈x

w ,

where we define
⋃

a∈A

t(a)= {z |∃a∈Az ∈ t(a)}.

Graphically
⋃

x can be illustrated like this:
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x
∪x

Combining the axioms of pairing and unions we obtain:

Lemma 21. ∀x0, ..., xn−1 {x0, ..., xn−1}∈V .

Note that this is a schema of lemmas, one for each ordinary natural number n . We prove the
schema by complete induction on n .

Proof. For n= 0, 1, 2 the lemma states that ∅ ∈ V , ∀x {x} ∈ V , and ∀x, y {x, y} ∈ V resp., and
these are true by previous axioms and lemmas. For the induction step assume that the lemma
holds for n , n> 1. Consider sets x0, ..., xn . Then

{x0, ..., xn}= {x0, ..., xn−1}∪ {xn}.
The right-hand side exists in V by the inductive hypothesis and the union axiom. �

Remark 22. We are developing the axiom systems ZF and ZFC. These will be infinite
schemas, lists, or sets of formulas. These schemas are formulated in the common mathematical
language, which is able to speak about formulas, in particular ∈-formulas, and is also able to
speak about infinite collections of formulas. If we assume infinitely many axioms, it should also
be possible to conclude infinitely many consequences, like the above Lemma: ∀x0, ...,

xn−1 {x0, ..., xn−1}∈ V . We view the common mathematical language as a meta language which
is able to speak about an object language like the language of set theory. The meta language has
common mathematical tools available. For example induction and recursion on the common nat-
ural numbers, to perform the recursion in the previous schema of lemmas . We shall approach
the problem of meta theory versus object theory in an informal naive way.

2.8 Separation

It is common to form a subset of a given set consisting of all elements which satisfy some condi-
tion. This is codified by the separation schema. For every ∈-formula ϕ(z, x1, ..., xn) postulate:

∀x1...∀xn∀x∃y∀z (z ∈ y↔z ∈ x∧ ϕ(z, x1, ..., xn)).
Using class terms the schema can be reformulated as: for every term A postulate

∀xA∩x∈ V .
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The crucial point is the restriction to the given set x . The unrestricted, Fregean version A ∈ V
for every term A leads to the Russell antinomy. We turn the antinomy into a consequence of
the separation schema:

Theorem 23. V ∈/ V.

Proof. Assume that V ∈ V . Then ∃xx= V . Take x such that x= V . Let R be the Russellian
class:

R: ={x|x∈/ x}.
By separation, y :=R∩x∈ V . Note that R∩x=R∩ V =R . Then

y ∈ y↔y ∈R↔y∈/ y ,
contradiction. �

This simple but crucial theorem leads to the distinction:

Definition 24. Let A be a term. Then A is a proper class iff A∈/ V.

Set theory deals with sets and proper classes. Sets are the favoured objects of set theory, the
axioms mainly state favorable properties of sets and set existence. Sometimes one says that a
term A exists if A ∈ V . The intention of set theory is to construe important mathematical
classes like the collection of natural and real numbers as sets so that they can be treated set-the-
oretically. Zermelo observed that this is possible by requiring some set existences together
with the restricted separation principle.

Exercise 6. Show that the class {{x}|x∈V } of singletons is a proper class.

2.9 Power Sets

The power set axiom in class term notation is

∀xP(x)∈V .
The power set axiom yields the existence of function spaces.

Definition 25. Let A,B be terms. Then

A×B: ={(a, b)|a∈A∧ b∈B}
is the cartesian product of A and B.

Exercise 7.

By the specific implementation of Kuratowski ordered pairs:

Lemma 26. A×B ⊆P(P(A∪B)).

Proof. Let (a, b)∈A×B. Then

a, b ∈ A∪B
{a}, {a, b} ⊆ A∪B
{a}, {a, b} ∈ P(A∪B)

(a, b) = {{a}, {a, b}} ⊆ P(A∪B)

(a, b) = {{a}, {a, b}} ∈ P(P(A∪B))

�

Theorem 27.

a) ∀x, y x× y ∈ V.
b) ∀x, y xy ∈ V.
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Proof. Let x, y be sets. a) Using the axioms of pairing, union, and power sets, P(P(x∪ y))∈V .
By the previous lemma and the axiom schema of separation,

x× y=(x× y)∩P(P(x∪ y))∈V .
b) xy ⊆P(x× y) since a function f :x→ y is a subset of x× y . By the separation schema,

xy=x y ∩P(x× y)∈V . �

Note that to “find” the sets in this theorem one has to apply the power set operation repeatedly.
We shall see that the universe of all sets can be obtained by iterating the power set operation.
The power set axiom leads to higher cardinalities . The theory of cardinalities will be developed
later, but we can already prove Cantor’s theorem:

Theorem 28. Let x∈ V.
a) There is an injective map f :x→P(x).
b) There does not exist an injective map g:P(x)→x .

Proof. a) Define the map f :x→P(x) by u 7→ {u}. This is a set since

f = {(u, {u})|u∈x}⊆x×P(x)∈ V .
f is injective: let u, u′∈x, u=/ u′. By extensionality,

f(u)= {u}=/ {u′}= f(u′).

b) Assume there were an injective map g:P(x)→ x . Define the Cantorean set

c= {u|u∈ x∧u∈/ g−1(u)}∈P (x)
similar to the class R in Russell’s paradox.
Let u0= g(c). Then g−1(u0) = c and

u0∈ c↔u0∈/ g−1(u0) = c.

Contradiction. �

2.10 Replacement

If every element of a set is definably replaced by another set, the result is a set again. The
schema of replacement postulates for every term F :

F is a function →∀xF [x]∈ V .

Lemma 29. The replacement schema implies the separation schema.

Proof. Let A be a term and x∈V .
Case 1 . A∩x= ∅ . Then A∩ x∈V by the axiom of set existence.
Case 2 . A∩x=/ ∅ . Take u0∈A∩ x . Define a map F :x→x by

F (u)=

{

u , if u∈A∩x
u0 , else

Then by replacement

A∩x=F [x]∈ V
as required. �

2.11 Infinity

All the axioms so far can be realized in a domain of finite sets, see exercise 12. The true power
of set theory is set free by postulating the existence of one infinite set and continuing to assume
the axioms. The axiom of infinity expresses that the set of “natural numbers” exists. To this
end, some “number-theoretic” notions are defined.
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Definition 30.

a) 0:=∅ is the number zero.

b) For any term t, t+1:=t∪{t} is the successor of t.

These notions are reasonable in the later formalization of the natural numbers. The axiom of
infinity postulates the existence of a set which contains 0 and is closed under successors

∃x (0∈x∧∀n∈ x n+1∈ x).
Intuitively this says that there is a set which contains all natural numbers. Let us define set-the-
oretic analogues of the standard natural numbers:

Definition 31. Define

a) 1:=0+ 1;

b) 2:=1+ 1;

c) 3:=2+ 1; ...

From the context it will be clear, whether “3”, say, is meant to be the standard number “three”
or the set theoretical object

3 = 2∪{2}
= (1+ 1)∪{1+ 1}
= ({∅}∪ {{∅}})∪{{∅}∪ {{∅}}}
= {∅, {∅}, {∅}∪ {{∅}}}.

The set-theoretic axioms will ensure that this interpretation of “three” has the important
number-theoretic properties of “three”.

2.12 Foundation

The axiom schema of foundation provides structural information about the set theoretic uni-
verse V . It can be reformulated by postulating, for any term A :

A=/ ∅→∃x∈AA∩ x= ∅ .
Viewing ∈ as some kind of order relation this means that every non-empty class has an ∈-min-
imal element x ∈ A such that the ∈-predecessors of x are not in A. Foundation excludes circles
in the ∈-relation:

Lemma 32. Let n be a natural number >1 . Then there are no x0, ..., xn−1 such that

x0∈x1∈ ...∈ xn−1∈ x0 .

Proof. Assume not and let x0∈x1∈ ...∈ xn−1∈ x0 . Let
A= {x0, ..., xn−1}.

A=/ ∅ since n> 1 . By foundation take x∈A such that A∩x= ∅ .
Case 1 . x= x0 . Then xn−1∈A∩ x= ∅ , contradiction.
Case 2 . x= xi , i > 0 . Then xi−1∈A∩ x= ∅ , contradiction. �

Exercise 8. Show that x=/ x+1 .

Exercise 9. Show that the successor function x 7→x+1 is injective.

Exercise 10. Show that the term {x, {x, y}} may be taken as an ordered pair of x and y .

Theorem 33. The foundation scheme is equivalent to the following, Peano-type, induction
scheme: for every term B postulate

∀x (x⊆B→x∈B)→B=V .
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This says that if a “property” B is inherited by x if all elements of x have the property B, then
every set has the property B.

Proof. (→) Assume B were a term which did not satisfy the induction principle:

∀x (x⊆B→ x∈B) and B=/ V .

Set A=V \B=/ ∅ . By foundation take x∈A such that A∩x= ∅ . Then
u∈x→u∈/ A→u∈B ,

i.e., x⊆B . By assumption, B is inherited by x : x∈B . But then x∈/ A , contradiction.
(←) Assume A were a term which did not satisfy the foundation scheme:

A=/ ∅ and ∀x∈AA∩x=/ ∅ .

Set B = V \ A . Consider x ⊆ B . Then A ∩ x = ∅ . By assumption, x ∈/ A and x ∈ B . Thus
∀x (x⊆B→x∈B). The induction principle implies that B=V . Then A= ∅, contradiction. �

This proof shows, that the induction principle is basically an equivalent formulation of the
foundation principle. The ∈-relation is taken as some binary relation without reference to spe-
cific properties of this relation. This leads to:

Exercise 11. A relation R on a domain D is called wellfounded, iff for all terms A

∅=/ A∧A⊆D→∃x∈A A∩{y |yRx}= ∅.

Formulate and prove a principle for R-induction on D which coressponds to the assumption that R is well-

founded on D.

2.13 Set Theoretic Axiom Schemas

Note that the axiom system introduced is an infinite informal set of axioms. It seems unavoid-
able that we have to go back to some previously given set notions to be able to define the collec-
tion of set theoretical axioms - another example of the frequent circularity in foundational the-
ories.

Definition 34. The system ZF of the Zermelo-Fraenkel axioms of set theory consists of the
following axioms:

a) The set existence axiom (Ex):

∃x∀y¬y ∈x
- there is a set without elements, the empty set.

b) The axiom of extensionality (Ext):

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x= y)

- a set is determined by its elements, sets having the same elements are identical.

c) The pairing axiom (Pair):

∀x∀y∃z∀w (u∈ z↔u= x∨ u= y).

- z is the unordered pair of x and y.

d) The union axiom (Union):

∀x∃y∀z(z ∈ y↔∃w(w ∈x∧ z ∈w))

- y is the union of all elements of x.

e) The separation schema (Sep) postulates for every ∈-formula ϕ(z, x1, ..., xn):

∀x1...∀xn∀x∃y∀z (z ∈ y↔z ∈x∧ ϕ(z, x1, ..., xn))
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- this is an infinite scheme of axioms, the set z consists of all elements of x which satisfy
ϕ.

f ) The powerset axiom (Pow):

∀x∃y∀z(z ∈ y↔∀w(w ∈ z→w ∈x))
- y consists of all subsets of x.

g) The replacement schema (Rep) postulates for every ∈-formula ϕ(x, y, x1, ..., xn):

∀x1...∀xn(∀x∀y∀y ′((ϕ(x, y, x1, ..., xn)∧ ϕ(x, y ′, x1, ..., xn))→ y= y ′)→
∀u∃v∀y (y ∈ v↔∃x(x∈u∧ ϕ(x, y, x1, ..., xn))))

- v is the image of u under the map defined by ϕ.

h) The axiom of infinity (Inf):

∃x(∃y (y ∈x∧∀z¬z ∈ y)∧∀y(y ∈x→∃z(z ∈ x∧∀w(w ∈ z↔w ∈ y ∨w= y))))

- by the closure properties of x, x has to be infinite.

i) The foundation schema (Found) postulates for every ∈-formula ϕ(x, x1, ..., xn):

∀x1...∀xn(∃xϕ(x, x1, ..., xn)→∃x(ϕ(x, x1, ..., xn)∧∀x′(x′∈x→¬ϕ(x′, x1, ..., xn))))

- if ϕ is satisfiable then there are ∈-minimal elements satisfying ϕ.

2.14 ZF in Class Notation

Using class terms, the ZF can be formulated concisely:

Theorem 35. The ZF axioms are equivalent to the following system; we take all free variables
of the axioms to be universally quantified:

a) Ex: ∅∈ V.
b) Ext: x⊆ y ∧ y⊆ x→x= y .

c) Pair: {x, y}∈ V.
d) Union:

⋃

x∈V.
e) Sep: A∩x∈ V.
f ) Pow: P(x)∈ V.
g) Rep: F is a function →F [x]∈V.
h) Inf: ∃x (0∈x∧∀n∈ x n+1∈ x).
i) Found: A=/ ∅→∃x∈AA∩x= ∅ .

This axiom system can be used as a foundation for all of mathematics. Axiomatic set theory
considers various axiom systems of set theory.

Definition 36. The axiom system ZF− consists of the ZF-axioms except the power set axiom.
The axiom System ST (“set theory”) onsists of the ZF-axioms except the axiom of infinity. The
system EML (“elementary set theory”) consists of the axioms Ex, Ext, Pair, and Union.

Exercise 12. Consider the axiom system HF consisting of the axioms of EML together with the induction

principle: for every term B postulate

∀x, y (x⊆B ∧ y ∈B→ x∪{y} ∈B)→B=V .

Show that every axiom of ZF except Inf is provable in HF, and that HF proves the negation of Inf (HF axio-

matizes the heriditarily finite sets, i.e., those sets such that the set itself and all its iterated elements are

finite).
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3 Ordinal Numbers

We had defined some “natural numbers” in set theory. Recall that

0 = ∅
1 = 0+1=0∪{0} = {0}
2 = 1+1=1∪{1} = {0, 1}
3 = 2+1=2∪{2} = {0, 1, 2}
···

We would then like to have N = {0, 1, 2, 3, ...}. To obtain a set theoretic formalization of num-
bers we note some properties of the informal presentation:

1. ”Numbers” are ordered by the ∈-relation:
m<n iff m∈n.

E.g., 1∈ 3 but not 3∈ 1.
2. On each “number”, the ∈-relation is a strict linear order : 3 = {0, 1, 2} is strictly linearly

ordered by ∈.
3. ”Numbers” are “complete” with respect to smaller “numbers”

i < j <m→ i∈m.
This can be written with the ∈-relation as

i∈ j ∈m→ i∈m.

Definition 37.

a) A is transitive, Trans(A), iff ∀y ∈A∀x∈ y x∈A .

b) x is an ordinal (number), Ord(x), if Trans(x)∧∀y ∈ xTrans(y).
c) Let Ord: ={x|Ord(x)} be the class of all ordinal numbers.

We shall use small greek letter α, β, ... as variables for ordinals. So ∃αϕ stands for ∃α ∈ Ord ϕ,
and {α|ϕ} for {α|Ord(α)∧ ϕ}.

Exercise 13. Show that arbitrary unions and intersections of transitive sets are again transitive.

We shall see that the ordinals extend the standard natural numbers. Ordinals are particularly
adequate for enumerating infinite sets.

Theorem 38.

a) 0∈Ord.

b) ∀α α+1∈Ord .

Proof. a) Trans(∅) since formulas of the form ∀y ∈ ∅... are tautologously true. Similarly ∀y ∈
∅ Trans(y).
b) Assume α∈Ord.
(1) Trans(α+1).
Proof . Let u∈ v ∈α+1=α∪ {α}.
Case 1 . v ∈α. Then u∈α⊆α+1, since α is transitive.
Case 2 . v=α. Then u∈α⊆α+1. qed(1)
(2) ∀y ∈α+1Trans(y).
Proof . Let y ∈α+1=α∪{α}.
Case 1 . y ∈α. Then Trans(y) since α is an ordinal.
Case 2 . y=α. Then Trans(y) since α is an ordinal. �

Exercise 14.

a) Let A⊆Ord be a term, A=/ ∅ . Then
⋂

A∈Ord.
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b) Let x⊆Ord be a set. Then
⋃

x∈Ord .

Theorem 39. Trans(Ord).

Proof. This follows immediately from the transitivity definition of Ord. �

Exercise 15. Show that Ord is a proper class. (Hint: if Ord∈V then Ord∈Ord.)

Theorem 40. The class Ord is strictly linearly ordered by ∈, i.e.,
a) ∀α, β, γ (α∈ β ∧ β ∈ γ→α∈ γ).
b) ∀α α∈/ α.
c) ∀α, β (α∈ β ∨α= β ∨ β ∈α).

Proof. a) Let α, β, γ ∈Ord and α∈ β ∧ β ∈ γ. Then γ is transitive, and so α∈ γ.
b) follows immediately from the non-circularity of the ∈-relation.
c) Assume that there are “incomparable” ordinals. By the foundation schema choose α0∈Ord ∈-
minimal such that ∃β¬(α0∈ β ∨α0= β ∨ β ∈α0). Again, choose β0∈Ord ∈-minimal such that ¬
(α0∈ β0∨α0= β0∨ β0∈α0). We obtain a contradiction by showing that α0= β0:
Let α ∈ α0 . By the ∈-minimality of α0 , α is comparable with β0 : α ∈ β0 ∨ α = β0 ∨ β0 ∈ α . If
α= β0 then β0∈α0 and α0, β0 would be comparable, contradiction. If β0∈α then β0∈α0 by the
transitivity of α0 and again α0, β0 would be comparable, contradiction. Hence α∈ β0 .
For the converse let β ∈ β0 . By the ∈-minimality of β0 , β is comparable with α0 : β ∈ α0 ∨ β =
α0 ∨ α0 ∈ β . If β = α0 then α0 ∈ β0 and α0, β0 would be comparable, contradiction. If α0 ∈ β
then α0 ∈ β0 by the transitivity of β0 and again α0, β0 would be comparable, contradiction.
Hence β ∈α0 .
But then α0= β0 contrary to the choice of β0 . �

Definition 41. Let <: =∈∩(Ord×Ord) = {(α, β)|α ∈ β} be the natural strict linear ordering of
Ord by the ∈-relation.

Theorem 42. Let α∈Ord. Then α+1 is the immediate successor of α in the ∈-relation:
a) α<α+1;

b) if β <α+1, then β=α or β <α.

Definition 43. Let α be an ordinal. α is a successor ordinal, Succ(α), iff ∃β α= β +1 . α is a
limit ordinal, Lim(α), iff α=/ 0 and α is not a successor ordinal. Also let

Succ: ={α|Succ(α)} and Lim := {α|Lim(α)}.

The existence of limit ordinals will be discussed together with the formalization of the natural
numbers.

3.1 Ordinal induction

Ordinals satisfy an induction theorem which generalizes complete induction on the integers:

Theorem 44. Let ϕ(x, v0, ..., vn−1) be an ∈-formula and x0, ..., xn−1 ∈ V. Assume that the
property ϕ(x, x0, ..., xn−1) is inductive, i.e.,

∀α(∀β ∈α ϕ(β, x0, ..., xn−1)→ ϕ(α, x0, ..., xn−1)).

Then ϕ holds for all ordinals:

∀αϕ(α, x0, ..., xn−1).

Proof. It suffices to show that

B= {x|x∈Ord→ ϕ(x, x0, ..., xn−1)}=V .
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Theorem 33 implies

∀x (x⊆B→x∈B)→B=V

and it suffices to show

∀x (x⊆B→x∈B).

Consider x ⊆ B. If x ∈/ Ord then x ∈B. So assume x ∈ Ord. For β ∈ x we have β ∈ B, β ∈ Ord,
and so ϕ(β, x0, ..., xn−1). By the inductivity of ϕ we get ϕ(x, x0, ..., xn−1) and again x∈B. �

Induction can be formulated in various forms:

Exercise 16. Prove the following transfinite induction principle: Let ϕ(x) = ϕ(x, v0, ..., vn−1) be an ∈-for-

mula and x0, ..., xn−1∈V . Assume

a) ϕ(0) (the initial case),

b) ∀α (ϕ(α)→ ϕ(α+1)) (the successor step),

c) ∀λ∈Lim (∀α<λϕ(α)→ϕ(λ)) (the limit step).

Then ∀αϕ(α).

3.2 Natural Numbers

We have 0, 1, ... ∈ Ord. We shall now define and study the set of natural numbers/integers
within set theory. Recall the axiom of infinity:

∃x (0∈ x∧∀u∈x u+1∈ x).
The set of natural numbers should be the ⊆-smallest such x.

Definition 45. Let ω=
⋂ {x|0∈ x∧∀u∈ x u+1∈ x} be the set of natural numbers. Sometimes

we write N instead of ω.

Theorem 46.

a) ω ∈V.
b) ω ⊆Ord.

c) (ω, 0,+1) satisfy the second order Peano axiom, i.e.,

∀x⊆ω (0∈ x∧∀n∈x n+1∈x→x=ω).

d) ω ∈Ord.

e) ω is a limit ordinal.

Proof. a) By the axiom of infinity take a set x0 such that

0∈x0∧∀u∈ x0 u+1∈x0 .
Then

ω=
⋂

{x|0∈ x∧∀u∈x u+1∈ x}= x0∩
⋂

{x|0∈ x∧∀u∈x u+1∈ x}∈ V

by the separation schema.
b) By a), ω ∩Ord ∈ V . Obviously 0∈ ω ∩Ord ∧ ∀u ∈ ω ∩Ord u+ 1∈ ω ∩Ord. So ω ∩Ord is one
factor of the intersection in the definition of ω and so ω ⊆ω ∩Ord . Hence ω ⊆Ord .
c) Let x ⊆ ω and 0 ∈ x ∧ ∀u ∈ x u + 1 ∈ x. Then x is one factor of the intersection in the defini-
tion of ω and so ω ⊆ x . This implies x=ω.
d) By b), every element of ω is transitive and it suffices to show that ω is transitive. Let

x= {n|n∈ω ∧∀m∈n m∈ω}⊆ω.

We show that the hypothesis of c) holds for x. 0 ∈ x is trivial. Let u ∈ x. Then u + 1 ∈ ω. Let
m ∈ u+ 1. If m ∈ u then m ∈ ω by the assumption that u ∈ x. If m= u then m ∈ x ⊆ ω. Hence
u+1∈x and ∀u∈ x u+1∈ x. By b), x=ω. So ∀n∈ωn∈x , i.e.,

∀n∈ω∀m∈n m∈ω.
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e) Of course ω =/ 0 . Assume for a contradiction that ω is a successor ordinal, say ω = α + 1 .
Then α∈ω . Since ω is closed under the +1-operation, ω=α+1∈ω . Contradiction. �

Thus the axiom of infinity implies the existence of the set of natural numbers, which is also the
smallest limit ordinal. The axiom of infinity can now be reformulated equivalently as:
h) Inf: ω ∈V .

3.3 Ordinal recursion

Recursion, often called induction, over the natural numbers is a ubiquitous method for defining
mathematical objects. We prove the following recursion theorem for ordinals.

Theorem 47. Let G: V → V. Then there is a canonical class term F, given by the subsequent
proof, such that

F :Ord→V and ∀α F (α)=G(F ↾α).

We then say that F is defined recursively (over the ordinals) by the recursion rule G. F is
unique in the sense that if another term F ′ satisfies

F ′:Ord→V and ∀α F ′(α)=G(F ′ ↾α)

then F =F ′.

Proof. We say that H : dom(H)→V is G-recursive if

dom(H)⊆Ord , dom(H) is transitive, and ∀α∈dom(H) H(α) =G(H ↾α).

(1) Let H, H ′ be G-recursive. Then H, H ′ are compatible, i.e., ∀α ∈ dom(H) ∩ dom(H ′) H(α) =
H ′(α).
Proof . We want to show that

∀α∈Ord (α∈dom(H)∩ dom(H ′)→H(α)=H ′(α)).

By the induction theorem it suffices to show that α ∈ dom(H) ∩ dom(H ′) →H(α) = H ′(α) is
inductive, i.e.,

∀α ∈Ord (∀y ∈ α (y ∈ dom(H) ∩ dom(H ′)→H(y) =H ′(y))→ (α ∈ dom(H) ∩ dom(H ′)→H(α) =

H ′(α))).

So let α∈Ord and ∀y ∈α (y ∈ dom(H)∩ dom(H ′)→H(y)=H ′(y)). Let α∈ dom(H)∩ dom(H ′).
Since dom(H) and dom(H ′) are transitive, α⊆dom(H) and α⊆ dom(H ′). By assumption

∀y ∈α H(y)=H ′(y).

Hence H ↾α=H ′ ↾α. Then

H(α)=G(H ↾α)=G(H ′ ↾α)=H ′(α).

qed(1)
Let

F : =
⋃

{f |f is G-recursive}.

be the union of the class of all approximations to the desired function F .
(2) F is G-recursive.
Proof . By (1), F is a function. Its domain dom(F ) is the union of transitive classes of ordinals
and hence dom(F )⊆Ord is transitive.
Let α ∈ dom(F ). Take some G-recursive functionf such that α ∈ dom(f). Since dom(f) is trans-
itive, we have

α⊆ dom(f)⊆dom(F ).

Moreover

F (α)= f(α)=G(f ↾α) =G(F ↾α).
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qed(2)
(3) ∀α α∈dom(F ).
Proof . By induction on the ordinals. We have to show that α ∈ dom(F ) is inductive in the vari-
able α. So let α∈Ord and ∀y ∈α y ∈dom(F ). Hence α⊆ dom(F ). Let

f =F ↾α∪{(α,G(F ↾α))}.
f is a function with dom(f)=α+1∈Ord. Let α′<α+1. If α′<α then

f(α′)=F (α′)=G(F ↾α′)=G(f ↾α′).

if α′=α then also

f(α′)= f(α) =G(F ↾α)=G(f ↾α) =G(f ↾α′).

Hence f is G-recursive and α∈dom(f)⊆ dom(F ). qed(3)
The extensional uniqueness of F follows from (1) �

Theorem 48. Let a0 ∈ V, Gsucc:Ord× V → V, and Glim:Ord× V → V. Then there is a canonic-
ally defined class term F :Ord→V such that

a) F (0)= a0 ;

b) ∀αF (α+1)=Gsucc(α, F (α));

c) ∀λ∈Lim F (λ)=Glim(λ, F ↾λ).

Again F is unique in the sense that if some F ′ also satisfies a)-c) then F =F ′.
We say that F is recursively defined by the properties a)-c).

Proof. We incorporate a0 , Gsucc , and Glim into a single recursion rule G:V →V ,

G(f) =















a0 , if f = ∅,
Gsucc(α, f(α)) , if f :α+1→ V ,

Glim(λ, f) , if f :λ→V and Lim(λ),
∅ , else.

Then the term F :Ord→V defined recursively by the recursion rule G satisfies the theorem. �

In many cases, the limit rule will just require to form the union of the previous values so that

F (λ) =
⋃

α<λ

F (α).

Such recursions are called continuous (at limits).

3.4 Ordinal Arithmetic

We extend the recursion rules of standard integer arithmetic continuously to obtain transfinite
version of the arithmetic operations. The initial operation of ordinal arithmetic is the +1-opera-
tion defined before. Ordinal arithmetic satisfies some but not all laws of integer arithmetic.

Definition 49. Define ordinal addition +:Ord×Ord→Ord recursively by

δ+0 = δ

δ+(α+1) = (δ+α) + 1

δ+λ =
⋃

α<λ

(δ+α) , for limit ordinals λ

Definition 50. Define ordinal multiplication · :Ord×Ord→Ord recursively by

δ · 0 = 0

δ · (α+1) = (δ ·α)+ δ

δ ·λ =
⋃

α<λ

(δ ·α) , for limit ordinals λ
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Definition 51. Define ordinal exponentiation __ :Ord×Ord→Ord recursively by

δ0 = 1

δα+1 = δα · δ
δλ =

⋃

α<λ

δα , for limit ordinals λ

Exercise 17. Explore which of the standard ring axioms hold for the ordinals with addition and multiplica-

tion. Give proofs and counterexamples.

Exercise 18. Show that for any ordinal α , α + ω is a limit ordinal. Use this to show that the class Lim of

all limit ordinals is a proper class.

4 Number Systems

We are now able to give set-theoretic formalizations of the standard number systems with their
arithmetic operations.

4.1 Natural Numbers

Definition 52. The structure

N: =(ω,+↾(ω×ω), ·↾(ω ×ω), <↾(ω×ω), 0, 1)

is called the structure of natural numbers, or arithmetic. We sometimes denote this structure
by

N: =(ω,+, ·, <, 0, 1).

N is an adequate formalization of arithmetic within set theory since N satisfies all standard
arithmetical axioms.

Exercise 19. Prove:

a) + [ω×ω] := {m+n|m∈ω ∧n∈ω}⊆ω .

b) · [ω×ω] := {m ·n|m∈ω ∧n∈ω}⊆ω .

c) Addition and multiplication are commutative on ω .

d) Addition and multiplication satisfy the usual monotonicity laws with respect to <.

Definition 53. We define the structure

Z := (Z,+Z, ·Z, <Z, 0Z, 1Z)

of integers as follows:

a) Define an equivalence relation ≈ on N×N by

(a, b)≈ (a′, b′) iff a+ b′= a′+ b.

b) Let a− b: =[(a, b)]≈ be the equivalence class of (a, b) in ≈. Note that every a− b is a set.

c) Let Z: ={a− b|a∈N∧ b∈N} be the set of integers.

d) Define the integer addition +Z:Z×Z→Z by

(a− b) +Z (a′− b′) := (a+ a′)− (b+ b′).

e) Define the integer multiplication ·Z:Z×Z→Z by

(a− b) ·Z (a′− b′) := (a · a′+ b · b′)− (a · b′+ a′ · b).
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f ) Define the strict linear order <Z on Z by

(a− b)<Z (a′− b′) iff a+ b′<a′+ b.

g) Let 0Z: =0− 0 and 1Z: =1− 0.

Exercise 20. Check that the above definitions are sound, i.e., that they do not depend on the choice of rep-

resentatives of equivalence classes.

Exercise 21. Check that Z satisfies (a sufficient number) of the standard axioms for rings.

The structure Z extends the structure N in a natural and familiar way: define an injective map
e:N→Z by

n 7→n− 0.

The embedding e is a homomorphism:

a) e(0)= 0− 0=0Z and e(1)= 1− 0= 1Z;

b) e(m+n)= (m+n)− 0= (m+n)− (0+0)= (m− 0)+Z (n− 0)= e(m)+Z e(n);

c) e(m ·n) = (m ·n)− 0= (m ·n+0 · 0)− (m · 0+n · 0)= (m− 0) ·Z (n− 0)= e(m) ·Z e(n);
d) m<n↔m+0<n+0↔ (m− 0)<Z (n− 0)↔e(m)<Z e(n).

By this injective homomorphism, one may consider N as a substructure of Z : N⊆Z .

4.2 Rational Numbers

Definition 54. We define the structure

Q0
+ := (Q0

+,+Q, ·Q, <Q, 0Q, 1Q)

of non-negative rational numbers as follows:

a) Define an equivalence relation ⋍ on N× (N \ {0}) by

(a, b)⋍ (a′, b′) iff a · b′= a′ · b.

b) Let
a

b
: =[(a, b)]≃ be the equivalence class of (a, b) in ≃. Note that

a

b
is a set.

c) Let Q0
+: ={a

b
|a∈N∧ b∈ (N \ {0})} be the set of non-negative rationals.

d) Define the rational addition +Q:Q0
+×Q0

+→Q0
+ by

a

b
+Q a′

b′
:=

a · b′+ a′ · b
b · b′ .

e) Define the rational multiplication ·Q:Q0
+×Q0

+→Q0
+ by

a

b
·Q a′

b′
:=

a · a′
b · b′ .

f ) Define the strict linear order <Q on Q0
+ by

a

b
<Q a′

b′
iff a · b′<a′ · b.

g) Let 0Q: =
0

1
and 1Q: =

1

1
.

Again one can check the soundness of the definitions and the well-known laws of standard non-
negative rational numbers. Also one may assume N to be embedded into Q0

+ as a substructure.
The transfer from non-negative to all rationals, including negative rationals can be performed in
analogy to the transfer from N to Z .

Definition 55. We define the structure

Q := (Q,+Q, ·Q, <Q, 0Q, 1Q)
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of rational numbers as follows:

a) Define an equivalence relation ≈ on Q0
+×Q0

+ by

(p, q)≈ (p′, q ′) iff p+ q ′= p′+ q .

b) Let p− q: =[(p, q)]≈ be the equivalence class of (p, q) in ≈.
c) Let Q: ={p− q |p∈Q0

+∧ p∈Q0
+} be the set of rationals.

Exercise 22. Continue the definition of the structure Q and prove the relevant properties.

4.3 Real Numbers

Definition 56. r⊆Q0
+ is a positive real number if

a) ∀p∈ r∀q ∈Q0
+(q <Q p→q ∈ r), i.e., r is an initial segment of (Q0

+, <Q);

b) ∀p∈ r∃q ∈ r p<Q q , i.e., r is right-open in (Q0
+, <Q);

c) 0∈ r=/ Q0
+, i.e., r is nonempty and bounded in (Q0

+, <Q).

Definition 57. We define the structure

R+ := (R+,+R, ·R, <R, 1R)

of positive real numbers as follows:

a) Let R+ be the set of positive reals.

b) Define the real addition +R:R+×R+→R+ by

r+R r ′= {p+Q p′|p∈ r∧ p′∈ r ′}.

c) Define the real multiplication ·R:R+×R+→R+ by

r ·R r ′= {p ·Q p′|p∈ r∧ p′∈ r ′}.

d) Define the strict linear order <R on R+ by

r <R r ′ iff r ⊆ r ′∧ r=/ r ′.
e) Let 1R: ={p∈Q0

+|q <Q 1}.

We justify some details of the definition.

Lemma 58.

a) R+∈ V.
b) If r, r ′∈R+ then r+R r ′, r ·R r ′∈R+.

c) <R is a strict linear order on R+.

Proof. a) If r ∈ R+ then r ⊆ Q0
+ and r ∈ P(Q0

+). Thus R+ ⊆ P(Q0
+), and R+ is a set by the

power set axiom and separation.
b) Let r, r ′∈R+. We show that

r ·R r ′= {p ·Q p′|p∈ r∧ p′∈ r ′}∈R+.

Obviously r ·R r ′⊆Q0
+ is a non-empty bounded initial segment of (Q0

+, <Q).

Consider p ∈ r ·R r ′, q ∈Q0
+, q <Q p . Let p=

a

b
·Q a′

b′
where

a

b
∈ r and

a′

b′
∈ r ′. Let q =

c

d
. Then

c

d
=

c · b′

d · a′
·Q a′

b′
, where

c · b′
d · a′ = q ·Q b′

a′
<Q p ·Q b′

a′
=
a

b
·Q a′

b′
·Q b′

a′
=
a

b
∈ r .
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Hence
c · b′

d · a′
∈ r and

c

d
=
c · b′
d · a′ ·

Q a′

b′
∈ r ·R r ′.

Similarly one can show that r ·R r ′ is open on the right-hand side.
c) The transitivity of <R follows from the transitivity of the relation $. To show that <R is

connex, consider r, r ′ ∈ R+, r =/ r ′. Then r and r ′ are different subsets of Q0
+. Without loss of

generality we may assume that there is some p ∈ r ′ \ r . We show that then r <R r ′, i.e., r $ r ′.

Consider q ∈ r . Since p∈/ r we have p≮Q q and q6Q p . Since r ′ is an initial segment of Q0
+, q ∈

r ′. �

Exercise 23. Show that (R+, ·R, 1R) is a multiplicative group.

We can now construct the complete real line R from R+ just like we constructed Z from N .
Details are left to the reader. We can also proceed to define the structure C of complex numbers
from R .

Exercise 24. Formalize the structure C of complex numbers such that R⊆C .

4.4 Discussion

The constructions carried out in the previous subsections contained many arbitrary choices. One
could, e.g., define rational numbers as reduced fractions instead of equivalence classes of frac-
tions, ensure that the canonical embeddings of number systems are inclusions, etc. If such
choices have been made in reasonable ways we obtain the following theorem, which contains
everything one wants to know about the number systems. So the statements of the following
theorem can be seen as first- and second-order axioms for these systems.

Theorem 59. There are structures N,Z,Q,R, and C with the following properties:

a) the domains of these structures which are also denoted by N, Z, Q, R, and C, resp., sat-
isfy

ω=N⊆Z⊆Q⊆R⊆C ;

b) there are functions +: C ×C→ C and · : C × C→ C on C which are usually written as
binary infix operations;

c) (C,+, ·, 0, 1) is a field; for a, b ∈C write a− b for the unique element z such that a= b+
z ; for a, b∈C with b=/ 0 write

a

b
for the unique element z such that a= b·z ;

d) there is a constant i, the imaginary unit, such that i·i+1=0 and

C= {x+ i·y |x, y ∈R};

e) there is a strict linear order < on R such that (R, <, +↾R2, · ↾ R2, 0, 1) is an ordered
field.

f ) (R, <) is complete, i.e., bounded subsets of R possess suprema:

∀X ⊆R (X =/ ∅∧∃b∈R∀x∈Xx<b −→ ∃b∈R (∀x∈Xx<b∧¬∃b′<b∀x∈Xx<b′))

g) Q is dense in (R, <):

∀r, s∈R (r < s−→∃a, b, c∈Q a<r < b< s<c);

h) (Q,+↾Q2, · ↾Q2, 0, 1) is a field; moreover

Q=
{

a

b
|a∈Z, b∈Z \ {0}

}

;

i) (Z,+↾Z2, · ↾Z2, 0, 1) is a ring with a unit; moreover

Z= {a− b |a, b∈N};

j ) +↾N2 agrees with ordinal addition on ω ; · ↾N2 agrees with ordinal multiplication on ω ;
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k) (N,+1, 0) satisfies the second-order Peano axioms, i.e., the successor function n 7→ n+ 1
is injective, 0 is not in the image of the successor function, and

∀X ⊆N (0∈X ∧∀n∈Xn+1∈X −→ X =N).

This theorem is all we require from the number systems. The details of the previous construc-
tion will not be used again. So we have the standard complex plane, possibly with the identifica-
tion of N and ω.

C

0 1

i

... ...
N

Q⊆R
Z

z= x+ iy

x

y

Remark 60. In set theory the set R of reals is often identified with the sets ωω or ω2 , basically
because all these sets have the same cardinality. We shall come back to this in the context of
cardinality theory.

5 Sequences

The notion of a sequence is crucial in many contexts.

Definition 61.

a) A set w is an α-sequence iff w:α→ V; then α is called the length of the α-sequence w and
is denoted by |α|. w is a sequence iff it is an α-sequence for some α . A sequence w is
called finite iff |w |<ω .

b) A finite sequence w: n→ V may be denoted by its enumeration w0, ..., wn−1 where we write
wi instead of w(i). One also writes w0...wn−1 instead of w0, ..., wn−1 , in particular if w
is considered to be a word formed out of the symbols w0, ..., wn−1 .

c) An ω-sequence w:ω→V may be denoted by w0, w1, ... where w0, w1, ... suggests a definition
of w .

d) Let w: α→ V and w ′: α′→ V be sequences. Then the concatenation wˆw ′: α + α′→ V is
defined by

(wˆw ′) ↾α=w ↾α and ∀i <α′ wˆw ′(α+ i)=w ′(i).

e) Let w:α→V and x∈ V. Then the adjunction wx of w by x is defined as

wx=wˆ{(0, x)}.
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Sequences and the concatenation operation satisfy the algebraic laws of a monoid with cancella-
tion rules.

Proposition 62. Let w,w ′, w ′′ be sequences. Then

a) (wˆw ′)ˆw ′′=wˆ(w ′ ˆw ′′).

b) ∅ˆw=wˆ∅=w .

c) wˆw ′=wˆw ′′→w ′=w ′′.

There are many other operations on sequences. One can permute sequences, substitute elements
of a sequence, etc.

5.1 (ω-)Sequences of Reals

ω-sequences are particularly prominent in analysis. One may now define properties like

lim
i→∞

wi= z iff ∀ε∈R+∃m<ω∀i <ω (i>m→ (z − ε<wi∧wi<z+ ε))

or

∀x:ω→R ( lim
i→∞

xi= a→ lim
i→∞

f(xi)= f(a)).

If x0, x1, ... is given then the partial sums
∑

i=0

n

xi

are defined recursively as
∑

i=0

0

xi=0 and
∑

i=0

n+1

xi=(
∑

i=0

n

xi)+ xn .

The map ϕ: ω2→R defined by

ϕ((xi)i<ω) =
∑

i=0

∞
xi

2i+1
= lim
n→∞

∑

i=0

n
xi

2i+1
.

maps the function space ω2 surjectively onto the real interval

[0, 1]= {r ∈R |06 r6 1}.
Such maps are the reason that one often identifies ω2 with R in set theory.

5.2 Symbols and Words

Languages are mathematical objects of growing importance. Mathematical logic takes terms and
formulas as mathematical material. Terms and formulas are finite sequences of symbols from
some alphabet. We represent the standard symbols =, ∈, etc. by some set-theoretical terms =̇,
∈̇, etc. Note that details of such a formalization are highly arbitrary. One really only has to fix
certain sets to denote certain symbols.

Definition 63. Formalize the basic set-theoretical symbols by

a) =̇=0, ∈̇=1, ∧̇=2, ∨̇=3, →̇=4, ↔̇=5, ¬̇=6, (̇ =7, )̇ = 8, ∃̇=9, ∀̇=10.

b) Variables v̇n=(1, n) for n<ω.

c) Let L∈= {=̇, ∈̇, ∧̇, ∨̇, →̇, ↔̇, ¬̇, (̇,)̇, ∃̇, ∀̇} ∪ {(1, n)|n<ω} be the alphabet of set theory.

d) A word over L∈ is a finite sequence with values in L∈ .

e) Let L∈
∗ = {w |∃n<ω w:n→L∈} be the set of all words over L∈ .

f ) If ϕ is a standard set-theoretical formula, we let ϕ̇ ∈ L∈
∗ denote the formalization of ϕ.

E.g., Ex˙ = ∃̇v̇0∀̇v̇1¬̇v̇1 ∈̇ v̇0 is the formalization of the set existence axiom. If the intention
is clear, one often omits the formalization dots and simply writes Ex˙ = ∃v0∀v1¬v1∈ v0 .
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This formalization can be developed much further, so that the notions and theorems of first-
order logic are available in the theory ZF. By carrying out the definition of the axiom system

ZF within set theory, one obtains a term ZḞ which represents ZF within ZF. This (quasi) self-
referentiality is the basis for limiting results like the Gödel incompleteness theorems.

6 The von Neumann Hierarchy

We use ordinal recursion to obtain more information on the universe of all sets.

Definition 64. Define the von Neumann Hierarchy (Vα)α∈Ord by recursion:

a) V0= ∅ ;
b) Vα+1=P(Vα) ;
c) Vλ=

⋃

α<λ
Vα for limit ordinals λ .

We show that the von Neumann hierarchy is indeed a (fast-growing) hierarchy

Lemma 65. Let β <α∈Ord. Then

a) Vβ ∈ Vα
b) Vβ ⊆Vα
c) Vα is transitive

Proof. We conduct the proof by a simultaneous induction on α .
α=0: ∅ is transitive, thus a)-c) hold at 0.
For the successor case assume that a)-c) hold at α . Let β <α+1. By the inductive assumption,
Vβ ⊆ Vα and Vβ ∈ P(Vα) = Vα+1 . Thus a) holds at α + 1. Consider x ∈ Vα . By the inductive
assumption, x ⊆ Vα and x ∈ Vα+1 . Thus Vα ⊆ Vα+1 . Then b) at α + 1 follows by the inductive
assumption. Now consider x∈Vα+1=P(Vα). Then x⊆Vα⊆Vα+1 and Vα+1 is transitive.
For the limit case assume that α is a limit ordinal and that a)-c) hold at all γ < α . Let β < α .
Then Vβ ∈ Vβ+1⊆

⋃

γ<α
Vγ= Vα hence a) holds at α . b) is trivial for limit α . Vα is transitive as

a union of transitive sets. �

The Vα are nicely related to the ordinal α .

Lemma 66. For every α , Vα∩Ord=α .

Proof. Induction on α . V0∩Ord= ∅∩Ord= ∅=0 .
For the successor case assume that Vα∩Ord= α . Vα+1 ∩Ord is transitive, and every element of
Vα+1 ∩ Ord is transitive. Hence Vα+1 ∩ Ord is an ordinal, say δ = Vα+1 ∩ Ord . α = Vα ∩ Ord
implies that α ∈ Vα+1∩Ord= δ and α+ 16 δ . Assume for a contradiction that α+ 1< δ . Then
α+1∈Vα+1 and α+1⊆Vα∩Ord=α , contradiction. Thus α+1= δ=Vα+1∩Ord .
For the limit case assume that α is a limit ordinal and that Vβ ∩ Ord = β holds for all β < α .
Then

Vα∩Ord=(
⋃

β<α

Vβ)∩Ord=
⋃

β<α

(Vβ ∩Ord)=
⋃

β<α

β=α.

�

The foundation schema implies that the Vα-hierarchy exhausts the universe V .

Theorem 67.

a) ∀x⊆⋃
α∈OrdVα ∃β x⊆Vβ .

b) V =
⋃

α∈OrdVα .
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Proof. a) Let x⊆⋃
α∈Ord . Define a function f :x→Ord by

f(u)=min {γ |u∈Vγ}.

By the axioms of replacement and union, β =
⋃ {f(u) + 1|u ∈ x} ∈ V and β ∈ Ord. Let u ∈ x .

Then f(u)< f(u)+ 16 β and u∈ Vf(u)⊆Vβ . Thus x⊆Vβ .
b) Let B=

⋃

α∈OrdVα . By the schema of ∈-induction it suffices to show that

∀x (x⊆B→x∈B).

So let x⊆B=
⋃

α∈OrdVα . By a) take β such that x⊆Vβ . Then x∈Vβ+1⊆
⋃

α∈OrdVα=B . �

The Vα-hierarchy ranks the elements of V into levels.

Definition 68. Define the rank (function) rk:V →Ord by

x∈Vrk(x)+1 \Vrk(x) .

The rank function satisfies a recursive law.

Lemma 69. ∀x rk(x) =
⋃

y∈x rk(y)+ 1 .

Proof. Let us prove the statement

∀x∈Vα rk(x)=
⋃

y∈x

rk(y)+ 1

by induction on α . The case α = 0 is trivial. The limit case is obvious since Vλ =
⋃

α<λ
Vα for

limit λ .
For the successor case assume that the statement holds for α . Consider x ∈ Vα+1 . If x ∈ Vα the
statement holds by the inductive assumption. So assume that x ∈ Vα+1 \ Vα . Then rk(x) = α .
Let y ∈ x ⊆ Vα . Then y ∈ Vβ+1 \ Vβ for some β = rk(y)< α . rk(y) + 1⊆ α . Thus

⋃

y∈x rk(y) +

1⊆ α . Assume that γ =
⋃

y∈x rk(y) + 1< α . Let y ∈ x . Then rk(y) + 16 γ and y ∈ Vrk(y)+1⊆
Vγ . Thus x⊆Vγ , x∈ Vγ+1⊆Vα , contradicting the assumption that x∈ Vα+1 \Vα . �

Lemma 70. Let A be a term. Then A∈V iff ∃α A⊆Vα .

The previous analysis of the Vα-hierarchy suggest the following picture of the universe V .

Ord V

Vα

Vα+1

ω

α

α+1

0

n
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7 The Axiom of Choice

Natural numbers n∈N are used to enumerate finite sets a as

a= {a0, a1, ..., an−1}.
Assuming the axiom of choice, one can use ordinals to enumerate any set a as

a= {ai | i <α}.

Definition 71. The Axiom of Choice, AC is the statement

∀x(∅∈/ x∧∀u, v ∈x(u=/ v→u∩ v= ∅)→∃z∀u∈x∃wu∩ z= {w}).
The axiom expresses that for every set x consisting of nonempty pairwise disjoint elements there
exists a choice set z , i.e., for every element u ∈ x the intersection u ∩ z consists exactly of one
element. Thus z “chooses” one element out of every element of x .

...

x

u

w

z

It seems intuitively clear that such choices are possible. On the other hand we shall see that the
axiom of choice has unintuitive, paradoxical consequences.

Theorem 72. The following statements are equivalent:

a) AC ;

b) ∀x∃g (g is a function with domain x∧∀u ∈ x (u =/ ∅ → g(u) ∈ u)); such a function g is
called a choice function for x ;

c) ∀x∃α∃ff :α↔x .

Proof. a) → b) Assume AC. Let x be a set. We may assume that every element of x is
nonempty. The class

x′= {{u}× u|u∈ x}
is the image of x under the set valued map u 7→ {u}× u, and thus a set by replacement. The ele-
ments {u} × u of x′ are nonempty and pairwise disjoint. By AC, take a choice set z for x′.
Define a choice function g:x→V by letting g(u) be the unique element of u such that

({u}× u)∩ z= {(u, g(u))}.
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b)→ c) Assume b). Let x be a set and let g: P(x) \ {∅}→ V be a choice function for P(x) \ {∅}.
Define a function F :Ord→x∪ {x} by ordinal recursion such that

F (α)=

{

g(x \F [α]), if x \F [α] =/ ∅ ;
x, if x \F [α] = ∅.

At “time” α, the function F chooses an element F (α) ∈ x which has not been chosen before. If
all elements of x have been chosen, this is signaled by F by the value x which is not an element
of x.
(1) Let α< β and F (β)=/ x . Then F (α), F (β)∈ x and F (α) =/ F (β).
Proof . F (β) =/ x implies that x \ F [β] =/ ∅ and hence F (β) = g(x \ F [β]) ∈ x \ F [β]. Since α ∈ β,
x \F [α] =/ ∅ and F (α)= g(x \F [α])∈ x \F [α]. F (α)=/ F (β) follows from F (β)∈x \F [β]. qed(1)
(2) There is α∈Ord such that F (α)= x .
Proof . Assume not. Then by (1), F : Ord → x is injective. Hence F−1 is a function and Ord =
F−1[x]. By replacement, Ord is a set, but this is a contradiction. qed(2)
By (2) let α be minimal such that F (α) = x . Let f = F ↾ α: α→ x . By the definition of F , x \
F [α] = ∅ , i.e., F [α] =x and f is surjective. By (1), f is also injective, i.e., f :α↔x .
c)→ a) Assume c). Let the set x consist of nonempty pairwise disjoint elements. Apply c) to

⋃

x . Take an ordinal α and a function f :α→⋃ x . Define a choice set z for x by setting

z= {f(ξ)|∃u∈x (f(ξ)∈u∧∀ζ < ξf(ζ)∈/ u)}.

So z chooses for every u∈ x that f(ξ)∈ u with ξ minimal. �

We shall later use the enumeration property c) to define the cardinality of a set. Zorn’s Lemma
is an important existence principle which is also equivalent to AC.

Definition 73. Let (P ,6) be a partial order.

a) X ⊆ P is a chain in (P , 6) if (X, 6) is a linear order where (X, 6) is a short notation

for the structure (X,6∩X2).

b) An element p∈P is an upper bound for X ⊆P iff ∀x∈Xx6 p .

c) (P ,6) is inductive iff every chain in (P ,6) possesses an upper bound.

d) An element p∈P is a maximal element of (P ,6) iff ∀q ∈P (q> p→q= p).

Theorem 74. The axiom of choice is equivalent to the following principle, called Zorn’s
Lemma: every inductive partial order (P ,6)∈ V possesses a maximal element.

Proof. Assume AC and let (P ,6) ∈ V be an inductive partial order. Let g: P(P ) \ {∅}→ V be
a choice function for P(P ) \ {∅}. Define a function F : Ord → P ∪ {P } by ordinal recursion; if
there is an upper bound for F [α] which is not an element of F [α] let

F (α) = g({p∈P \F [α] | p is an upper bound for F [α]});
otherwise set

F (α)=P .

At “time” α, the function F chooses a strict upper bound of F [α] if possible. If this is not pos-
sible, this is signaled by F by the value P .
The definition of F implies immediately:
(1) Let α< β and F (β)=/ P . Then F (α)<F (β).
(2) There is α∈Ord such that F (α)=P .
Proof . Assume not. Then by (1), F : Ord→ P ∈ V is injective, and we get the same contradic-
tion as in the proof of Theorem 72. qed(2)
By (2) let α be minimal such that F (α)=P . By (1), F [α] is a chain in (P ,6). Since the partial
order is inductive, take an upper bound p of F [α]. We claim that p is a maximal element of (P ,
6). Assume not and let q ∈ P , q > p. Then q is a strict upper bound of F [α] and q ∈/ F [α]. But
then the definition of F yields F (α) =/ P , contradiction.
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For the converse assume Zorn’s Lemma and consider a set x consisting of nonempty pairwise
disjoint elements. Define the set of “partial choice sets” which have empty or singleton intersec-
tion with every element of x :

P =
{

z ⊆
⋃

x | ∀u∈ x(u∩ z= ∅∨∃wu∩ z= {w})
}

.

P is partially ordered by ⊆ . If X is a chain in (X, ⊆) then
⋃

X is an upper bound for X.
Hence (X,⊆) is inductive.
By Zorn’s Lemma let z be a maximal element of (X, ⊆). We claim that z is a “total” choice set
for x :
(3) ∀u∈ x∃wu∩ z= {w}.
Proof . If not, take u ∈ x such that u ∩ z = ∅. Take w ∈ u and let z ′= z ∪ {w}. Then z ′ ∈ P , con-
trary to the the ⊆-maximality of z. �

Theorem 75. Every vector space U ∈ V has a basis B, which is linearly independent and spans
U.

Proof. Let U be a vector space with scalar field K. Let

P = {b⊆U | b is linearly independent in U }.
We shall apply Zorn’s lemma to the partial order (P ,⊆).
(1) (P ,⊆) is inductive.
Proof . Let X ⊆ P be a chain. Let c =

⋃

X ⊆ U . We show that c is linearly independent. Con-
sider a linear combination

k0·v0+ ...+ kn−1·vn−1=0,

where v0, ..., vn−1 ∈ c and k0, ..., kn−1 ∈ K . Take b0, ..., bn−1 ∈ X such that v0 ∈ b0 , ..., vn−1 ∈
bn−1 . Since X is a chain there is some bi , i < n such that b0, ..., bn−1⊆ bi . Then v0, ..., vn−1∈ bi .
Since bi∈P is linearly independent, k0= ...= kn−1=0 . qed(1)
By Zorn’s lemma, (P ,⊆) has a maximal element, say B. B is linearly independent since B ∈P .
(2) B spans U .
Proof . Let v ∈ U . If v ∈ B then v is in the span of B. So consider the case that v ∈/ B . Then
B ∪ {v} is a proper superset of B. By the ⊆-maximality of B, B ∪ {v} is linearly dependent. So
there is a non-trivial linear combination

k0·v0+ ...+ kn−1·vn−1+ k·v=0,

where v0, ..., vn−1∈B and at least one of the coefficients k0, ..., kn−1, k ∈K is non-zero. If k=0,

k0·v0+ ...+ kn−1·vn−1=0

would be a non-trivial representation of 0, contradicting that B is linearly independent. Hence
k=/ 0 and

v=− k0
k
·v0− ...− kn−1

k
·vn−1 .

So v is in the span of B. �

Actually one can show the converse of this Theorem: if every vector space has a basis, then AC
holds.
As another application of Zorn’s lemma we consider filters which are collections of “large” sub-
sets of some domain.

Definition 76. Let Z be a set. We say that F is a filter on Z if

a) F ⊆P(Z);
b) ∅∈/ F and Z ∈F ;

c) X ∈F and X ⊆ Y ⊆Z implies that Y ∈F ;

d) X,Y ∈F implies that X ∩ Y ∈F .
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If moreover

X ⊆Z→X ∈F ∨ (Z \X)∈F
we call F an ultrafilter on Z.

Important examples of filters are neighbourhood filters Nx of points x in some topological space
(Z, T ):

Nx= {U ⊆Z |U is a neighbourhood of x}.

x

A combinatorial example is the Frechet filter on ω :

F = {X ⊆ω | ∃n∈ω∀m∈ω (m>n→m∈X)}.
The expression “A(n) holds for almost all n∈ω” is equivalent to

{n∈ω |A(n)}∈F .

Theorem 77. Let F be a filter on the set Z . Then there is an extension G ⊇ F such that G is
an ultrafilter on Z.

Proof. Let

P = {H ⊆P(Z)|H is a filter on U and H ⊇F }.
We shall apply Zorn’s lemma to the partial order (P ,⊆).
(1) (P ,⊆) is inductive.
Proof . Let C ⊆ P be a chain. Let H ′=

⋃

X ⊆P(Z). We show that H ′ is a filter on Z. Trivially
∅ ∈/ H ′. Consider X ∈H ′ and X ⊆ Y ⊆ Z. Then X ∈H for some H ∈C. Since H is a filter, X ∈
H and so Y ∈H ⊆H ′

.
For the closure under intersections consider X, Y ∈H ′. Then X ∈H0 for some H0 ∈ C, and Y ∈
H1 for some H1∈C. Since C is a chain, we have, wlog, that H0⊆H1. Then X, Y ∈H1 , and X ∩
Y ∈H1⊆H ′. qed(1)
By Zorn’s lemma, let G∈P be a maximal element. Then G is a filter which extends F .
(2) G is an ultrafilter on Z.
Proof . Consider X0⊆Z. Assume that X0∈/ G.
Claim . There exists X1∈G such that X1∩X0= ∅.
Proof . Assume instead that X ∩X0=/ ∅ for all X ∈G.
Define

G′= {Y ⊆Z | ∃X ∈G Y ⊇X ∩X0}.
G′ is a filter on Z; we only check Definition 76, d): let Y1, Y2 ∈ G′ with Y1 ⊇ X1 ∩ X0 and Y2 ⊇
X2 ∩X0 where X1, X2 ∈G. Then Y1 ∩ Y2⊇ (X1 ∩X2) ∩X0 where X1 ∩X2 ∈G, and so Y1 ∩ Y2 ∈
G′.
Obviously G′⊇G ⊇F and G′=/ G since X0∈G′ and X0∈/ G. This contradicts the maximality of
G in (P ,⊆). qed(Claim)
So take X1 ∈ G such that X1 ∩X0 = ∅ for some X1 ∈ G. Then X1 ⊆ Z \X0 and hence Z \X0 ∈
G. �
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Definition 78. The axiom system ZFC consists of the ZF-axioms together with the axiom of
choice AC.

The system ZFC is usually taken as the foundation of mathematics. The ZF axioms have a good
intuitive motivations. The axiom of choice is more controversial; AC has desirable consequences
like Zorn’s Lemma and its applications, but on the other hand AC has some paradoxical and
problematic consequences. The status of AC within set theory can be compared to the parallel
axiom in geometry. Similar to the situation in (non-)euclidean geometry one can show that if
there is a model of the ZF axioms then there is a model of ZFC.

Exercise 25. Show that in the theory ZF the axiom of choice is equivalent to the Hausdorff Maximality

Principle which says: for every partial order (P ,6) ∈ V there is an inclusion maximal chain X in (P ,6), i.e.,

if Y ⊇X is a chain in (P ,6) then Y =X. [Hausdorff, Grundzüge der Mengenlehre, p. 141: Wir haben damit

für eine teilweise geordnete Menge A die Existenz größter geordneter Teilmengen B bewiesen; natürlich kann

es deren verschiedene geben.]

Whereas the axiom of choice has “desirable” consequences like the existence of bases and ultrafil-
ters, there are also a number of counterintuitive and perhaps even undesirable consequences. We
present one, concerning non-Lebesgue-measurable sets.
Recall that the 1-dimensional Lebesgue measure on R is a function µ: Ω → R+ ∪ {0} ∪ {∞}
taking values in the extended non-negative real line with the properties:

a) Ω⊆P(R) contains all intervals and is closed under complements and countable unions;

b) µ([0, 1]) = 1;

c) µ is countably additive (σ-additive): if {Xi | i <ω}⊆Ω is a pairwise disjoint family then

µ

(

⋃

i<ω

Xi

)

=
∑

i<ω

µ(Xi);

d) µ is translation invariant : if X ∈Ω and d∈R then X + d= {x+ d |x∈X}∈Ω and

µ(X + d) = µ(X).

Theorem 79. There is a set Z ⊆ [0, 1] which is not Lebesgue-measurable, i.e., Z ∈/ Ω .

Proof. Let

A= {Q+ d | d∈R}.
(1) A consists of pairwise disjoint nonempty sets which intersect the interval [0, 1).
Proof . Assume that x∈ (Q+ d)∩ (Q+ e). Take rational numbers r, s∈Q such that

x= r+ d= s+ e.

Then d=(s− r) + e∈Q+ e and

Q+ d= {t+ d | t∈Q}= {t+(s− r) + e | t∈Q}⊆Q+ e.

Similarly Q+ e⊆Q+ d and so Q+ e=Q+ d .
Consider d∈R . Take an integer z ∈Z such that z6 d< z+1 . Then

−z+ d∈ (Q+ d)∩ [0, 1)
qed(1)
By the axiom of choice let Z be a choice set for the set

{(Q+ d)∩ [0, 1) | d∈R}.

(2) If q, r ∈Q and q=/ r then (Z + q)∩ (Z + r) = ∅ .
Proof . Assume not, and take z0, z1∈Z such that z0+ q= z1+ r . Then z0∈Q+ z0 and z1∈Q+
z0 . Since Z is a choice set, z0= z1 . But then q= r . Contradiction. qed(2)
(3) [0, 1]⊆⋃

q∈[−2,2]∩Q
Z + q .

Proof . Let d ∈ [0, 1]. Let z ∈ Z ∩ (Q+ d) ∩ [0, 1). Take q ∈Q such that z = q + d . Then d= z +
(−q) where |q |6 2 . qed(3)
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Assume now that Z ∈Ω . Since Z ⊆ [0, 1] we have µ(Z)6 1 .
Case 1 : µ(Z)= 0. Then

1= µ([0, 1])6 µ

(

⋃

q∈[−2,2]∩Q

Z + q

)

=
∑

q∈[−2,2]∩Q

µ(Z + q) =
∑

q∈[−2,2]∩Q

µ(Z) =
∑

q∈[−2,2]∩Q

0= 0,

contradiction.
Case 2 : µ(Z)= ε> 0. Then

µ

(

⋃

q∈[−2,2]∩Q

Z + q

)

6 µ([−2, 3])= 5

but on the other hand

µ

(

⋃

q∈[−2,2]∩Q

Z + q

)

=
∑

q∈[−2,2]∩Q

µ(Z + q)=
∑

q∈[−2,2]∩Q

µ(Z)=
∑

q∈[−2,2]∩Q

ε = ∞ .

�

A non-measurable set constructed like the set Z in this proof is called a Vitali-set. Starting from
a certain model of ZFC, one can construct a model of the theory ZF in which every set of reals
is Lebesgue-measurable.

8 Wellfounded Relations

The axiom schema of foundation yields an induction theorem for the ∈-relation, and in the pre-
vious section we have seen a recursive law for the rank-function. We generalize these techniques
to wellfounded relations. The results of this section do not require the axiom of choice.

Definition 80. Let R be a relation on a domain D.

a) R is wellfounded, iff for all terms A

∅=/ A∧A⊆D→∃x∈A A∩ {y |yRx}= ∅.

b) R is strongly wellfounded iff it is wellfounded and

∀x∈D {y ∈D |yRx}∈ V .

c) R is a wellorder iff R is a wellfounded strict linear order.

d) R is a strong wellorder iff R is a strongly wellfounded wellorder.

By the scheme of foundation, the ∈-relation is strongly wellfounded. The ordinals are strongly
wellordered by <. There are wellfounded relations which are not strongly wellfounded: e.g., let
R⊆Ord×Ord,

xRy iff (x=/ 0∧ y=/ 0∧x< y)∨ (y=0∧ x=/ 0),

be a rearrangement of (Ord, <) with 0 put on top of all the other ordinals.
For strongly wellfounded relations, every element is contained in a set-sized initial segment of
the relation.

Lemma 81. Let R be a strongly wellfounded relation on D. Then

∀x⊆D∃z (z ⊆D∧x⊆ z ∧∀u∈ z∀vRu v ∈ z).
Moreover for all x⊆D, the R-transitive closure

TCR(x)=
⋂

{z |z ⊆D ∧x⊆ z ∧∀u∈ z∀vRu v ∈ z}

of x is a set. In case R is the ∈-relation, we write TC(x) instead of TC∈(x).

Proof. We prove by R-induction that

∀x∈D TCR({x})∈V .
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So let x∈D and ∀yRx TCR({y})∈V . Then

z= {x}∪
⋃

yRx

TCR({y})∈V

by replacement. z is a subset of D and includes {x}. z is R-closed, i.e., closed with respect to
R-predecessors: each TCR({y}) is R-closed, and if yRx then y ∈ {y} ⊆ TCR({y}) ⊆ z . So
TCR({x}) is the intersection of a non-empty class, hence a set.
Finally observe that we may set

TCR(x) =
⋃

y∈x

TCR({y}).

�

Exercise 26. Show that for an ordinal α , TC(α)=α and TC({α}) =α+1 .

For strongly wellfounded relations, the following recursion theorem holds:

Theorem 82. Let R be a strongly wellfounded relation on D . Let G: V → V. Then there is a
canonical class term F, given by the subsequent proof, such that

F :D→ V and ∀x∈D F (x) =G(F ↾ {y |yRx}).
We then say that F is defined by R-recursion with the recursion rule G. F is unique in the sense
that if another term F ′ satisfies

F ′:D→V and ∀α∈D F ′(x)=G(F ′ ↾ {y |yRx})
then F =F ′.

Proof. We proceed as in the ordinal recursion theorem. Let

F̃ : ={f |∃z ⊆D (∀x∈ z {y |yRx}⊆ z , f : z→ V and ∀x∈ z f(x)=G(f ↾ {y |yRx}))}
be the class of all approximations to the desired function F .
(1) Let f , g ∈ F̃ . Then f , g are compatible, i.e., ∀x∈dom(f)∩ dom(g) f(x)= g(x).
Proof . By induction on R . Let x ∈ dom(f) ∩ dom(g) and assume that ∀yRx f(y) = g(y). Then
f ↾ {y |yRx}= g ↾ {y |yRx}

f(x)=G(f ↾ {y |yRx})=G(g ↾ {y |yRx})= g(x).

qed(1)
By the compatibility of the approximation functions the union

F =
⋃

F̃

is a function defined on dom(F )⊆D . dom(F ) is R-closed since the domain of every approxima-
tion is R-closed.
(2) ∀x∈dom(F ) ({y |yRx}⊆ dom(F )∧F (x)=G(F ↾ {y |yRx})).
Proof . Let x ∈ dom(F ). Take some approximationf ∈ F̃ such that x ∈ dom(f). Then
{y |yRx}⊆ dom(f)⊆ dom(F ) and

F (x)= f(x)=G(f ↾ {y |yRx}) =G(F ↾ {y |yRx}).
qed(2)
(3) D= dom(F ).
Proof . We show by R-induction that ∀x ∈D x ∈ dom(F ). Let x ∈D and assume that ∀yRx y ∈
dom(F ). TCR({y |yRx})⊆dom(F ) since dom(F ) is R-closed. Then

f =(F ↾TCR({y |yRx}))∪{(x,G(F ↾ {y |yRx}))}

is an approximation with x∈ dom(f), and so x∈ dom(F ). �

Exercise 27. Define set theoretic operations

x+ y= x∪{x+ z |z ∈ y}
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and

x · y=
⋃

z∈y

(x · z+ x)

and study their arithmetic/algebraic properties. Show that they extend ordinal arithmetic.

Theorem 83. Let R be a strongly wellfounded relation on D and suppose that R is extensional,
i.e., ∀x, y ∈ D (∀u (uRx↔uRy) →x = y). Then there is a transitive class D̄ and an iso-

morphism π: (D, R)↔ (D̄,∈). D̄ and π are uniquely determined by R and D, they are called the
Mostowski-collapse of R and D.

Proof. Define π:D→V by R-recursion with

π(x)= {π(y)|yRx}.
Let D̄= rng(π).
(1) D̄ is transitive.
Proof . Let π(x) ∈ D̄ and u ∈ π(x) = {π(y)|yRx}. Let u = π(y), yRx . Then u ∈ rng(π) = D̄ .
qed(1)
(2) π is injective.
Proof . We prove by ∈-induction that every z ∈ D̄ has exactly one preimage under π . So let z ∈
D̄ and let this property be true for all elements of z . Assume that x, y ∈D and π(x) = π(y) = z .
Let uRx . Then π(u) ∈ π(x) = π(y) = {π(v)|vRy}. Take vRy such that π(u) = π(v). By the
inductive assumption, u= v, and uRy . Thus ∀u (uRx→uRy). By symmetry, ∀u (uRx↔uRy).
Since R is extensional, x= y . So z has exactly one preimage under π . qed(2)
(3) π is an isomorphism, i.e., π is bijective and ∀x, y ∈D (xRy↔π(x)∈ π(y)).
Proof . Let x, y ∈ D. If xRy then π(x) ∈ {π(u)|uRy} = π(y). Conversely, if π(x) ∈
{π(u)|uRy} = π(y) then let π(x) = π(u) for some uRy . Since π is injective, x = u and xRy .
qed(3)
Uniqueness of the collapse D̄ and π is given by the next theorem. �

Theorem 84. Let X and Y be transitive and let σ: X ↔ Y be an ∈-∈-isomorphism between X

and Y, i.e., ∀x, y ∈X (x∈ y↔σ(x)∈σ(y)). Then σ= id ↾X and X = Y.

Proof. We show that σ(x) = x by ∈-induction over X. Let x ∈ X and assume that ∀y ∈
x σ(y)= y .
Let y ∈x. By induction assumption, y=σ(y)∈σ(x). Thus x⊆σ(x).
Conversely, let v ∈ σ(x). Since Y = rng(σ) is transitive take u ∈X such that v= σ(u). Since σ is
an isomorphism, u∈x. By induction assumption, v=σ(u)= u∈x. Thus σ(x)⊆x. �

If R is a well-order on D then R is obviously extensional. We study the Mostowski collapse of
strongly well-ordered relations.

Theorem 85. Let R be a strongly well-ordered relation on D. Let π: (D, R) ↔ (D̄, ∈) be the
Mostowski-collapse of R and D. If D is a proper class then D̄ = Ord. If D is a set then D̄ is
an ordinal which is called the ordertype of (D,R). We then write D̄= otp(D,R).

Proof. D̄ is transitive since it is a Mostowski collapse.
(1) Every element of D̄ is transitive.
Proof . Let x∈ y ∈ z ∈ D̄. Since D̄ is transitive, x, y, z ∈ D̄ and there are a, b, c∈D such that x=
π(a), y = π(b), and z = π(c). Since π is an order-isomorphism, aRbRc . Since R is a transitive
relation, aRc . This implies x∈ z . qed(1)
(2) Every element of D̄ is an ordinal.
Proof . Let z ∈ D̄. z is transitive, and it remains to show that every element of z is transitive.
Let y ∈ z . Then y ∈ D̄ and so y is transitive by (1). qed(2)

Consider the case that D is a proper class. Then D̄ is a proper class of ordinals. D̄ must be
unbounded in the ordinals, since it would be a set otherwise. By transitivity, every ordinal
which is smaller than some element of D̄ is an element of D̄. Hence D̄=Ord.
If D is a set, then D̄ is a transitive set, and by (1), D̄ ∈Ord. �
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By Lemma 84, any order-isomorphism σ: (α, <)↔ (β, <) between ordinals must be the identity.
So the ordertype of a set-sized well-order (D, R) is the unique ordinal, to which it is order-iso-
morphic.

Lemma 86. Let x ⊆ α ∈Ord. Then (x, <) is a well-order. Let π: (x, <)↔ (opt(x, <), <) be the
Mostowski collapse of (x,<). Then ∀ξ ∈ x ξ> π(ξ) and otp(x,<)6α .

Proof. By induction on ξ ∈ x . Let δ ∈ π(ξ) = {π(ζ)|ζ ∈ x∧ ζ < ξ}. Let δ= π(ζ) with ζ ∈ x∧ ζ <
ξ . By induction δ=π(ζ)6 ζ < ξ . Thus π(ξ)⊆ ξ and π(ξ)6 ξ .
Similarly consider δ ∈ otp(x, <) = {π(ζ)|ζ ∈ x}. Let δ= π(ζ) with ζ ∈ x . Then δ= π(ζ)6 ζ < α .
Thus otp(x,<)⊆α . �

9 Cardinalities

Apart from its foundational role, set theory is mainly concerned with the study of arbitrary
infinite sets and in particular with the question of their size. Cantor’s approach to infinite sizes
follows naive intuitions familiar from finite sets of objects.

Definition 87.

a) x and y are equipollent, or equipotent, or have the same cardinality, written x ∼ y, if
∃ff :x↔ y .

b) x has cardinality at most that of y, written x4 y, if ∃ff :x→ y is injective.

c) We write x≺ y for x4 y and x≁ y .

These relations are easily shown to satisfy

Lemma 88. Assume ZF. Then

a) ∼ is an equivalence relation on V.

b) x∼ y→x4 y∧y4 x .

c) x4x .

d) x4 y∧y4 z→x4 z .

e) x⊆ y→x4 y .

The converse of b) is also true and proved in an exercise.

Theorem 89. (Cantor - Bernstein) x4 y∧y4 x→x∼ y .

Assuming the axiom of choice, every set is equipollent with an ordinal (Theorem 72 c). One can
take the minimal such ordinal as the canonical representative of the equivalence class with
respect to ∼.

Definition 90.

a) card(x)=min {α| ∃ff :α↔x} is the cardinality of the set x. One also writes x̄̄= card(x).

b) An ordinal κ is a cardinal iff it κ= card(x) for some set x.

c) Let Cd= {κ ∈Ord | κ is a cardinal } be the class of all cardinals, and let Card= {κ>ω | κ
is a cardinal } be the class of infinite cardinals.

Let us assume AC until further notice. Then Cantor’s two approaches to cardinality agree.

Theorem 91.

a) x4 y↔ card(x)6 card(y).

36 Section 9



b) x∼ y↔ card(x) = card(y).

Proof. a) Let x4 y and let f : x→ y be injective. Further let fx: card(x)↔ x and fy: card(y)↔
y . Then fy

−1 ◦ f ◦ fx: card(x)→ card(y) is injective. Let z= fy
−1 ◦ f ◦ fx[card(x)]⊆ card(y). Then

card(x)= card(z)6 otp(z)6 card(y).
Conversely, let card(x)6 card(y) with fx: card(x)↔ x and fy: card(y)↔ y as above. Then fy ◦
fx
−1:x→ y is injective and x4 y .
b) is trivial. �

As an immediate corollary we get the Cantor–Schröder–Bernstein theorem with AC.

Theorem 92. (ZFC) Let a4 b and b4 a . Then a∼ b.

We shall now explore “small” cardinals. Below ω, the notions of natural number, ordinal number
and cardinal number agree.

Theorem 93. For all natural numbers n<ω holds

a) card(n)=n;

b) n∈Cd .

Proof. a) By complete induction on n.
For n=0, ∅: 0↔ 0 and hence card(0)= 0 .
Assume that card(n) = n. We claim that card(n + 1) = n + 1. Obviously card(n + 1) 6 n + 1 .
Assume for a contradiction that m= card(n+1)<n+1 . Take f :m↔n+1 . Let f(i0)=n.
Case 1 : i0=m− 1. Then f ↾ (m− 1): (m− 1)↔n and card(n)6m− 1<n , contradiction.
Case 2 : i0<m− 1 . Then define g: (m− 1)↔n by

g(i)=

{

f(i) , if i=/ i0;
f(m− 1) , if i= i0 .

Hence card(n)6m− 1<n , contradiction.
b) follows immediately from a). �

Theorem 94.

a) card(ω)=ω ;

b) ω ∈Card .

Proof. Assume for a contradiction that n= card(ω)<ω . Let f :n↔ω . Define g: (n− 1)→ω by

g(i) =

{

f(i), if f(i)< f(n− 1),
f(i)− 1, if f(i)> f(n− 1).

(1) g is injective.
Proof. Let i < j <n− 1.
Case 1. f(i), f(j)< f(n− 1). Then g(i) = f(i) =/ f(j)= g(j).
Case 2. f(i)< f(n− 1)< f(j). Then g(i)= f(i)< f(n− 1)6 f(j)− 1= g(j).
Case 3. f(j)< f(n− 1)< f(i). Then g(j) = f(j)< f(n− 1)6 f(i)− 1= g(i).
Case 4. f(n− 1)< f(i), f(j). Then g(i) = f(i)− 1=/ f(j)− 1= g(j). qed(1)
(2) g is surjective.
Proof . Let k ∈ω.
Case 1. k < f(n − 1). By the bijectivity of f take i < n − 1 such that f(i) = k . Then g(i) =
f(i)= k .
Case 2. k > f(n− 1). By the bijectivity of f take i < n− 1 such that f(i) = k + 1 . Then g(i) =
f(i)− 1= k . qed(2)
But this is a contradiction to the supposed minimality of n= card(ω). �

Lemma 95.

a) card(ω+1)=ω .
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b) card(ω+ω) =ω .

c) card(ω·ω)=ω .

Proof. a) Define fa:ω↔ω+1 by

f(n) =

{

ω , if n=0
n− 1 , else

b) Define fb:ω↔ω+ω by

f(n) =

{

m , if n=2·m
ω+m , if n=2·m+1

c) Define fc:ω↔ω·ω by

f(n)=ω·k+ l, if n=2k·(2·l+1)− 1

�

10 Finite, countable, uncountable sets

Definition 96.

a) x is finite if card(x)<ω .

b) x is infinite if x is not finite.

c) x is countable if card(x)6ω .

d) x is countably infinite if card(x)=ω .

e) x is uncountable if x is not countable.

10.1 Finite sets

We have the following closure properties for finite sets:

Theorem 97. Let a, b finite, let x∈ V.
a) Every subset of a finite set is finite.

b) a∪ {x}, a∪ b, a∩ b, a× b, a \ b, and P(a) are finite. We have card(P(a))= 2card(a).

c) If ai is finite for i∈ b then
⋃

i<b
ai is finite.

Proof. Easy. �

Finite sets can be distinguished by dependencies between injective and surjective maps.

Theorem 98. Let a be finite. Then

a) ∀f
(

f : a→→→→→→→→→→→→→→→→→→→→→→→→inj. a implies f : a→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →surj.
a
)

b) ∀f
(

f : a→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →surj.
a implies f : a→→→→→→→→→→→→→→→→→→→→→→→→inj. a

)

Using the axiom of choice one can also show the converse.

Theorem 99. Let a be infinite. Then

a) ∃ff :ω→→→→→→→→→→→→→→→→→→→→→→→→inj. a .

b) ∃f
(

f : a→→→→→→→→→→→→→→→→→→→→→→→→inj. a and ¬f : a→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →surj.
a
)

c) ∃f
(

f : a→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →surj.
a and ¬f : a→→→→→→→→→→→→→→→→→→→→→→→→inj. a

)

This yields:

38 Section 10



Theorem 100. For a∈ V the following statements are equivalent:

a) a is finite;

b) ∀f
(

f : a→→→→→→→→→→→→→→→→→→→→→→→→inj. a implies f : a→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →surj.
a
)

;

c) ∀f
(

f : a→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →surj.
a implies f : a→→→→→→→→→→→→→→→→→→→→→→→→inj. a

)

.

If one does not assume the axiom of choice, one can use b) or c) to define the notion of finite-
ness.

10.2 Countable sets

We have the following closure properties for countable sets:

Theorem 101. Let a, b countable, let x∈V.
a) Every subset of a countable set is countable

b) a∪ {x}, a∪ b, a∩ b, a× b, a \ b are countable

c) If an is countable for n<ω then
⋃

n<ω
an is countable

Proof. Countability will be shown by exhibiting injections into countable sets. Then a) is
trivial.
b) Let fa: a→ω and fb: b→ω be injective. Then define injective maps:

f0: a∪ {x}→ω, f0(u)=

{

fa(u) + 1, if u∈ a
0, else

f1: a∪ b→ω, f1(u)=

{

2 · fa(u)+ 1, if u∈ a
2 · fb(u), else

f2: a× b→ω, f2(u, v) = 2fa(u)·(2·fb(v) + 1)

c) By the axiom of choice choose a sequence (hn|n<ω) of injections hn: an→ω . Define

f3:
⋃

n<ω

an→ω , f3(u)= 2n·(2·hn(u) + 1), where n is minimal such that u∈ an .
�

10.3 Uncountable sets

Theorem 102. (Cantor) x≺P(x)

Proof. card(x)6 card(P(x)) is clear. Assume that card(x) = card(P(x)) and let f : x↔P(x) be
bijective. Define

a= {u∈ x|u∈/ f(u)}⊆x.
Let a= f(u0). Then

u0∈ f(u0)↔u0∈ a↔u0∈ f(u0).

Contradiction. Hence card(x)< card(P(x)). �

Theorem 103. ℵ := card(P(ω)) is an uncountable cardinal.

Note that by previous exercises or lemmas we have

card(P(ω))= card(R)= card(2ω)= card(ωω)

Cantor spent a lot of effort on determining the size of ℵ and postulated that ℵ is the smallest
uncountable cardinal.
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11 The Alefs

Theorem 104. ∀α∃κ∈Cardκ>α. Hence Card is a proper class of ordinals.

Proof. Let α > ω. Then κ = card(P(α)) > card(α). And κ > α since otherwise card(P(α)) 6 α

and card(card(P(α)))6 card(α). �

Definition 105. For any ordinal δ let δ+ be the smallest cardinal >δ .

Theorem 106. Let X ⊆Cd be a set. Then
⋃

X ∈Cd.

Proof. Set κ=
⋃

X. κ is an ordinal. Assume that card(κ)<κ. Take λ ∈X such that card(κ)<
λ. Then λ6 κ and card(λ)6 card(κ)<λ. But card(λ)=λ because λ is a cardinal. �

This allows the following

Definition 107. Define the alef sequence

(ℵα|α∈Ord)

recursively by

ℵ0 = ω

ℵα+1 = ℵα+
ℵλ =

⋃

α<λ

ℵα for limit ordinals λ

Obviously

Card= {ℵα|α∈Ord}
is the class of all cardinals.

Definition 108. An infinite cardinal of the form ℵα+1 is a successor cardinal. An infinite car-
dinal of the form ℵλ with λ a limit ordinal is a limit cardinal.

Exercise 28. There are cardinals κ such that κ=ℵk .

12 Cardinal Arithmetic

For disjoint finite sets a and b natural addition and multiplication satisfies

card(a∪ b)= card(a)+ card(b) and card(a× b)= card(a) · card(b).
This motivates the following extension of natural arithmetic to all cardinals.

Definition 109. Let κ, λ finite or infinite cardinals. Then let

a) κ+ λ= card(a ∪ b), where a, b are disjoint sets with κ= card(a) and λ= card(b); κ+ λ is
the (cardinal) sum of κ and λ .

b) κ ·λ= card(κ×λ); κ ·λ is the (cardinal) product of κ and λ .

c) κλ= card(λκ); κλ is the (cardinal) power of κ and λ .

Note that we are using the same notations as for ordinal arithmetic. It will usually be clear
from the context whether ordinal or cardinal operations are intended.
The “arithmetic” properties of certain set operations yield usual arithmetic laws for cardinal
arithmetic.

Lemma 110.

a) Cardinal addition is associative and commutative with neutral element 0.
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b) Cardinal multiplication is associative and commutative with neutral element 1.

c) κ · (λ+ µ)= κ ·λ+ κ · µ .
d) κ0=1 , 0κ=0 for κ=/ 0, κ1= κ, 1κ=1, κλ+µ= κλ ·κµ , κλ·µ=(κλ)µ.

Proof. c) Let a, b be disjoint sets with λ= card(a) and µ= card(b). Then

κ · (λ+ µ) = card(κ× (a∪ b))
= card((κ× a)∪ (κ× b))
= card((κ× a)) + card((κ× b))
= κ ·λ+ κ · µ ,

using that κ× (a∪ b)= (κ× a)∪ (κ× b) and that κ× a and κ× b are disjoint.
d)

κ0= card(0κ)= card({∅})= card(1)=1 .

In case κ=/ 0 we have that κ0= {f |f :κ→∅}= ∅ and thus

0κ= card(κ0)= card(∅)= 0.

For κ1=κ consider the map κ↔ 1κ given by α 7→ {(0, α)}.
For 1κ=1 observe that κ1= {{(α, 0)|α<κ}} is a singleton set.

Let a, b be disjoint sets with λ= card(a) and µ= card(b). Then

κλ+µ = card(a∪bκ)

= card((aκ)× (bκ))

= card(aκ) · card(bκ)
= κλ ·κµ ,

using that a∪bκ∼ (aκ)× (bκ) via the map f 7→ (f ↾ a, f ↾ b).

Finally,

κλ·µ = card(λ×µκ)

= card(µ(λκ))

= card(λκ)µ

= (κλ)µ ,

using that λ×µκ∼ µ(λκ) via the map

f 7→ (fξ|ξ < µ)

where fξ:λ→κ with fξ(ζ)= f(ζ , ξ), �

We determine the values of cardinal addition and multiplication for infinite cardinals.

Definition 111. Define the Gödel ordering <2 of Ord×Ord by

(α, β)<2 (α′, β ′) iff max (α, β)<max (α′, β ′),

or max (α, β)=max (α′, β ′)∧α<α′,

or max (α, β)=max (α′, β ′)∧α=α′∧ β < β ′.

Lemma 112. <2 is a wellordering of Ord × Ord . Let G: (Ord × Ord, <2)↔ (Ord, <) be the
Mostowski collapse of (Ord × Ord, <2). G is the Gödel pairing function. Define inverse func-
tions G1:Ord→Ord and G2:Ord→Ord such that

∀α G(G1(α), G2(α))=α.

Lemma 113. G:ℵα×ℵα↔ℵα .
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Proof. By induction on α .
Case 1 . α=0 . By the definition of <2, ℵ0×ℵ0 is an initial segment of <2. Let

G[ℵ0×ℵ0] = δ ∈Ord .

We show that δ = ℵ0 . Since ℵ0× ℵ0 is infinite, δ > ℵ0 . Assume that δ > ℵ0 . Take m, n ∈ ω such
that G(m,n)=ω. Then (m,n) has infinitely many predecessors in <2. But on the other hand

{(k, l)|(k, l)<2 (m,n)}⊆ (max (m,n)+ 1)× (max (m,n) + 1)

is finite. Hence G[ℵ0×ℵ0] =ℵ0 .
Case 2 . α> 0 and the Lemma holds for β <α . Let

G[ℵα×ℵα] = η ∈Ord .

We show that η= ℵα . Since card(ℵα×ℵα)> ℵα we have η> ℵα . Assume that η > ℵα . Take (ξ,
ζ)∈ℵα×ℵα such that G(ξ, ζ) =ℵα. Then G witnesses that

{(ξ ′, ζ ′)|(ξ ′, ζ ′)<2 (ξ, ζ)}∼ℵα .

On the other hand set ℵβ= card(max (ξ, ζ)+ 1)<ℵα . Then, using the inductive hypothesis,

card({(ξ ′, ζ ′)|(ξ ′, ζ ′)<2 (ξ, ζ)}) 6 card((max (ξ, ζ)+ 1)× (max (ξ, ζ)+ 1))

= card(ℵβ×ℵβ)
= ℵβ<ℵα ,

contradiction. Hence G[ℵα×ℵα] =ℵα . �

Theorem 114.

a) If κ∈Card then κ ·κ= κ .

b) If κ∈Card and λ∈Cd, λ=/ 0 then κ ·λ=max (κ, λ) .

c) If κ∈Card and λ∈Cd then κ+λ=max (κ, λ) .

Proof. a) κ ·κ= card(κ× κ)= κ , by the properties of the Gödel pairing function.
b) The map i 7→ (i, 0) injects κ into κ× λ , and the map j 7→ (0, j) injects λ into κ× λ . Hence κ,
λ6κ ·λ . Thus

max (κ, λ)6 κ ·λ6max (κ, λ) ·max (κ, λ) ================================ =
(a)

max(κ, λ).

c) Obviously κ∼{0}×κ and λ∼{1}×λ . The inclusion

({0}×κ)∪ ({1}×λ)⊆max (κ, λ)×max (κ, λ)

implies

max (κ, λ)6κ+λ6max (κ, λ) ·max (κ, λ) ================================ =
(a)

max(κ, λ). �

For infinite cardinal exponentiation the situation is very different. Only a few values can be
determined explicitely.

Lemma 115. For κ∈Card and 16n<ω we have κn= κ .

Proof. By complete induction. κ1= κ was proved before. And

κn+1=(κn) ·κ1= κ ·κ= κ. �

The “next” exponential value 2ℵ0 is however very undetermined. It is possible, in a sense to be

made precise later, that 2ℵ0 is any successor cardinal, like e.g. ℵ13 .
Cantor’s continuum hypothesis is equivalent to the cardinal arithmetic statement

2ℵ0=ℵ1 .

Lemma 116. For κ∈Card and 26λ6 2κ we have λκ=2κ.
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Proof.

2κ6λκ6 (2κ)κ=2κ·κ=2κ. �

13 Cofinality

To get some more information on cardinal exponentiation, we need to measure how “fast” a car-
dinal can be approximated using smaller cardinals.

Definition 117.

a) A set x⊆λ is cofinal in the limit ordinal λ if ∀α<λ∃ξ ∈ xα< ξ .

b) The cofinality of a limit ordinal λ is

cof(λ)=min {otp(x)|x⊆λ is cofinal in λ}.

c) A limit ordinal λ is regular if cof(λ)=λ ; otherwise λ is singular.

These notions are due to Felix Hausdorff, who called them “konfinal” and “Konfinalität”. Please
observe the “konfinal” in German.

Lemma 118.

a) cof(λ) =min {card(x)|x⊆λ is cofinal in λ}
b) cof(ℵ0)=ℵ0 , i.e., ℵ0 is regular

c) cof(λ)6 card(λ)6λ

d) cof(λ)∈Card
e) cof(λ) is regular, i.e., cof(cof(λ))= cof(λ)

f ) If γ is a limit ordinal then cof(ℵγ)= cof(γ)

g) cof(ℵω)=ℵ0 , i.e., ℵω is a singular cardinal

Proof. a) > holds since otp(x)> card(x). Conversely let x have minimal cardinality such that x
is cofinal in λ and let f : card(x)↔ x . Define a weakly increasing map g: card(x)→ λ by

g(i)=
⋃

j<i

f(j) .

g is welldefined by the minimality of x . y= g[card(x)] is cofinal in λ . y is order-isomorphic to

{i < card(x)|∀j < ig(j)< g(i)}⊆ card(x).

Hence

otp(y)= otp({i < card(x)|∀j < ig(j)< g(i)})6 card(x).

Thus

cof(λ)6 otp(y) = card(x)=min {card(x)|x⊆λ is cofinal in λ}.

b)− d) follow from a).
e) Let x ⊆ λ be cofinal in in λ with otp(x) = cof(λ) and order-isomorphism f : cof(λ)↔ x . Let
y ⊆ cof(λ) be cofinal with otp(y) = cof(cof(λ)) and order-isomorphism g: cof(cof(λ))↔ y . Then
z= f ◦ g[cof(cof(λ))] is cofinal in λ with otp(z)= cof(cof(λ)). Hence

cof(λ)6 otp(z)= cof(cof(λ)).

The converse inequality follows from c).
f) (6) Let x be cofinal in γ with otp(x) = cof(γ). Then {ℵi|i∈x} is cofinal in ℵγ with

otp({ℵi|i∈x})= otp(x) = cof(γ).
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Hence cof(ℵγ)6 cof(γ).
(>) Now let y be cofinal in ℵγ with otp(y) = cof(ℵγ). Define x = {i < γ |∃δ ∈ yℵi 6 δ < ℵi+1}.
Then x is cofinal in γ with card(x)6 card(y)= cof(ℵγ). Hence cof(γ)6 cof(ℵγ). �

Theorem 119. Every successor cardinal ℵα+1 is regular.

Proof. Assume that ℵα+1 is singular. Let x have minimal cardinality such that x is cofinal in
ℵα+1 . Then card(x) 6 ℵα . Let f : ℵα → x be surjective. Using the axiom of choice take a
sequence (gi|0 < i < ℵα+1) of surjective functions gi: ℵα→ i . Define function h: ℵα × ℵα→ℵα+1

by

h(ξ, ζ)= gf(ξ)(ζ).

(1) h:ℵα×ℵα→ℵα+1 is surjective.
Proof . Let ν ∈ ℵα+1 . Take ξ < ℵα such that f(ξ) > ν . gf(ξ): ℵα→ f(ξ) is surjective. Take ζ <

ℵα such that gf(ξ)(ζ)= ν. Thus ν =h(ξ, ζ)∈ ran(h). qed(1)
This implies

ℵα+1= card(ℵα+1)6 card(ℵα×ℵα)=ℵα · ℵα=ℵα .
Contradiction. �

So ℵ0,ℵ1,ℵ2, ...,ℵn, ... are all regular.

Question 120. (Hausdorff) Are there regular limit cardinals >ℵ0 ?

Definition 121. For (κi|i < δ) a sequence of finite or infinite cardinals define the sum

∑

i<δ

κi= card

(

⋃

i<δ

κi×{i}
)

and the product
∏

i<δ

κi= card
(×i<δκi

)

where

×i<δAi= {f |f : δ→V ∧∀i < δf(i)∈Ai}.

Theorem 122. (König) If (κi|i < δ) and (λi|i < δ) are sequences of cardinals such that ∀i <
δκi<λi then

∑

i<δ

κi<
∏

i<δ

λi

Proof. Assume for a contradiction that
∑

i<δ
κi>

∏

i<δ
λi and that G:

⋃

i<δ
κi×{i}↔×i<δλi

were a surjection. For i < δ

card({G(ν , i)(i)|ν <κi})6 κi<λi ,

and one can choose νi∈ λi \ {G(ν , i)(i)|ν <κi}. Define f ∈×i<δλi by

f(i)= νi .

Since G is surjective, take (ν0, i0)∈dom(G) such that G(ν0, i0) = f . Then

G(ν0, i0)(i0)= f(i0)= νi0=/ G(ν , i0)(i0)

for all ν <κi0 . Contradiction. �

Theorem 123. If κ, λ are cardinals such that κ> 2 and λ>ℵ0 then

cof(κλ)>λ

Hence

cof(2ℵ0)>ℵ1
and in particular

2ℵ0=/ ℵω .
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Proof. Assume that cof(κλ)6 λ . Then there is a function f : λ→ κλ such that ran(f) is cofinal

in κλ. Then
⋃

i<λ
f(i)= κλ and so

κλ= card

(

⋃

i<λ

f(i)

)

6 card

(

⋃

i<λ

f(i)×{i}
)

= card

(

⋃

i<λ

card(f(i))×{i}
)

=
∑

i<λ

card(f(i)).

But by König’s Theorem,

κλ= κλ·λ=(κλ)λ=
∏

i<λ

κλ>
∑

i<λ

card(f(i)). �

Theorem 124. (The Hausdorff recursion formula)

ℵα+1
ℵβ =ℵαℵβ · ℵα+1 .

Proof. Distinguish two cases:

Case 1 : ℵα+16 2ℵβ. Then

ℵα+1
ℵβ =2ℵβ=ℵαℵβ=ℵαℵβ · ℵα+1 .

Case 2 : 2ℵβ<ℵα+1 : Then ℵβ<ℵα+1 . Using the regularity of ℵα+1

ℵαℵβ · ℵα+1

6 ℵα+1
ℵβ · ℵα+1

ℵβ =

=ℵα+1
ℵβ = card({f |f :ℵβ→ℵα+1})

= card

(

⋃

ν<ℵα+1

{f |f :ℵβ→ ν}
)

6
∑

ν<ℵα+1

card({f |f :ℵβ→ ν})

=
∑

ν<ℵα+1

card({f |f :ℵβ→ card(ν)})

=
∑

ν<ℵα+1

card(ν)ℵβ

6
∑

ν<ℵα+1

ℵαℵβ

= ℵαℵβ · ℵα+1

�

14 Cardinal exponentiation and the Generalized Continuum
Hypothesis

The function κ 7→ 2κ is called the continuum function , due to the relations between 2ℵ0 and the
usual continuum of real numbers. The beth numbers are defined in analogy with the aleph func-
tion, using the 2κ-operation instead of the cardinal successor function.

Definition 125. Define the sequence

(iα|α∈Ord)

of beth numbers recursively by

i0 = ℵ0
iα+1 = 2iα

iλ =
⋃

α<λ

iα for limit ordinals λ
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Like every continuous ordinal function, there are fixed points iα=α of this sequence.

Definition 126.

a) An inaccessible cardinal κ is a regular fixed point of the ℵα-function:
κ=ℵκ and cof(κ)= κ.

b) A strongly inaccessible cardinal κ is a regular fixed point of the iα-sequence:

κ=iκ and cof(κ) =κ.

The existence of inaccessible and strongly inaccessible cardinals can not be shown in ZFC,
provided the theory ZFC is consistent.

Definition 127. Define the gimel function Card→Card:ג by (κ)ג =κcof(κ).

By König’s theorem, κ<(κ)ג . Note that ℵ (Alef), i (Beth) and ג (Gimel) are the first three let-
ters of the Hebrew alphabet. The gimel function determines all values of the continuum func-
tion.

Definition 128. For κ∈Cd and λ∈Card let

κ<λ=
⋃

ν<λ

κcard(ν).

Theorem 129.

a) If κ is regular then 2κ= .(κ)ג

b) If κ is a singular cardinal and the continuum function is eventually constant below κ ,
i.e.,

∃κ̄ < κ∀λ (κ̄6λ<κ→2κ̄=2λ),

then 2κ=2<κ.

c) If κ is a singular cardinal and the continuum function is not eventually constant below κ

then 2κ= .(κ>2)ג

Proof. a) If κ is regular then

2κ= κκ= κcof(κ)= .(κ)ג

Now let κ be singular and let the sequence (κi|i < cof(κ)) be strictly increasing and cofinal in κ .
For i < cof(κ) choose (AC) an injection fi:P(κi)→ 2<κ . Define

G:P(κ)→ cof(κ)(2<κ)

by

x 7→ (fi(x∩ κi)|i < cof(κ)).

We argue that G is injective: let x, y ∈ P(κ), x=/ y. Then take i < cof(κ) such that x ∩ κi=/ y ∩
κi . Since fi is injective: fi(x∩κi)=/ fi(y∩ κi). Then G(x)=/ G(y) because

G(x)(i)= fi(x∩ κi) =/ fi(y ∩κi)=G(y)(i).

By the injectivity of G

2κ6 (2<κ)cof(κ).

b) Let 2<κ=2κ̄ be the eventually constant value of the continuum function below κ . Then

2<κ6 2κ6 (2<κ)cof(κ)=(2κ̄)cof(κ)=2κ̄·cof(κ)=2max(κ̄,cof(κ))=2κ̄=2<κ.

c) In this case we show that cof(κ) = cof(2<κ). The function

i 7→2κi
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is not eventually constant and thus maps cof(κ) cofinally into 2<κ. Hence cof(2<κ) 6 cof(κ).
Assume that cof(2<κ)< cof(κ). Let z ⊆ 2<κ be cofinal such that card(z)< cof(κ). Then

z̄= {i|∃δ ∈ z2κi6 δ < 2κi+1}⊆ cof(κ)

is cofinal in cof(κ) and card(z̄)6 card(z)< cof(κ), contradiction.
So we obtain

=(κ>2)ג (2<κ)cof(2
<κ)=(2<κ)cof(κ)6 (2κ)cof(κ)6 2κ6 (2<κ)cof(κ)=(2<κ)cof(2

<κ)= .(κ>2)ג

�

The following theorem shows that κλ is uniquely determined by the gimel function.

Theorem 130. Let λ ∈ Card. Then κλ is determined by the previous theorem and by recursion
on κ:

a) 0λ=0, 1λ=1.

b) For 26 κ6λ we have κλ=2λ.

c) If κ>λ and ξ <κ such that ξλ> κ then κλ= ξλ.

d) If κ>λ, ∀ξ <κ ξλ<κ , and cof(κ)>λ then κλ= κ .

e) If κ>λ, ∀ξ <κ ξλ<κ , and cof(κ)6λ then κλ= (κ)ג .

Proof. a) and b) follow immediately from earlier results.

c) ξλ6 κλ6 (ξλ)λ= ξλ.
d) cof(κ)>λ implies that every function from λ into κ is bounded by some ordinal ν <κ . Hence

κ 6 κλ = card{f |f :λ→κ}

= card

(

⋃

ν<κ

{f |f :λ→ ν}
)

6
∑

ν<κ

card({f |f :λ→ ν})

=
∑

ν<κ

card({f |f :λ→ card(ν)})

=
∑

ν<κ

card(ν)λ

6
∑

ν<κ

κ

= κ.

e) Let (ξi|i < cof(κ)) be a strictly increasing sequence which is cofinal in κ . Define a function

G: λκ→×i<cof(κ)
λξi

by

f 7→ (fi|i < cof(κ))

where

fi(α) =

{

f(α), if f(α)< ξi
0, else

Then G is injective: Let f , g ∈ λκ, f =/ g . Take α such that f(α) =/ g(α) and take i such that
f(α), g(α)< ξi . Then fi(α) = f(α)=/ g(α)= gi(α), fi=/ gi , and hence G(f)=/ G(g).
Using G we get

(κ)ג = κcof(κ) 6 κλ 6
∏

i<cof(κ)

card(ξi)
λ

6
∏

i<cof(κ)

κ

= κcof(κ) = (κ)ג
�
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Definition 131. (Hausdorff) The generalized continuum hypothesis (GCH) is the statement

∀κ∈Card 2κ= κ+.

This is the “minimal” hypothesis in view of Cantor’s 2κ > κ+. The GCH generalizes Cantor’s
continuum hypothesis CH and also the hypothesis 2ℵ1 = ℵ2 also expressed by Cantor. Since CH
is independent of the axioms of set theory, GCH is independent as well. Indeed the continuum
function is hardly determined by the axioms of ZFC and one can for example have

2ℵ0=ℵ73, 2ℵ1=ℵ2015 , ...
Obviously

Lemma 132. GCH implies that ∀κ∈Card =(κ)ג κ+.

Thus GCH also determines all values of the κλ function. Axiomatic set theory proves that one
can assume GCH without the danger of adding inconsistencies to the system ZFC: a model of
the ZFC axioms can be modified into a model of ZFC + GCH. The consequences of GCH for
cardinal exponentiation can be readily described.

Theorem 133. Assume GCH. Then for κ, λ∈Card κλ is determined as follows:

a) For λ< cof(κ): κλ= κ .

b) For cof(κ)6λ6κ : κλ= κ+.

c) For λ>κ : κλ=λ+.

Proof. a)

κ 6 κλ

= card{f |f :λ→κ}
= card

⋃

ν<κ

{f |f :λ→ ν}

6
∑

ν<κ

card(ν)λ

6
∑

ν<κ

κ

= κ.

b) By GCH and König’s theorem, κcof(κ)= κ+. Thus

κ+=κcof(κ)6 κλ6 κκ=2κ= κ+.

c)

λ+=2λ6 κλ6λλ=2λ=λ+. �

Question 134. Is every (infinite) cardinal product
∏

i<α
κi also determined by GCH?

15 Closed unbounded and stationary sets

The continuum function κ 7→ 2κ satisfies the laws

a) κ6λ→2κ6 2λ

b) cof(2κ)>κ

Axiomatic set theory shows that for regular cardinals κ these are the only laws deducible from
ZFC: for (adequate) functions F : Card→ Card satisfying a) and b) for regular cardinals there is
a model of set theory in which

κ regular→2κ=F (κ).
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So there remains the consideration of 2κ for singular cardinals κ. Indeed singular cardinal expo-
nentiation satisfies some interesting further laws and is an area of present research. To prove a
few of these laws we have to extend the apparatus of uncountable combinatorics.

Definition 135. Let κ∈Card and C ⊆ κ . C is unbounded in κ if

∀α<κ∃β ∈Cα< β.

C is closed in κ if

∀λ<κ (λ is a limit ordinal ∧C ∩λ is unbounded in λ→λ∈C).

Thus C contains its limit points <κ .
C is closed unbounded, or cub in κ, if C is unbounded in κ and closed in κ .

Exercise 29. Define a topology on κ such that the closed sets of the topology are exactly the closed sets in

the sense of the previous definition.

Lemma 136. Let κ ∈Card, cof(κ)> ω1 and C,D be closed unbounded in κ . Then C ∩D is cub
in κ .

Proof. C ∩D is closed in κ : Let λ < κ be a limit ordinal and a limit point of C ∩D. Then λ is
a limit point of C and λ∈C. Similarly λ∈D and together λ∈C ∩D .
C ∩D is unbounded in κ : Let α<κ. Define a sequence (βn|n<ω) by recursion:

βn=

{

the least element of C which is larger than α, β0, ..., βn−1 in case n is even
the least element of D which is larger than β0, ..., βn−1 in case n is odd

Let β =
⋃

n<ω
βn . β is a limit ordinal >α . β < κ since cof(κ) > ω1 . By construction, β is a

limit point of C and of D. Hence β ∈C ∩D. �

Exercise 30. Let κ ∈Card, cof(κ)> ω1 . Let (Ci|i < γ) be a sequence of sets Ci which are closed unbounded

in κ and let γ < cof(κ) . Then
⋂

i<γ
Ci is cub in κ .

Definition 137. Let κ∈Card, cof(κ)>ω1 . The closed unbounded filter on κ is

Cκ= {X ⊆ κ|there is a set C ⊆X which is closed unbounded in κ}.

Lemma 138. Cκ is a cof(κ)-complete filter on κ , i.e.

a) ∅=/ Cκ⊆P(κ)
b) ∅∈/ Cκ
c) X ∈Cκ∧X ⊆ Y ⊆κ→Y ∈Cκ
d) X ∈Cκ∧Y ∈Cκ→X ∩Y ∈Cκ
e) γ < cof(κ)∧ {Xi|i < γ}⊆Cκ→

⋂

i<γ
Xi∈Cκ

Proof. c) and d) follow from Lemma 136 and Exercise 30. �

A filter captures a notion of “large set”. Even intersections of large sets are large, so that certain
contructions can be continued on large sets. Largeness also yields notions of “small” and of “not
small”, called “non-stationary” and “stationary”.

Definition 139. Let κ∈Card, cof(κ)>ω1 .

a) X ⊆ κ is non-stationary in κ if κ \X ∈Cκ . We call

NSκ= {X |κ \X ∈Cκ }
the non-stationary ideal on κ .

b) X ⊆ κ is stationary in κ if X ∈/ NSκ .
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Lemma 140. X ⊆ κ is stationary in κ iff X ∩C =/ ∅ for every cub C ⊆ κ .

Proof. X is stationary iff X ∈/ NSκ iff κ \X ∈/ Cκ iff there is no C ⊆ κ cub such that C ⊆ κ \X
iff for every cub C ⊆ κ C *κ \X iff for every cub C ⊆ κ X ∩C =/ ∅ . �

Lemma 141. Every set in Cκ is stationary.

Lemma 142. NSκ is a cof(κ)-complete ideal on κ , i.e.

a) ∅=/ NSκ⊆P(κ)
b) κ∈/ NSκ

c) X ∈NSκ∧Y ⊆X ⊆κ→Y ∈NSκ
d) X ∈NSκ∧Y ∈NSκ→X ∩Y ∈NSκ

e) γ < cof(κ)∧ {Xi|i < γ}⊆NSκ→
⋃

i<γ
Xi∈NSκ

Proof. e) Let γ < cof(κ) ∧ {Xi|i < γ} ⊆ NSκ . Then {κ \ Xi|i < γ} ⊆ Cκ . By Lemma 136,
⋂

i<γ
(κ \Xi)∈Cκ . Hence

⋃

i<γ

Xi= κ \
⋂

i<γ

(κ \Xi)∈NSκ .
�

For regular uncountable κ these filters and ideals have even better completeness properties.

Definition 143. Let κ be a regular uncountable cardinal. For a sequence (Xi)i<κ of subsets of
κ define

a) the diagonal intersection i

i<κ

Xi= {β <κ | ∀i < β β ∈Xi},

b) the diagonal union h

i<κ

Xi= {β <κ | ∃i < β β ∈Xi}.

Lemma 144. Let κ be a regular uncountable cardinal. Then

a) Cκ is closed under diagonal intersections, i.e.,

{Xi|i < κ}⊆Cκ→
i

i<κ

Xi∈Cκ ,

b) NSκ is closed under diagonal unions, i.e.,

{Xi|i < κ}⊆NSκ→
h

i<κ

Xi∈NSκ .

Proof. a) Let {Xi|i <κ}⊆Cκ . For i <κ choose Ci∈Cκ such that Ci⊆Xi . Then
i

i<κ

Ci⊆
i

i<κ

Xi

and it suffices to show that
a
i<κ

Ci is cub in κ .a
i<κ

Ci is closed in κ : Let λ < κ be a limit ordinal and a limit point of
a
i<κ

Ci . Consider j <

λ . By the definition of the diagonal intersection
( i

i<κ

Ci

)

\ (j+1)⊆Cj .

Hence λ is a limit point of Cj and λ∈Cj by the closure of Cj . Thus ∀j <λ λ ∈Cj and thus λ∈a
i<κ

Ci .
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a
i<κ

Ci is unbounded in κ : Let α < κ. Define a sequence (βn|n < ω) by recursion: set β0 = α

and

βn+1= the least element of

(

⋂

i<βn

Ci

)

\ (βn+1) .

Let β =
⋃

n<ω
βn . β is a limit ordinal >α . β < κ since cof(κ)>ω1 . We show that β ∈ a

i<κ
Ci .

Consider j < β . Take n<ω such that j < βn . Then

{βk |n<k<ω}⊆Cj
and β is a limit point of Cj . β ∈Cj by the closure of Cj . Hence ∀j < β β ∈Cj . �

Sets in an ideal behave similar to sets of (Lebesgue-)measure 0. Then sets not in the ideal have
“positive measure”. So stationary sets are positive with respect to the non-stationary ideal.

Closure under diagonal intersections corresponds to a surprising canonization property of certain
functions.

Definition 145. A function f :Z→Ord where Z ⊆Ord is regressive if

α∈Z \ {0}→f(α)<α.

Exercise 31. If γ >ω then there is no regressive injective function f : γ→ γ .

Theorem 146. (Fodor’s Lemma) Let κ be a regular uncountable cardinal and let f : S → κ be
regressive, where S is stationary in κ . Then there is a stationary T ⊆ S such that f ↾ T is con-
stant.

Proof. Assume that for every i < κ f−1[{i}] is not stationary. So for every i < κ choose a Ci
cub such that ∀j ∈T ∩Ci f(j) =/ i . The set

C =
i

i<κ

Ci

is cub in κ, and so there is α∈C ∩ T , α> 0. But then for all i < α α ∈ T ∩Ci and f(α) =/ i. But
then f(α)>α , contradicting the regressivity of f . �

We now give examples of closed unbounded and stationary sets.

Lemma 147. Let κ be an uncountable regular cardinal and let C be cub in κ . The derivation
C ′ of C is defined as

C ′= {α∈C |α is a limit point of C}.
Then C ′ is cub in κ .

On can form iterated derivations C(i) for i <κ by

C(0) = C

C(i+1) = (C(i))′

C(λ) =
⋂

i<λ

C(i) for limit ordinals λ<κ

Every C(i) is cub in κ .

The lemma implies immediately:

Lemma 148. Let Lim be the class of limit ordinals. Let κ be an uncountable regular cardinal.
Then Lim∩ κ is cub in κ .

Topologically these derivation correspond to the process of omitting isolated points. Such iter-
ated derivations were first studied by Cantor.

Closed unbounded and stationary sets 51



Example 149. For κ an uncountable regular cardinal let (κ)<ω be the set of all finite sequences
from κ , i.e., (κ)<ω= {u | ∃n<ω u:n→κ}. For h: (κ)<ω→κ let

Ch= {β <κ |h[(β)<ω]⊆ β}

be the set of ordinals <κ which are closed under h . Then Ch is cub in κ . Given α< κ , a closed
ordinal β >α can be found as β=

⋃

n<ω
βn where β0=α and

βn+1=
(

⋃

h[(βn)
<ω]
)

+1<κ.

Conversely, if C is cub in κ one can define g:κ→ κ by

g(α) = the smallest element of C which is >α.

If we define Cg as above then

Cg= {0}∪C ′.

Lemma 150. Let µ<κ be uncountable regular cardinals. Then

Eµ
κ= {α<κ | cof(α)= µ}

is stationary in κ .

Proof. Let C be cub in κ . Define a strictly increasing µ+ 1-sequence (αi)i6µ of elements of C
by

αi= the smallest element α of C such that ∀j < i αj<α.
Then αµ<κ and cof(αµ)= µ . Hence C ∩Eµκ=/ ∅ . �

So Eω
ℵ2 and Eω1

ℵ2 are disjoint stationary subsets of ℵ2 . Actually one can find a lot of disjoint sta-
tionary sets, using Fodor’s lemma.

Theorem 151. Let κ be a successor cardinal and let S ⊆ κ be stationary. Then there is a family
(Si | i <κ) of pairwise disjoint stationary subsets of S .

Proof. Let λ ∈ Card such that κ = λ+. For each ν < κ , ν =/ 0 choose a surjective function fν:
λ→ ν .

κ

λ

fνα

i, i∗

ν
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(1) For every α<κ there is some i < λ such that {ν ∈S | fν(i)>α} is stationary in κ .
Proof . Assume for a contradiction that there is α < κ such that for any i < λ the set {ν ∈
S | fν(i)>α} is non-stationary in κ . Choose cub sets Ci such that

{ν ∈S | fν(i)>α}∩Ci= ∅.

The set
⋂

i<λ
Ci is cub in κ . Let ν ∈S ∩⋂

i<λ
Ci and ν >α . Then fν(i)<α for all i < λ , which

contradicts the surjectivity of fν:λ→ ν . qed(1)
(2) There is some i∗<λ such that for every α<κ the set {ν ∈S | fν(i∗)>α} is stationary in κ .
Proof . By (1), we can find for every α < κ some iα < λ such that {ν ∈ S | fν(iα) > α} is sta-
tionary in κ . By the pidgeon principle there is an unbounded subset Z ⊆ κ and an i∗ < λ such
that ∀α ∈ Z iα = i∗ . So for every α ∈ Z the set {ν ∈ S | fν(i∗) > α} is stationary in κ , which
proves the claim. qed(2)
For β <κ set Sβ= {ν ∈S | fν(i∗)= β}.
(3) The set of β <κ , where Sβ is stationary in κ , is unbounded in κ .
Proof . Assume not and let α < κ such that Sβ is stationary implies β < α . By (2), T = {ν ∈
S | fν(i∗) > α} is stationary in κ . The function ν 7→ fν(i∗) < ν is regressive on T . By Fodor’s
Theorem the function is constant on a stationary subset of T . Let β, α6 β < κ be the constant
value. Then Sβ= {ν ∈S | fν(i∗)= β} is stationary in κ , contradiction. qed(3)
So there are κ-many β < κ such that Sβ is stationary. Note that these Sβ are pairwise disjoint
subsets of S. �

Abstractly this means that every NSκ-positive set can be split into κ-many NSκ-positive sets.
Consider the property: there are µ-many NSκ-positive sets (Si | i < µ) which are almost disjoint
with respect to NSκ : i=/ j→Si∩ Sj ∈NSκ . If this property is false, we say that the ideal NSκ is
µ-saturated . The property that NSℵ1

is ℵ2-saturated is not decided by ZFC. That property has
many consequences and is central in modern set theoretic research.

16 Silver’s Theorem

The value of 2κ for regular cardinals κ is hardly determined by the value of 2λ at other car-
dinals. The situation at singular cardinals is different, the first result in this area was proved by
Jack Silver. We shall use the notion of almost disjoint functions.

Definition 152. Let λ be a limit ordinal. Two functions f , g: λ→ V are almost disjoint if there

is α < λ such that ∀β (α < β < λ→f(β) =/ g(β)). A set F ⊆λ V of functions is almost disjoint if
f and g are almost disjoint for any f , g ∈F, f =/ g .

Lemma 153. a) There is no almost disjoint family F ⊆ ω2 of size 3.
b) There is an almost disjoint family F ⊆ ωω of size 2ℵ0.

Proof. a) is obvious. b) Take h: (ω)<ω↔ω . For a:ω→ 2 define fa:ω→ω by

fa(n)= h(a ↾n).

Consider functions a, b: ω→ 2 , a =/ b . We show that fa and fb are almost disjoint. Take n < ω

such that a ↾n=/ b ↾n . Then for n6m<ω we have

fa(m)= h(a ↾m)=/ h(b ↾m)= fb(m).

Thus {fa | a∈ ω2} is an almost disjoint family of size 2ℵ0. �

Theorem 154. (Silver) Let ω < λ = cof(κ) < κ ∈ Card. Let 2µ = µ+ for all ω ≤ µ ∈ κ ∩ Card.
Then 2κ= κ+.

So let us assume that ω < λ = cof(κ) < κ ∈ Card and 2µ = µ+ for all ω ≤ µ ∈ κ ∩ Card. Fix a
strictly increasing sequence (κα | α < λ) which is cofinal in κ and continuous, i.e., for any limit
ordinal δ <λ we have κδ=

⋃

α<δ
κα .
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Lemma 155. Assume that µλ < κ for all µ < κ . Let F ⊆ ∏
α<λ

Aα be almost disjoint, where

S0= {α<λ | card(Aα)≤κα} is stationary in λ . Then card(F)≤ κ.

Proof. Assume w.l.o.g. that Aα⊆ κα for α∈S . For f ∈F define hf:S0→λ by

hf(α): = the least β such that f(α)∈κβ.

Then h ↾ (S0 ∩ Lim) is regressive. So, by Fodor’s lemma, one can choose a stationary Sf ⊆ S0 ∩
Lim such that h is constant on Sf. Hence f is, on Sf , bounded in κ. If f ↾ Sf = g ↾Sg, then f =
g, since F is almost disjoint. So f 7→ f ↾ Sf is one-to-one. For a fixed T ⊆ λ , the set of functions
on T that are bounded in κ has cardinality sup{µλ| µ < κ} = κ by the cardinality assumption.

Also there are <κ such T , since card(℘(λ))= 2λ<κ. Hence card(F)≤ κ·κ= κ . �

Lemma 156. Let ω < λ = cof(κ) < κ ∈ Card, and assume that µλ < κ for all µ < κ . Let F ⊆
∏

α<λ
Aα be almost disjoint, card(Aα)≤ κα+. Then card(F)≤ κ+.

Proof. Assume w.l.o.g. that Aα⊆ κα+. Let S ⊆λ be stationary and f ∈F . Let

Ff ,S= {g ∈F| (∀α∈S)(g(α)≤ f(α))}.

The map g 7→ g ↾ S injects Ff ,S into
∏

α∈S (f(α) + 1) where card(f(α) + 1) ≤ κα. By the pre-
vious lemma, card(Ff ,S)≤ κ .
Define

Ff =
⋃

{Ff ,S|S ⊆λ is stationary}.

Since there are <κ stationary subsets of λ ,
(1) card(Ff)≤ κ.
We construct a sequence (fξ| ξ < δ) of functions in F by induction such that F =

⋃ {Ffξ| ξ < δ}.
Take an arbitrary f0∈F .
If (fν| ν < ξ) is already defined, choose fξ ∈

⋃ {Ffν| v < ξ} if possible. If there is no such fξ, set
δ= ξ and stop.
(2) δ ≤ κ+.
Proof . Assume that fκ+ is defined. If ν < κ+ then fκ+∈/ Ffν . So {α| fκ+(α)≤ fv(α)} is non-sta-
tionary and {α| fν(α) ≤ fκ+(α)} ∈ Cλ. Thus fv ∈ Fκ+ for all v < ξ , and card(Ff

κ+
) > κ+. This

contradicts (1). qed(2)

Altogether

card(F) = card(
⋃

{Ffξ| ξ < δ})6
∑

ξ<δ

card(Ffξ)6
∑

ξ<δ

κ6 κ ·κ+= κ+.

�

Proof. (Silver’s Theorem) Define a map from P(κ) into ∏
α<λ

℘(κα) by

X 7→fX=(X ∩ κα |α<λ).

If X =/ Y then fX and FY are almost disjoint. So

F = {fX |X ∈P(κ)}⊆
∏

α<λ

℘(κα)

is an almost disjoint family of functions. The GCH below κ implies that card(℘(κα)) = 2κα =
κα
+ . Moreover µλ 6 max (µ, λ)max(µ,λ) = max (µ, λ)+ < κ for all µ < κ . By Lemma 156,

card(F)6κ+. Hence

κ+6 2κ= card(P(κ))6 card(F)6 κ+

�

Exercise 32. Use the methods of the proof of Silver’s Theorem to show

a) Let F ⊆
∏

α<λ
Aα be almost disjoint, card(Aα)≤κα

++. Then card(F)≤κ++.
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b) Let ω <λ= cof(κ)<κ∈Card. Let 2µ= µ++ for all ω ≤ µ∈κ∩Card. Then 2κ6κ++.

17 Ranks of functions

The previous exercise indicates the possibility that one may generalize Silver’s theorem by a
kind of induction on the height of the continuum function below κ . This idea will lead to the
Galvin-Hajnal theorem. Let κ = ℵα be a singular strong limit cardinal (i.e., µ < ℵα→2µ < ℵα )
with ω <λ= cof(ℵα)< ℵα . Let (κδ | δ < λ) be a strictly increasing continuous sequence cofinal in
ℵα . The continuum function below ℵα determines a function ϕ0:λ→α by

2κδ= κδ
+ϕ0(δ),

where κδ
+ϕ0(δ)=ℵη+ϕ0(δ) if κδ=ℵη .

Let us now study functions ϕ: λ → α along appropriate wellfounded relations. Fix a regular
uncountable cardinal λ and some limit ordinal α .

Definition 157. For a stationary set S ⊆λ define a relation <S on functions ϕ, ψ:λ→α by

ϕ<Sψ iff there is a cub C ⊆λ such that ∀δ ∈S ∩C ϕ(δ)< ψ(δ).

Equivalently one can say that the set of δ where ϕ and ψ behaves differently is very small:

ϕ<Sψ iff {δ ∈S | ϕ(δ)> ψ(δ)}∈NSλ .

Lemma 158. <S is a strongly wellfounded relation on λα .

Proof. Assume not. Then, using AC, there is a strictly descending ω-sequence

ψ0>Sψ1>Sψ2>S ... .

Choose cub sets C0, C1, ...⊆ λ such that ∀δ ∈ S ∩ Cn ψn(δ)> ψn+1(δ) . Since
⋂

n<ω
Cn is cub in

λ one can take δ ∈S ∩⋂
n<ω

Cn . Then

ψ0(δ)> ψ1(δ)> ψ2(δ)> ....

is a descending ω-sequence of ordinals. Contradiction. �

Definition 159. Define the <S-rank ‖ψ‖S ∈Ord of ψ ∈ λα by recursion on <S :

‖ψ‖S=
⋃

{‖ϕ‖S+1 | ϕ<Sψ}.

We also write ‖ψ‖ instead of ‖ψ‖λ .

We prove some properties of this rank.

Lemma 160.

a) If S ⊆T are stationary in λ then ϕ<Tψ implies ϕ<Sψ .

b) If S ⊆T are stationary in λ then ‖ψ‖T 6 ‖ψ‖S .
c) If S, T are stationary in λ then

‖ψ‖S∪T =min (‖ψ‖S , ‖ψ‖T).

d) If S is stationary and N is nonstationary then ϕ<S∪Nψ iff ϕ<Sψ .

e) If S is stationary and N is nonstationary then

‖ψ‖S∪N = ‖ψ‖S .
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Proof. a) Let ϕ <T ψ . Take C ⊆ λ cub such that ∀δ ∈ T ∩ C ϕ(δ) < ψ(δ). Then ∀δ ∈ S ∩ C
ϕ(δ)<ψ(δ) and so ϕ<Sψ .
b) By induction on <T .

‖ψ‖T =
⋃

{‖ϕ‖T +1 | ϕ<Tψ}
6
⋃

{‖ϕ‖S+1 | ϕ<Tψ} by the inductive assumption

6
⋃

{‖ϕ‖S+1 | ϕ<Sψ} by a)
= ‖ψ‖S .

c) By b) ‖ψ‖S∪T 6 ‖ψ‖S , ‖ψ‖T and so

‖ψ‖S∪T 6min (‖ψ‖S , ‖ψ‖T).

Assume that the equality is false and consider ψ <S∪T -minimal such that

‖ψ‖S∪T <min (‖ψ‖S , ‖ψ‖T).

Since ‖ψ‖S∪T ∈ ‖ψ‖S=
⋃ {‖ϕ‖S+1 | ϕ<Sψ} take ψS<Sψ such that ‖ψ‖S∪T < ‖ψS‖S+1 , i.e.,

‖ψ‖S∪T 6 ‖ψS‖S; take CS ⊆ λ cub such that ∀δ ∈ S ∪ CS ψS(δ) < ψ(δ). Similarly take ψT <T ψ
such that ‖ψ‖S∪T 6 ‖ψT ‖T and some CT ⊆ λ cub such that ∀δ ∈ T ∪CT ψT(δ)< ψ(δ). Define ϕ:
λ→α ,

ϕ(δ) =















ψS(δ) if δ ∈S \T
ψT(δ) if δ ∈T \S
max (ψS(δ), ψT(δ)) if δ ∈S ∩ T
0 else

For δ ∈ (S ∪ T )∩ (CS ∩CT) holds ϕ(δ)< ψ(δ), thus ϕ<S∪Tψ . Since ∀δ ∈S ψS(δ)6 ϕ(δ) we have
‖ψS‖S6 ‖ϕ‖S . Similarly ‖ψT ‖T 6 ‖ϕ‖T . By the <S∪T -minimality of ψ we have

‖ϕ‖S∪T =min (‖ϕ‖S , ‖ϕ‖T)>min (‖ψS‖S , ‖ψT ‖T)> ‖ψ‖S∪T
contradicting ϕ<S∪Tψ .
d) ϕ<S∪Nψ iff {δ ∈S ∪N | ϕ(δ)> ψ(δ)}∈NSλ iff {δ ∈S | ϕ(δ)> ψ(δ)}∈NSλ iff ϕ<Sψ .
e) follows directly from d). �

Note that ‖ψ‖ = ‖ψ‖λ 6 ‖ψ‖S . This motivates to exclude stationary sets S which do not com-
pute the “correct” rank of ψ .

Definition 161. Let

Iψ=NSλ∪{S |S is stationary and ‖ψ‖< ‖ψ‖S}.

Lemma 162. Iψ is an ideal on λ .

Proof. Iψ is a non-empty family of subsets of λ and λ∈/ Iψ .
Iψ is closed under subsets: let A∈ Iψ and B ⊆A . If B is nonstationary then B ∈ Iψ . If B is sta-

tionary then ‖ψ‖B> ‖ψ‖A> ‖ψ‖ and B ∈ Iψ .
Iψ is closed under unions: let A ∈ Iψ and B ∈ Iψ . If A and B are nonstationary then A ∪ B ∈
NSλ ⊆ Iψ . If A is stationary and B is nonstationary then by e) of Lemma 163 ‖ψ‖A∪B =
‖ψ‖A> ‖ψ‖ and A∪B ∈ Iψ . If A is stationary and B is stationary then by c) of Lemma 163

‖ψ‖A∪B=min (‖ψ‖A, ‖ψ‖B)> ‖ψ‖
and A∪B ∈ Iψ . �

Lemma 163.

a) If ‖ψ‖=0 then {δ <λ | ψ(δ)= 0} is stationary in λ .

b) If ‖ψ‖ is a successor ordinal then

{δ <λ | ψ(δ) is a successor ordinal }∈/ Iψ .
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c) If ‖ψ‖ is a limit ordinal then

{δ <λ | ψ(δ) is a limit ordinal }∈/ Iψ .

Proof. a) Let ‖ψ‖=0. If {δ <λ | ψ(δ)= 0} is nonstationary there is a cub C ⊆ λ such that ∀δ ∈
C ψ(δ)> 0 . But then ψ >λ const0 and ‖ψ‖> 1 . Contradiction.
b) Let ‖ψ‖ be a successor ordinal but assume that

{δ <λ | ψ(δ) is a successor ordinal}∈ Iψ .
Then

S= {δ <λ | ψ(δ) is a limit ordinal}∈/ Iψ .
By the definition of Iψ we get that ‖ψ‖S = ‖ψ‖ is also a successor ordinal. By the definition of
‖ψ‖S take ϕ<Sψ such that ‖ψ‖S= ‖ϕ‖S+1 . Take a cub set C ⊆ λ such that ∀δ ∈ S ∩C ϕ(δ)<
ψ(δ). Define ϕ+:λ→α by ϕ+(δ)= ϕ(δ)+ 1 . Since ψ(δ) is a limit ordinal for δ ∈S :

∀δ ∈S ∩C ϕ(δ)< ϕ+(δ)<ψ(δ).

Then ϕ<Sϕ
+<Sψ and ‖ϕ‖S< ‖ϕ+‖S< ‖ψ‖S , contradicting ‖ψ‖S= ‖ϕ‖S+1 .

c) Let ‖ψ‖ be a limit ordinal but assume that

{δ <λ | ψ(δ) is a limit ordinal}∈ Iψ .
Then

S= {δ <λ | ψ(δ) is a successor ordinal}∈/ Iψ .
By the definition of Iψ we get that ‖ψ‖S= ‖ψ‖ is also a limit ordinal. Define ψ−:λ→α by

ψ−(δ)=

{

ψ(δ)− 1 , if δ ∈S
0 , else

Consider a function ϕ <S ψ . Take a cub set C ⊆ λ such that ∀δ ∈ S ∩ C ϕ(δ) < ψ(δ) and thus
∀δ ∈S ∩C ϕ(δ)6 ψ−(δ). Then

‖ϕ‖S= ‖ϕ‖S∩C6 ‖ψ−‖S∩C= ‖ψ−‖S< ‖ψ‖S
This means that

‖ψ‖S =
⋃

{‖ϕ‖S+1 | ϕ<Sψ}
6 ‖ψ−‖S+1

Since ‖ψ−‖S<‖ψ‖S this implies

‖ψ‖= ‖ψ‖S= ‖ψ−‖S+1

is a successor ordinal, contradiction. �

18 The Galvin Hajnal Theorem

Theorem 164. Let κ= ℵα be a singular strong limit cardinal (i.e., µ < ℵα→2µ< ℵα ) with ω <
λ= cof(ℵα)<ℵα . Then

2ℵα<ℵγ
where γ=(2card(α))+.

Note that if α=ℵα the theorem claims that

2α<ℵ(2α)+
which is obviously true.

Lemma 165. Let ψ: λ→ α and let F ⊆ ∏
δ<λ

Aδ be an almost disjoint family of functions such
that

card(Aδ)6κδ
+ψ(δ)
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for δ <λ . Then card(F)6ℵα+‖ψ‖ .

Proof. By induction on ‖ψ‖∈Ord.
‖ψ‖ = 0 : Then by Lemma 163(a) ψ vanishes on a stationary set S ⊆ λ and Lemma 155 proves
the case.
‖ψ‖ is the successor ordinal γ+1: by Lemma 163(b)

S0= {δ <λ | ψ(δ) is a successor ordinal}∈/ Iψ .

We may assume that Aδ⊆ κδ+ψ(δ) for δ <λ .
(1) Let f ∈F and S ⊆S0 , S ∈/ Iψ . Then the set

Ff ,S= {g ∈F | ∀δ ∈S g(δ)6 f(δ)}
has cardinality 6ℵα+γ .
Proof. Define ϕ:λ→α by

ϕ(δ) =

{

ψ(δ)− 1 , if δ ∈S
ψ(δ) , else

Since S ∈/ Iψ ,
‖ϕ‖6 ‖ϕ‖S< ‖ψ‖S= ‖ψ‖= γ+1

and ‖ϕ‖6 γ . Now

Ff ,S ⊆
∏

δ<λ

f(δ),

and since f(δ)<κδ
+ψ(δ)

we have

card(f(δ) + 1)6 κδ
+ϕ(δ)

.

By the induction hypothesis, card(Ff ,S)6ℵα+‖ϕ‖6ℵα+γ . qed(1)
(2) Let f ∈F . Then the set

Ff = {g ∈F | ∃S ⊆S0 (S ∈/ Iψ∧∀δ ∈S g(δ)6 f(δ))}
has cardinality 6ℵα+γ .
Proof. Since ℵα is a strong limit cardinal, there are at most 2λ<ℵα many S ⊆S0 . Hence

Ff =
⋃

S⊆S0,S∈/ Iψ

Ff ,S

is a union of less than ℵα many sets of size 6ℵα+γ . qed(2)
Like in the proof of Lemma 156 we construct a sequence (fξ| ξ < ζ) of functions in F by induc-
tion such that F =

⋃ {Ffξ| ξ < ζ}.
Take an arbitrary f0∈F .
If (fν| ν < ξ) is already defined, choose fξ ∈

⋃ {Ffν| ν < ξ} if possible. If there is no such fξ, set
ζ = ξ and stop.
(3) ζ 6ℵα+γ+1.
Proof . Assume that fℵα+γ+1

is defined. Set η = ℵα+γ+1 . Consider ν < η . fη ∈/ Ffν and so there

is no S ⊆S0 , S ∈/ Iψ such that ∀δ ∈S fη(δ)6 fν(δ). This means that

{δ ∈S | fη(δ)6 fν(δ)}∈ Iψ
and

{δ ∈S | fν(δ)< fη(δ)}∈/ Iψ .

This implies that fν ∈ Ffη and thus {fν | ν < η} ⊆ Ffη . Hence card(Ffη) > η = ℵα+γ+1 , which

contradicts (2). qed(3)
Now

card(F) = card
(

⋃

{Ffξ| ξ < ζ}
)

6
∑

ξ<ζ

card(Ffξ)6
∑

ξ<ζ

ℵα+γ6
∑

ξ<ℵα+γ+1

ℵα+γ=ℵα+γ+1 .

Finally consider the case that ‖ψ‖ is a limit cardinal. By Lemma 163(c),

S= {δ <λ | ψ(δ) is a limit ordinal}∈/ Iψ .
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Again we may assume that Aδ⊆ κδ+ψ(δ) for δ <λ .
For functions ϕ:λ→α define

Fϕ=
{

f ∈F | ∀δ <λ f(δ)∈κδ+ϕ(δ)
}

.

Consider f ∈F . Define ϕ:λ→α by taking ϕ(δ) minimal such that

f(δ)∈κδ+ϕ(δ).

Obviously f ∈Fϕ . Moreover ϕ<Sψ . Since S ∈/ Iψ we have

‖ϕ‖6 ‖ϕ‖S< ‖ψ‖S= ‖ψ‖.
By the induction hypothesis

card(Fϕ)6ℵα+‖ϕ‖<ℵα+‖ψ‖ .

Thus

F ⊆
⋃

{Fϕ | ∃ϕ (ϕ:λ→α∧ card(Fϕ)<ℵα+‖ψ‖)}
and

card(F)6
∑

ϕ:λ→α

ℵα+‖ψ‖6 card(λα) · ℵα+‖ψ‖6ℵα · ℵα+‖ψ‖=ℵα+‖ψ‖ .

�

We are now able to prove

Theorem. Let κ= ℵα be a singular strong limit cardinal (i.e., µ < ℵα→2µ < ℵα ) with ω < λ =
cof(ℵα)<ℵα . Then

2ℵα<ℵγ
where γ=(2card(α))+.

Proof. Define an injective map from P(κ) into ∏
δ<λ

℘(κδ) by

X 7→fX=(X ∩κδ | δ <λ).
If X =/ Y then fX and FY are almost disjoint. So

F = {fX |X ∈P(κ)}⊆
∏

δ<λ

℘(κδ)

is an almost disjoint family of functions. Since κ is a strong limit cardinal, there is a function ψ:
λ→α such that

card(℘(κδ))6 κδ
+ψ(δ)

for δ <λ . By the previous lemma

card(P(κ))6 card(F)6ℵα+‖ψ‖ .

Since card(λα) 6 card(αα) = 2card(α), the rank function ‖.‖ on λα is bounded by γ = (2card(α))+.
Hence ‖ψ‖< γ and

2ℵα= card(P(κ))6ℵα+‖ψ‖<ℵα+γ=ℵγ .
�

If, e.g., ℵω1
is a strong limit cardinal then by this theorem

2ℵω1<ℵ(2ℵ1)+<ℵℵω1
.

So the continuum function at singular cardinals can be influenced by the behaviour below that
cardinal. In particular instances the bounds for the continuum function can be improved. With
considerably more effort one can also deal with singular cardinals of countable cofinality and
prove, e.g.: if ℵω is a strong limit cardinal then (Shelah)

2ℵω<ℵℵ4
.
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19 Measurable cardinals

The results of the previous section used filters and ideals to express that certain sets are large or
small respectively. There are also intermediate notions of size: a set X is of “positive measure” if
it is not in the ideal under consideration. One may imagine that the measure of X is some pos-
itive real number. This poses the question, which kinds of “measures” do or can exist. Ideally
every set should be given some non-negative number as a measure.
This approach is also motivated by the classical theory of Lebesgue measure on the real line and
related spaces. Recall that the 1-dimensional Lebesgue measure on R is a function l: Ω → R ∪
{∞} taking values in the extended real line with the properties:

a) Ω⊆P(R) contains all intervals and is closed under complements and countable unions;

b) l([0, 1])= 1;

c) l is countably additive (σ-additive): if {Xi | i <ω}⊆Ω is a pairwise disjoint family then

l

(

⋃

i<ω

Xi

)

=
∑

i<ω

l(Xi);

d) l is translation invariant : if X ∈Ω and d∈R then X + d= {x+ d |x∈X}∈Ω and

l(X + d)= l(X).

Theorem 166. There is a set Z ⊆ [0, 1] which is not Lebesgue-measurable, i.e., Z ∈/ Ω .

Proof. Let

A= {Q+ d | d∈R}.
(1) A consists of pairwise disjoint nonempty sets which intersect the interval [0, 1).
Proof . Assume that x∈ (Q+ d)∩ (Q+ e). Take rational numbers r, s∈Q such that

x= r+ d= s+ e.

Then d=(s− r) + e∈Q+ e and

Q+ d= {t+ d | t∈Q}= {t+(s− r) + e | t∈Q}⊆Q+ e.

Similarly Q+ e⊆Q+ d and so Q+ e=Q+ d .
Consider d∈R . Take an integer z ∈Z such that z6 d< z+1 . Then

−z+ d∈ (Q+ d)∩ [0, 1)
qed(1)
By the axiom of choice let Z be a choice set for the set

{(Q+ d)∩ [0, 1) | d∈R}.
(2) If q, r ∈Q and q=/ r then (Z + q)∩ (Z + r) = ∅ .
Proof . Assume not, and take z0, z1∈Z such that z0+ q= z1+ r . Then z0∈Q+ z0 and z1∈Q+
z0 . Since Z is a choice set, z0= z1 . But then q= r . Contradiction. qed(2)
(3) [0, 1]⊆⋃

q∈[−1,1]∩Q
Z + q .

Proof . Let d ∈ [0, 1]. Let z ∈ Z ∩ (Q+ d) ∩ [0, 1). Take q ∈Q such that z = q + d . Then d= z +
(−q) where |q |6 1 . qed(3)
Assume now that Z ∈Ω . Since Z ⊆ [0, 1] we have l(Z)6 1 .
Case 1 : l(Z)= 0. Then

1= l([0, 1])6 l

(

⋃

q∈[−1,1]∩Q

Z + q

)

=
∑

q∈[−1,1]∩Q

l(Z + q)=
∑

q∈[−1,1]∩Q

l(Z)=
∑

q∈[−1,1]∩Q

0=0 ,

contradiction.
Case 2 : l(Z)= ε> 0. Then

l

(

⋃

q∈[−1,1]∩Q

Z + q

)

6 l([0, 2])= 2
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but on the other hand

l

(

⋃

q∈[−1,1]∩Q

Z + q

)

=
∑

q∈[−1,1]∩Q

l(Z + q)=
∑

q∈[−1,1]∩Q

l(Z) =
∑

q∈[−1,1]∩Q

ε = ∞ .

�

We shall now consider measures which are defined on all subsets of a given set, but we do not
require a geometric structure on the set and in particular no translation invariance. We also
restrict our consideration to finite measures.

Definition 167. A measure on a set X is a function µ:P(X)→ [0, 1] such that

a) µ(∅) = 0 and µ(X)= 1 ;

b) l is countably additive (σ-additive): if {Xi | i < ω} ⊆ P(X) is a pairwise disjoint family
then

µ

(

⋃

i<ω

Xi

)

=
∑

i<ω

µ(Xi).

µ is called non-trivial if µ({x}) = 0 for every x ∈X . µ is 2-valued if ran(µ) = {0, 1}, otherwise
µ is real-valued.

Note that if f : κ↔ X is a bijection then a measure µ on X immediately induces a measure µ′

on κ by

µ′(A)= µ(f [A]).

So we can focus our attention on measures on cardinals .

Lemma 168. Every 2-valued measure µ on R is trivial, i.e., there is some x∈R such that

µ(A)= 1 iff x0∈A.

Proof. Identify R with ω2 . Define x0:ω→ 2 by

x0(n) = 1 iff µ({x∈ ω2 |x(n)= 1})= 1.

By the σ-additivity of µ ,

µ(ω2 \ {x0})= µ

(

⋃

n<ω

{x∈ ω2 |x(n)=/ x0(n)}
)

6
∑

n<ω

µ({x∈ ω2 |x(n)=/ x0(n)}) =
∑

n<ω

0=0.

So µ({x0})= 1 . �

Assume that κ is the smallest cardinal which has a non-trivial measure µ . A set A ⊆ κ with
µ(A)> 0 splits if there is a partition A1, A2⊆A such that A1∪A2=A , A1∩A2= ∅ , 0< µ(A1)<
µ(A) and 0< µ(A2)< µ(A).
Case1 . There is a set A0⊆κ with µ(A0)> 0 which does not split.

Then define ν:P(A0)→ 2 by

ν(A) = 1 iff µ(A)= µ(A0).

(1) ν is a 2-valued non-trivial measure on A0 .
Proof . We have to check σ-additivity. Let {Xi | i <ω}⊆P(A0) be a pairwise disjoint family. By
the σ-additivity of µ

µ

(

⋃

i<ω

Xi

)

=
∑

i<ω

µ(Xi).

Then

ν

(

⋃

i<ω

Xi

)

=1 iff µ

(

⋃

i<ω

Xi

)

= µ(A0) iff ∃i <ω µ(Xi)= µ(A0) iff ∃i <ω ν(Xi)= 1 .
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Thus

ν

(

⋃

i<ω

Xi

)

=
∑

i<ω

ν(Xi).

qed(1)
By the minimality of κ we have card(A0)= κ .

Case 2 . Every set A⊆κ with µ(A)> 0 splits. In this case we call the measure µ atomless .
We first show that indeed A splits into relatively large subsets:
(2) Every set A⊆ κ with µ(A)> 0 possesses a subset B ⊆A such that

1

3
µ(A)6 µ(B)6

2

3
µ(A).

Proof . Assume not. Then

δ= sup

{

µ(B) |B ⊆A∧µ(B)6
1

2
µ(A)

}

6
1

3
µ(A) .

For n∈ω \ {0} choose Bn⊆A such that δ− 1

n
<µ(Bn)6 δ.

We show by induction on n that

µ(B1∪B2∪ ...∪Bn)6 δ .

Assume that µ(B1∪B2∪ ...∪Bn)6 δ .
Assume for a contradiction that µ(B1∪B2∪ ...∪Bn∪Bn+1)>δ . Then

µ(B1∪B2∪ ...∪Bn∪Bn+1)6 µ(B1∪B2∪ ...∪Bn)+ µ(Bn+1)6 δ+ δ6
2

3
µ(A).

By the initial assumption we cannot have µ(B1∪B2∪ ...∪Bn∪Bn+1)=
2

3
µ(A). Hence

δ < µ(B1∪B2∪ ...∪Bn∪Bn+1)<
2

3
µ(A)

and

µ(A \ (B1∪B2∪ ...∪Bn∪Bn+1))>
1

3
µ(A)> δ .

But then B1 ∪ B2 ∪ ... ∪ Bn ∪ Bn+1 or its relative complement A \ (B1 ∪ B2 ∪ ... ∪ Bn ∪ Bn+1)
would be a counterexample to the definition of δ . Thus µ(B1∪B2∪ ...∪Bn∪Bn+1)6 δ . The σ-
additivity of µ implies

µ

(

⋃

16n<ω

Bn

)

= µ

(

⋃

16n<ω

(Bn \ (B1∪ ...∪Bn−1))

)

=
∑

16n<ω

µ(Bn \ (B1∪ ...∪Bn−1))

= lim
m→∞

∑

n=1

m

µ(Bn \ (B1∪ ...∪Bn−1))

= lim
m→∞

µ

(

⋃

n=1

m

(Bn \ (B1∪ ...∪Bn−1))

)

= lim
m→∞

µ(B1∪ ...∪Bm)
= δ .

Set B∗ =
⋃

16n<ωBn . Then µ(B∗) = δ . A \ B∗ splits, so take a partition A \ B∗ = C ∪̇ D such

that 0< µ(C)6 µ(D)< µ(A \B∗) = µ(A)− δ . By the initial assumption we have µ(C)<
1

3
µ(A)

or µ(C)>
2

3
µ(A), and µ(D)<

1

3
µ(A) or µ(D)>

2

3
µ(A).

If µ(D)<
1

3
µ(A) then

µ(A)= µ(B∗∪C ∪D)= µ(B∗)+ µ(C) + µ(D)<
1

3
µ(A)+

1

3
µ(A)+

1

3
µ(A) = µ(A),

contradiction. Hence µ(C)<
1

3
µ(A) and µ(D)>

2

3
µ(A) . But then

δ < µ(B∗∪C)= µ(A \D)= µ(A)− µ(D)< µ(A)− 2

3
µ(A)<

1

2
µ(A),

contradicting the definition of δ . qed(2)
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Recall the binary tree
<ω2= {s | ∃n<ω s:n→ 2}.

We construct a binary splitting A: <ω2→P(κ) of the underlying set κ by recursion on the length
of the binary sequences. Put A(∅) =A0= κ . If A(s) =As ⊆ κ is constructed, use (2) to choose a

splitting As=As0 ∪̇As1 of As such that
1

3
µ(As)6 µ(As0)6 µ(As1)6

2

3
µ(As).

We shall pull the measure µ back to a measure ν on the reals. For X ⊆R define

X ′=
⋃

x∈X

⋂

n<ω

Ax↾n .

Define ν:P(ω2)→ [0, 1] by

ν(X)= µ(X ′).

First we show that the assignment X 7→X ′ preserves some set theoretic properties.
(3) ∅′= ∅ .
(4) (ω2)′= κ .
Proof . Let α∈ κ . Define x:ω→ 2 recursively by

x(n)= 1 iff α∈A(x↾n)1 .

Then α∈⋂
n<ω

Ax↾n and

κ=
⋃

x∈ ω2

⋂

n<ω

Ax↾n .

qed(4)
(5) (X ∩ Y )′=X ′∩Y ′.
Proof . Let α∈ (X ∩Y )′. Take x∈X ∩ Y such that α∈⋂

n<ω
Ax↾n . Then

α∈
⋃

x∈X

⋂

n<ω

Ax↾n=X ′

and also α∈Y ′.
Conversely consider α ∈X ′ ∩ Y ′. Take x ∈X such that α ∈ ⋂

n<ω
Ax↾n and take y ∈ Y such that

α ∈ ⋂
n<ω

Ay↾n . Assume for a contradiction that x=/ y . Take n ∈ ω such that x ↾ n= y ↾ n and

x(n)=/ y(n). Then α∈Ax↾(n+1)∩Ay↾(n+1) although Ax↾(n+1)∩Ay↾(n+1)= ∅ by construction.

Thus x= y ∈X ∩Y and

α∈
⋃

x∈X∩Y

⋂

n<ω

Ax↾n=(X ∩ Y )′.

qed(5)
(6) (

⋃

i∈IXi)′=
⋃

i∈IXi
′ .

Proof .
(

⋃

i∈I

Xi

)′

=
⋃

x∈
⋃
i∈I

Xi

⋂

n<ω

Ax↾n

=
⋃

i∈I

⋃

x∈Xi

⋂

n<ω

Ax↾n

=
⋃

i∈I

Xi
′ .

qed(6)

(7) ν is a non-trivial measure on ω2 .
Proof . ν(∅) = µ(∅′)= µ(∅) = 0 and ν(ω2)= µ((ω2)′)= µ(κ)= 1 .
To check σ-additivity consider a pairwise disjoint family {Xi | i < ω} ⊆ P(ω2). Then {Xi

′ | i <
ω}⊆P(κ) is pairwise disjoint by (5) and (3). By the σ-additivity of µ and by (6),

ν

(

⋃

i<ω

Xi

)

= µ

(

⋃

i<ω

Xi
′

)

=
∑

i<ω

µ(Xi
′)=

∑

i<ω

ν(Xi).

To check non-triviality consider x∈ ω2 . Then
{x}′=

⋂

n<ω

Ax↾n .
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One can show inductively that

µ(Ax↾n)6

(

2

3

)n

for all n<ω . Thus

µ({x}′)6 µ(Ax↾n)6

(

2

3

)n

for all n and so µ({x}′)= 0. This implies

ν({x}) = µ({x}′)= 0.

qed(7)

Since κ was assumed to be minimal carrying a non-trivial measure, we have κ6 2ℵ0 in Case 2 .

In both cases we can show a strong additivity property:
(8) The measure µ on κ is κ-additive, i.e., for every pairwise disjoint family {Xi | i < γ} ⊆ P(κ)
with γ <κ we have

µ

(

⋃

i<γ

Xi

)

=
∑

i<γ

µ(Xi) ,

where the right hand side is defined as

∑

i<γ

µ(Xi)= sup

{

∑

i∈I0

µ(Xi) | I0 is a finite subset of γ

}

.

Proof . Assume that µ is not κ-additive and let γ < κ be least such that there is a family
{Xi | i < γ}⊆P(κ) with

µ

(

⋃

i<γ

Xi

)

=/
∑

i<γ

µ(Xi) .

Then γ is an uncountable cardinal and

µ

(

⋃

i<γ

Xi

)

>
∑

i<γ

µ(Xi) .

Let

J = {i < γ | µ(Xi)> 0}⊆ γ .

We claim that J is at most countable. If J were uncountable, there must be some rational
number

1

n
such that µ(Xi)>

1

n
for uncountably many i∈J . But then

µ

(

⋃

i<γ

Xi

)

=∞ ,

contradiction.

The σ-additivity of µ entails

µ

(

⋃

i∈γ\J

Xi

)

= µ

(

⋃

i<γ

Xi

)

− µ
(

⋃

i∈J

Xi

)

>
∑

i<γ

µ(Xi)−
∑

i∈J

µ(Xi)

=
∑

i<γ

µ(Xi)−
∑

i<γ

µ(Xi)

= 0 .

So we may assume that all elements of the disjoint family {Xi | i < γ}⊆P(κ) have µ-measure 0 .

We shall pull the measure µ back to a measure ν on γ . Let µ0= µ(
⋃

i∈γXi). Define ν:P(γ)→
[0, 1] by

ν(Y )=
1

µ0
µ

(

⋃

i∈Y

Xi

)
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We show that ν is a non-trivial measure on γ .

ν(∅)= 1

µ0
µ(∅) = 0 and ν(γ)=

1

µ0
µ(
⋃

i∈γXi)= 1 .

To check σ-additivity consider a pairwise disjoint family {Yj | j <ω}⊆P(γ). Then
{

⋃

i∈Yj

Xi | j <ω
}

⊆P(κ)

is pairwise disjoint. By the σ-additivity of µ

ν

(

⋃

j<ω

Yj

)

=
1

µ0
µ

(

⋃

i∈
⋃
j<ω

Yj

Xi

)

=
1

µ0
µ

(

⋃

j<ω

⋃

i∈Yj

Xi

)

=
1

µ0

∑

j<ω

µ

(

⋃

i∈Yj

Xi

)

=
∑

j<ω

1

µ0
µ

(

⋃

i∈Yj

Xi

)

=
∑

j<ω

ν(Yj) .

Finally, ν is non-trivial since for every i < γ

ν({i})= 1

µ0
µ

(

⋃

j∈{i}

Xj

)

=
1

µ0
µ(Xi) = 0 .

But the existence of ν contradicts the minimality of κ . qed(8)

We can now draw conclusions from the previous arguments.

Definition 169. A cardinal κ is measurable if κ is uncountable and possesses a 2-valued κ-
additive non-trivial measure. A cardinal κ is real-valued measurable is κ is uncountable and
possesses a non-atomic κ-additive non-trivial measure.

Recall that µ is non-atomic, if every sets A ⊆ κ with µ(A)> 0 splits , i.e., there is a partition A1,

A2⊆A such that A1∪A2=A , A1∩A2= ∅ , 0< µ(A1)< µ(A) and 0< µ(A2)< µ(A).

Theorem 170. Let κ be minimal such that κ carries a non-trivial measure. Then either κ is a
measurable cardinal, or κ6 2ℵ0 and κ is a real-valued measurable cardinal.

Proof. If we are in Case 1 above, then κ is measurable. In Case 2 , κ 6 2ℵ0 . By Lemma 168
there is no 2-valued non-trivial measure on κ . Hence κ is real-valued measurable. �

Lemma 171. Let κ be measurable or real-valued measurable. Then κ is regular.

Proof. Let µ be a non-trivial κ-additive measure on κ . Assume for a contradiction that
cof(κ)= γ <κ . Let (κi | i < γ)⊆κ be cofinal in κ . For i < γ be have

µ(κi)= µ

(

⋃

α<κi

{α}
)

=
∑

α<κi

µ({α})=
∑

α<κi

0=0,

using non-triviality and κ-additivity. Similarly

µ(κ)= µ

(

⋃

i<γ

κi

)

6
∑

i<γ

µ(κi)=
∑

i<γ

0=0 ,

contradiction. �
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Lemma 172. Let κ be a measurable cardinal. Then κ is strongly inaccessible.

Proof. Let µ be a non-trivial κ-additive 2-valued measure on κ . Assume for a contradiction

that λ<κ but 2λ> κ . We may assume that µ is a measure on λ2 . Define x0:λ→ 2 by

x0(i)= 1 iff µ({y ∈ λ2 | y(i)= 1})= 1.

The κ-additivity of µ implies

µ(λ2 \ {x0}) = µ

(

⋃

i<λ

{y ∈ λ2 | y(i) = 1− x0(i)}
)

6
∑

i<λ

µ({y ∈ λ2 | y(i)= 1−x0(i)})

=
∑

i<λ

0

= 0 .

But then µ({x0}) = 1 which contradicts the non-triviality of µ . �

Thus measurable cardinals are large cardinals . Large cardinals are central notions in set theory.
They can be viewed as “ideal points” in the cardinal hierarchy with respect to certain properties.
A strongly inaccessible cardinal κ is an ideal point of cardinal arithmetic. κ cannot be reached
by the formation of cardinal powers or even infinitary sums and products from smaller para-
meters.

One could “cut off” the universe of sets at κ and restrict consideration to Vκ as a “subuniverse”.
We shall see in later courses that Vκ is a model of the ZFC-axioms and one could restrict math-
ematics to working inside Vκ . On the other hand the assumption of inaccessible and stronger
large cardinals like measurable cardinals greatly enriches set theoretic combinatorics. There are
also isolated instances, when the assumption of large cardinals influences the behaviour of
smaller sets like the set of real numbers.

20 Normal measures and ultrafilters

We shall now combine techniques from filters and ideals with measures on measurable cardinals.

Lemma 173. Let κ be an uncountable cardinal. Then κ is a measurable cardinal iff there is
non-principal, κ-complete ultrafilter U on κ , i.e., ∀i < κ {i}∈/ U (non-principality) and for every
family {Xi | i < γ}⊆U with γ <κ we have

⋂

i<γ

Xi∈U .

Proof. If µ is a 2-valued κ-additive non-trivial measure µ on κ then

U = {X ⊆ κ | µ(X) = 1}

is an ultrafilter with the desired properties. Conversely, if Ũ is a non-principal, κ-complete
ultrafilter on κ then µ̃:P(κ)→ 2 defined by

µ̃(X) = 1 iff X ∈ Ũ
is a 2-valued κ-additive non-trivial measure. �

Let us fix a measurable cardinal κ and a non-principal, κ-complete ultrafilter U on κ .

Definition 174. Define a relation <U on functions f , g:κ→ κ by

f <U g iff {i < κ | f(i)< g(i)}∈U.

66 Section 20



Recall that we defined in some previous arguments

ϕ<Sψ iff {δ ∈S | ϕ(δ)> ψ(δ)}∈NSλ .

Lemma 175. <U is a strongly wellfounded on κκ .

Proof. Assume not and assume that A ⊆ κκ , A=/ ∅ does not have a <U-minimal element. Then
define recursively a sequence fn for n < ω : choose f0 ∈A arbitrary; if fn ∈A is defined, it is not
<U-minimal in A, and so we can choose (AC) fn+1∈A such that fn+1<U fn .
For n<ω set

Xn= {i < κ | fn+1(i)< fn(i)}∈U.
Since U is κ-complete,

⋂

n<ω

Xn∈U.

So one can take i0∈
⋂

n<ω
Xn . So for each n<ω

fn+1(i0)< fn(i0),

and (fn(i0))n<ω is a strictly decreasing ω-chain in the ordinals. Contradiction. �

Definition 176. Define the <U-rank ‖f ‖U ∈Ord of f ∈ κκ by recursion on <U :

‖f ‖U =
⋃

{‖g‖U +1 | g <U f }.

Lemma 177.

a) For α<κ and for every f ∈ κκ
‖f ‖U =α iff {i <κ | f(i) =α}∈U .

Hence ‖cα‖U =α where cα:κ→κ is the constant function cα(i)=α .

b) There exists f ∈ κκ such that ‖f ‖U > κ

Proof. a) By induction on α<κ . Assume a) holds for β <α . Let f ∈ κκ .
Assume that ‖f ‖U = α but Xα= {i < κ | f(i) = α} ∈/ U . By inductive hypothesis, also Xβ = {i <
κ | f(i) = β} ∈/ U for all β < α . Since U is κ-complete, any union of less than κ many sets which
are not in the ultrafilter is not in the ultrafilter. Thus

{i < κ | f(i)6α}=
⋃

β6α

Xβ ∈/ U
and

{i <κ | f(i)>α}∈U.
This implies that

cα<U f.

By inductive hypothesis, ‖cα‖U =/ β for all β <α . Hence ‖cα‖U >α . But then

‖f ‖U > ‖cα‖U >α,

contradiction.
Conversely assume that A= {i < κ | f(i) = α} ∈U . Then {i < κ | f(i) = β} ∈/ U for all β < α and
by the inductive hypothesis ‖f ‖U =/ β for every β < α . Hence ‖f ‖U > α . Assume for a contra-
diction that ‖f ‖U > α . Then there exists g ∈ κκ such that g <U f and ‖g‖U > α . By the
inductive assumption, the set

Xβ= {i <κ | g(i) = β}∈/ U

for every β <α . By the κ-completeness of U

{i <κ | g(i)<α}=
⋃

β<α

Xβ ∈/ U
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and

B= {i < κ | g(i)>α}∈U.

Since g <U f , the set C = {i <κ | g(i)< f(i)}∈U . Now take i∈A∩B ∩C . Then

α6 g(i)< f(i)=α ,

contradiction.

b) Let d:κ→κ be the diagonal function d(i)= i . For α<κ

{i < κ | cα(i)<d(i)}= {i <κ |α< i}=
⋂

β6α

(κ \ {β})∈U

by the non-principality and κ-completeness of U . Hence cα <U d and ‖d‖U > ‖cα‖U = α . Thus
‖d‖U >κ . �

Consider a function f : κ→ κ with ‖f ‖U = κ . Then a function g: κ→ κ with g <U f has rank
‖g‖U =α<κ , i.e.,

{i < κ | g(i)=α}∈U.

This resembles Fodor’s theorem by which regressive functions are constant on stationary sets.
Indeed one can modify the filter U to come even closer to Fodor’s theorem.

Define Ũ ⊆P(κ) by
X ∈ Ũ iff f−1(X)= {i <κ | f(i)∈X}∈U.

(1) Ũ is an ultrafilter on κ .
Proof . ∅∈/ Ũ since f−1(∅)= ∅∈/ U .

If X ∈ Ũ and X ⊆ Y ⊆ κ , then f−1(X) ∈ U and f−1(X)⊆ f−1(Y ), and so f−1(Y ) ∈ U and Y ∈
Ũ .

If X,Y ∈ Ũ , then f−1(X), f−1(Y )∈U and f−1(X ∩Y )= f−1(X)∩ f−1(Y )∈U , thus X ∩ Y ∈ Ũ .

If X ⊆ κ and X ∈/ Ũ , then f−1(X)∈/ U and κ \ f−1(X)∈U . Hence f−1(κ \X) = κ \ f−1(X) ∈U
and κ \X ∈ Ũ . qed(1)

Note that the argument is based on the preservation of the set theoretic notions ∅ , ⊆ , ∩ , \ by
the f−1(.)-operation.

(2) Ũ is κ-complete.
Proof . Let {Xi | i < δ} ⊆ Ũ where δ < κ . Then {f−1(Xi) | i < δ} ⊆ U and

⋂

i<δ
f−1(Xi) ∈ U by

the κ-completeness of U . Since

f−1

(

⋂

i<δ

Xi

)

=
⋂

i<δ

f−1(Xi)

we get
⋂

i<δ
Xi∈ Ũ . qed(2)

(3) Ũ is non-principal.
Proof . Let α<κ . By Lemma 177(a) {i < κ | f(i)=α}∈/ U , so

f−1({α})= {i <κ | f(i)=α}∈/ U
and {α}∈/ Ũ . qed(3)

Definition 178. An ultrafilter U on κ is normal if every function h: κ→ κ which is regressive
on a set in U, i.e., {i < κ | h(i)< i}∈U, is constant on a set in U, i.e., there is a δ < κ such that
{i < κ |h(i)= δ}∈U.

(4) Ũ is normal.
Proof . Let h:κ→κ and {i < κ |h(i)<i}∈ Ũ . Then

f−1({i <κ |h(i)< i})= {j <κ |h(f(j))< f(j)}∈U
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and h ◦ f <U f . Since ‖f ‖U = κ , ‖h ◦ f ‖U = δ for some δ < κ . By Lemma 177(a) this is equi-
valent to

{j <κ |h(f(j)) = δ}∈U .
So

f−1({i < κ |h(i)= δ})= {j <κ |h(f(j))= δ}∈U
and

{i < κ |h(i)= δ}∈ Ũ .
qed(4)
Hence we have shown

Theorem 179. κ is a measurable cardinal iff there is normal non-principal, κ-complete ultra-
filter of κ .

Normal ultrafilter have better combinatorial properties like

Lemma 180. Let κ be measurable carrying a normal non-principal, κ-complete ultrafilter U .
Then

a) Cκ⊆U where Cκ is the closed unbounded filter on κ .

b) U is closed unter diagonal intersections, i.e., if {Xi | i < κ}⊆U then
i

i<κ

Xi∈U .

Proof. a) Let C ⊆κ be closed unbounded in κ but assume that C ∈/ U . Define h:κ→κ by

h(i)=max (C ∩ i).
Then h is regressive on κ \C ∈U. Since U is normal, take δ <κ such that

Y = {i < κ |h(i)= δ}∈U.

Since Y is unbounded in κ , max (C ∩ κ) must be equal to δ . But this contradicts the unboun-
dedness of C in κ .
b) Let {Xi | i < κ}⊆U but assume that

a
i<κ

Xi∈/ U . Define h:κ→ κ by

h(j) =min {i < j | j ∈/ Xi} if this exists and h(j)= 0 else.

Then h is regressive on κ \a
i<κ

Xi∈U. Since U is normal, take δ <κ such that

Y = {j <κ |h(j) = δ}∈U.
Then

Xδ∩ Y ∩
(

κ \
i

i<κ

Xi

)

⊆Xδ ∩{j <κ | j ∈/ Xδ}= ∅.

This contradicts the fact that U is an ultrafilter for which the intersection of three elements has
to also lie in the ultrafilter. �

21 Measurable cardinals and the GCH

We use the methods of Silver’s theorem in the context of measurable cardinals. Let κ be a meas-
urable cardinal and fix a normal non-principal κ-complete ultrafilter U on κ .

Lemma 181. ‖d‖U = κ where d:κ→ κ is the diagonal function d(i)= i .

Proof. ‖d‖U > κ was shown in the proof of 177(b).
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For the converse consider f <U d . Then

{i < κ | f(i)< i}∈U
means that f is regressive on a set in U . By the normality of U there is a constant δ < κ such
that

{i < κ | f(i)= δ}∈U.
By 177(a), ‖f ‖U = δ . Thus

‖d‖U =
⋃

{‖f ‖U +1 | f <U d}6
⋃

κ= κ.

�

Definition 182. Two functions f , g:κ→ V are U-almost disjoint if

{i <κ | f(i)=/ g(i)}∈U.

A family F ⊆κ V of functions is U-almost disjoint if f and g are U-almost disjoint for any f , g ∈
F, f =/ g .

Lemma 183. Let F be a U-almost disjoint family where f <U d for every f ∈ F. Then
card(F)≤κ.

Proof. By the previous Lemma, f 7→ ‖f ‖U maps F into κ . Moreover, this assignment is
injective: if ‖f ‖U = ‖g‖U then

{i < κ | f(i) = ‖f ‖U}∩ {i < κ | g(i)= ‖g‖U}∈U

and since F is a U -almost disjoint family, f = g . Thus card(F)≤ κ. �

Lemma 184. Let d+: κ→ κ be the cardinal successor function d+(i) = i+. Let F be a U-almost

disjoint family where f <U d
+ for every f ∈F. Then card(F)≤ κ+.

Proof. Let f ∈F . Let
Ff = {g ∈F| g <U f }∪ {f }.

(1) card(Ff)≤ κ .
Proof . For i <κ with f(i)< i+ choose an injection hi: f(i)→ i . For g ∈Ff define g ′:κ→ V by

g ′(i)=

{

hi(g(i)), if g(i)< f(i)<i+

g(i), else

Then g 7→ g ′ is an injective map from Ff into {g ′ | g ∈Ff}. {g ′ | g ∈Ff} is an U -almost disjoint
family where g ′ <U d for every g ∈ Ff . By the previous lemma, card({g ′ | g ∈ Ff }) 6 κ and so
card(Ff)≤ κ. qed(1)
We construct a sequence (fξ| ξ < ζ) of functions in F by induction such that F =

⋃ {Ffξ| ξ < ζ}.
Take an arbitrary f0∈F (wlog. F =/ ∅ ).
If (fν| ν < ξ) is already defined, choose fξ ∈

⋃ {Ffν| v < ξ} if possible. If there is no such fξ, set
ζ = ξ and stop.
(2) ζ ≤κ+.
Proof . Assume that fκ+ is defined. If ν < κ+ then fκ+ ∈/ Ffν . So fκ+ ≮U fν . By the various
assumptions on F : fν <U fκ+ . Thus fv ∈ Fκ+ for all v < ξ , and card(Ff

κ+
) > κ+. This contra-

dicts (1). qed(2)
Altogether

card(F)= card(
⋃

{Ffξ| ξ < ζ})6
∑

ξ<ζ

card(Ffξ)6
∑

ξ<ζ

κ6κ ·κ+= κ+.

�

Theorem 185. Let κ be a measurable cardinal and assume that 2λ=λ for λ<κ . Then

2κ=κ+.
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Proof. Fix a normal non-principal κ-complete ultrafilter U on κ .
For i < κ choose a map hi: P(i)→ κ which injects P(i) into i+ for infinite i . Define a map from
P(κ) into κκ by

X 7→fX=(hi(X ∩ i)|i <κ)∈ κκ.
If X =/ Y then fX and fY are almost disjoint and hence U -almost disjoint. Also fX <U d

+. So by
the previous Lemma

card(P(κ))6 card({fX |X ∈P(κ})6κ+.

�

22 Partition properties and partition cardinals

Definition 186. Let X be a term X . For a natural number n<ω let

[X]n= {a⊆X | card(a)=n}
be the collection of n-element subsets of X . Further let

[X ]<ω= {a⊆X | card(a)<ω}
be the collection of finite subsets of X .
A function f : [X]n→V or f : [X]<ω→V is called a partition of [X]n or [X ]<ω respectively.

Theorem 187. (Ramsey) Let n < ω and let f : [ω]n→ 2 . Then there is an infinite X ⊆ ω such
that f ↾ [X]n is constant. The set is called homogeneous for f.

Proof. By induction on n . The claim is trivial for n= 0 , and it is an easy instance of an infin-
itary pidgeon principle in case n = 1. So assume the claim for n and let f : [ω]n+1→ 2 be given.
We shall find an “n + 1-dimensional” homogeneous set for f by taking “n-dimensional” homo-
geneneous sets for “sections” fx of f . For x∈ω define fx: [ω \ (x+1)]n→ 2 by

fx(s)= f({x}∪ s).

We define sequences x0, x1, ... , c0, c1, ... and X0, X1, .... by simultaneous recursion such that

a) x0<x1< ... <ω

b) xi<min (Xi), xi+1∈Xi

c) c0, c1, ...∈{0, 1}
d) ω ⊇X0⊇X1⊇ ... are infinite homogeneous sets for fx0

, fx1
, ... respectively such that ∀s∈

[Xi]
n fxi(s) = ci

Set x0 = 0 . By the inductive assumption take X0 to be an infinite homogeneous set for fx0
and

take c0∈{0, 1} such that ∀s∈ [X0]n fx0
(s)= c0 .

If xi and Xi are defined, take xi+1 ∈ Xi . Then use the inductive assumption and take Xi+1 ⊆
Xi \ (xi+1+ 1) to be an infinite homogeneous set for the function fxi+1

↾ [Xi \ (xi+1+ 1)]n. Take
ci+1 such that ∀s∈ [Xi+1]

n fxi+1
(s)= ci+1 .

By the pidgeon principle there is an infinite set X ⊆ {x0, x1, ...} and a c ∈ {0, 1} such that ∀xi ∈
X ci= c .
We show that X is homogeneneous for f with constant value c . Let t ∈ [X ]n+1. Let xi=min (t)
and s= t \ {xi}. Then s∈ [Xi]

n and

f(t)= fxi(s)= ci= c.

�

Then X is homogeneous for f :
⋃

n6i<ω
[λ]i→ 2 if for every i∈ [n, ω) and every x, y ∈ [X ]i

f(x)= f(y)
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Theorem 188. Rowbottom’s Theorem

Definition 189. Partition calculus: the notation β→ (α)λ
n and β→ (α)λ

<ω.

Theorem 190. Infinite exponent partitions do not have infinite homogeneous sets.

Definition 191. Weakly compact, Erd”os cardinals κ(α), Ramsey cardinals

Theorem 192. Measurable cardinals are Ramsey

Lemma 193. Let α > ω and n < ω . Then β 9 (α)<ω iff there is a function g: [λ]n6i<ω =
⋃

n6i<ω
[λ]i → 2 without a homogeneous subset of order type α , i.e., there is no X ⊆ λ with

otp(X) =α such that for all i∈ [n, ω) and x, y ∈ [X ]i we have g(x) = g(y).

Proof. The implication from right to left is trivial. Conversely take f : [λ]<ω→ 2 which does not
have a homogeneous subset of order α . Definiere g:

⋃

n6i<ω
[λ]i→ 2 by

g(x)= f(x \x ↾n),
where denotes the initial segment of x of order type n . Assume that g has a homogeneous
subset X of order type α . Let Y = X \ X ↾ n . Since α is infinite, otp(Y ) = α . We show for a

contradiction that Y is homogeneneous for f . Let i < ω and x, y ∈ [Y ]i. Then by the homogen-
eity of X

f(x)= g(X ↾n∪x)= g(X ↾n∪ y) = f(y). �

Lemma 194. Assume λ 9 (α)<ω with α infinite. Then 2λ 9 (α + 1)<ω. In case λ is a limit
ordinal also 2λ9 (α)<ω.

Proof. Take f : [λ]36n<ω→ 2 without a homogeneous subset of order type α . We then define g:
[λ2]26n<ω→ 2 . Let < well-order λ2 . Let ≺ denote the lexicographic ordering of λ2 . We want to
ensure that on a homogeneous set ≺ agrees with < or with the converse ordering >. For {x,
y}∈ [λ2]2 with x< y set

g({x, y}) = 0 iff x≺ y .
The lexicographic order is defined via first differences. For x, y ∈λ 2 with x=/ y let

γ(x, y) =min {ξ|x(ξ) =/ y(ξ)};
then x≺ y iff 0=x(γ(x, y))< y(γ(x, y))= 1 .
Now we define another auxiliary function which will turn a homogeneous set in λ2 into a homo-
geneous set in λ . Consider {x, y, z} ∈ [λ2]3 with x ≺ y ≺ z . Since the functions are 2-valued we
cannot have γ(x, y)= γ(y, z).
If γ(x, y)< γ(y, z) then y and z agree up to and including γ(x, y). So the first differences γ(x,
y) and γ(x, z) agree and

γ(x, y)= γ(x, z)< γ(y, z).

If γ(y, z)< γ(x, y) then x and y agree up to and including γ(y, z). So the first differences γ(y,
z) and γ(x, z) agree and

γ(y, z) = γ(x, z)< γ(x, y)

According to these cases we define for x≺ y≺ z

g({x, y, z}) =
{

0 if γ(x, y)= γ(x, z)< γ(y, z)
1 if γ(y, z)= γ(x, z)< γ(x, y)

So for x ≺ y from a g-homogeneous set, the ordinal γ(x, y) will only depend on the first argu-
ment in case g≡ 1 or, resp., on the second in case g≡ 0.
So for s∈ [λ2]46i<ω from a g-homogeneous set the set

γ(s)= {γ(x, y)|x, y ∈ s, x≺ y}
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will have card(s)− 1 many elements.

Define g: [λ2]46n<ω→ 2 by

g(s) =

{

f(γ(s)) if card(γ(s))> 3
0 else

Set β = α + 1 if α is a successor ordinal, and β = α if α is a limit ordinal. We show that g wit-

nesses 2λ9 (β)<ω.
So assume for a contradiction that X ⊆λ 2 has order type β with respect to < and that X is
homogeneous for g .
Case 1 . g[[X ]2] = {0}. This means that < and ≺ agree on X so that X has order type β with

respect to ≺. If g[[X ]3] = {1}, we have γ(x, y) > γ(x, z) for x ≺ y ≺ z from X . Taking an
increasing ω-sequence x0 ≺ x1 ≺2 ... from X this yields a contradiction in the form of a des-
cending ω-sequence of ordinals:

γ(x0, x1)> γ(x0, x2)> γ(x0, x3)... .

Therefore g[[X ]3] = {0}. Then γ(x, y) for x, y ∈ X, x ≺ y only depends on x and γ(X) = {γ(x,
y)| x, y ∈X, x≺ y} ⊆Ord has order type α . We obtain a contradiction by showing that γ(X) is
homegeneous for f : let 36n<ω and consider two ascending n-sequences from γ(X):

γ(x0, y0)< ... < γ(xn−1, yn−1) and γ(x0
′ , y0

′)< ... < γ(xn−1
′ , yn−1

′ ).

Then x0≺ x1≺ ...≺ xn−1≺ yn−1 and x0
′ ≺ x1′ ≺ ...≺ xn−1

′ ≺ yn−1
′ in X and

f({γ(x0, y0), ..., γ(xn−1, yn−1)}) = f({γ(x0, yn−1), ..., γ(xn−1, yn−1)})
= f(γ({x0, x1, ..., xn−1, yn−1}))
= g({x0, x1, ..., xn−1, yn−1})
= g({x0′ , x1′ , ..., xn−1

′ , yn−1
′ })

= f(γ({x0′ , x1′ , ..., xn−1
′ , yn−1

′ }))
= f({γ(x0′ , yn−1

′ ), ..., γ(xn−1
′ , yn−1

′ )})
= f({γ(x0′ , y0′), ..., γ(xn−1

′ , yn−1
′ )}).

Case 2 . g[[X ]2] = {1}. This means that < and ≻ agree on X so that X has order type β with

respect to ≻. If g[[X]3] = {0}, we have γ(x, z) < γ(y, z) for x ≺ y ≺ z from X . Taking a
decreasing ω-sequence x0 ≻ x1 ≻2 ... from X this yields a contradiction in the form of a des-
cending ω-sequence of ordinals:

γ(x1, x0)> γ(x2, x0)> γ(x3, x0)... .

Therefore g[[X ]3] = {1}. Then γ(x, y) for x, y ∈ X, x ≺ y only depends on y and γ(X) = {γ(x,
y)| x, y ∈X, x≺ y} ⊆Ord has order type β . We obtain a contradiction by showing that γ(X) is
homegeneous for f : let 36n<ω and consider two ascending n-sequences from γ(X):

γ(x0, y0)< ... < γ(xn−1, yn−1) and γ(x0
′ , y0

′)< ... < γ(xn−1
′ , yn−1

′ ).

Then x0≺ y0≺ ...≺ yn−1 and x0
′ ≺ y0′ ≺ ...≺ yn−1

′ in X and

f({γ(x0, y0), ..., γ(xn−1, yn−1)}) = f({γ(x0, y0), ..., γ(x0, yn−1)})
= f(γ({x0, y0, ..., yn−1}))
= g({x0, y0, ..., yn−1})
= g({x0′ , y0′, ..., yn−1

′ })
= f(γ({x0′ , y0′, ..., yn−1

′ }))
= f({γ(x0′ , y0′), ..., γ(x0′ , yn−1

′ )})
= f({γ(x0′ , y0′), ..., γ(xn−1

′ , yn−1
′ )}).

for x≺ y≺ z
g({x, y, z}) =

{

0 if γ(x, y)= γ(x, z)< γ(y, z)
1 if γ(y, z)= γ(x, z)< γ(x, y)
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Theorem 195. If α∈Lim then κ(α) is strongly inaccessible.

Theorem 196. If κ is a measurable cardinal with normal measure U . Then the set

{λ<κ|λ is a Ramsey cardinal }∈U.

Proof. Otherwise X = {λ < κ| λ is not a Ramsey cardinal} ∈ U . We can assume that every λ ∈
X is an infinite cardinal. For every λ ∈X choose a function fλ: [λ]

<ω→ 2 which does not have a
homogeneous subset of order type λ . Define f : [κ]<ω→ 2 by

f(x) =

{

fmax(x)(x \max (x)) if x=/ ∅
0 else

Let Y ∈U be homogeneous for f .
(1) {λ∈ Y | otp(Y ∩ λ) =λ}∈U .
Proof . Otherwise one can define a regressive function λ 7→ otp(Y ∩ λ) on a measure one set in U
which contradicts that otp(Y ) =κ . qed(1)
So let λ ∈ Y with otp(Y ∩ λ) = λ . It is easy to see that Y ∩ λ is homogeneous for fλ : if n < ω

and x, y ∈ [Y ∩λ]<ω then

fλ(x)= f(x∪{λ}) = f(y∪ {λ})= fλ(x).

Contradiction. �

So we obtain the following impression of the large cardinal hierarchy

the smallest measurable cardinal

∨
the smallest Ramsey cardinal

∨
···
∨

κ(β)

∨
κ(α)

∨
the smallest inaccessible cardinal

23 The Mitchell order

Lemma 197. Let U be a κ-complete, non-principal normal ultrafilter on κ such that

A= {α<κ|α is a measurable cardinal }∈U.
For α∈A choose an α-complete, non-principal normal ultrafilter Uα on α . Then

Ū = {X ⊆ κ| {α<A|X ∩α∈Uα}∈U }
is a κ-complete, non-principal normal ultrafilter on κ .

Proof. (1) Ū is an ultrafilter on κ .
Proof. {α<A| ∅ ∩α∈Uα}= ∅∈/ U and so ∅∈/ Ū .
{α<A|κ∩α∈Uα}=A∈U and so κ∈ Ū .

Let X ∈ Ū and X ⊆ Y ⊆ κ . Then {α<A|X ∩α∈Uα}∈U . Since X ∩α⊆ Y ∩α

{α<A|X ∩α∈Uα}⊆{α<A|Y ∩α∈Uα}
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and so Y ∈ Ū .

Let X,Y ∈ Ū . Then {α<A|X ∩α∈Uα}∈U and {α<A|Y ∩α∈Uα}∈U .

{α<A| (X ∩Y )∩α∈Uα}= {α<A|X ∩α∈Uα}∩ {α<A|Y ∩α∈Uα}∈U.

Hence X ∩ Y ∈ Ū . qed(1)

(2) Ū is non-principal.

Proof . Consider the singleton set {ν} with ν <κ . Then

{α<A| {ν}∩α∈Uα}= ∅∈/ U
and {ν}∈/ Ū . qed(2)

(3) Ū is κ-complete.

Proof . Let γ < κ and {Xi| i < γ} ⊆ Ū . For i < γ let Ai = {α < A| Xi ∩ α ∈ Uα} ∈ U . Let X =
⋂

i<γ
Xi . Let B = (

⋂

i<γ
Ai) \ (γ + 1) ∈ U . Then by the closure of the filters Uα under intersec-

tions of γ-sequences for γ <α we have

B ⊆







α<A|
(

⋂

i<γ

Xi

)

∩α∈Uα







∈U.

Thus
⋂

i<γ
Xi∈ Ū . qed(3)

(4) Ū is normal.

Proof . Let {Xi| i < κ} ⊆ Ū . For i < κ let Ai= {α < A|Xi ∩ α ∈ Uα} ∈ U . Let X =
a
i<κ

Xi and

B=A∩a
i<κ

Ai∈U . Let α∈B . Then ∀i <αα∈Ai and ∀i <αXi∩α∈Uα . Since Uα is normal,
(i

i<κ

Xi

)

∩α=
i

i<α

(Xi∩α)∈Uα .

So

B ⊆







α<A|
(i

i<κ

Xi

)

∩α∈Uα







∈U

and
a
i<κ

Xi∈ Ū . �

In the situation of this lemma, we consider Ū to be weaker than U since U is able to define Ū as
a “limit” of ultrafilters of smaller size. This is captured by

Definition 198. Let Ū , U be κ-complete, non-principal normal ultrafilters on κ . We say that Ū
is of smaller Mitchell order than U , Ū ≺κ U , if there is a sequence (Uα| α ∈ A) of α-complete,
non-principal normal ultrafilters Uα on α with A∈U such that

Ū = {X ⊆κ| {α<A|X ∩α∈Uα}∈U }.

We shall show that ≺ is well-founded so that one can define a rank on such ultrafilters and on
measurable cardinals. We use the <U -rank of functions in κκ .

Lemma 199. Let Ū , U be κ-complete, non-principal normal ultrafilters on κ such that Ū ≺κ U.
Then there is a function H :κκ→κκ such that

f <Ū g implies H(f)<UH(g).

Proof. Fix a sequence (Uα|α∈A) of α-complete, non-principal normal ultrafilters Uα on α with
A∈U such that

Ū = {X ⊆κ| {α<A|X ∩α∈Uα}∈U }.

For f :κ→κ define H(f):κ→κ by

H(f)(α)=

{

‖f ↾α‖Uα if α∈A and f ↾α:α→α

0 else
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Note that in this definition ‖f ↾α‖Uα< card(αα)+=(2α)+<κ since κ is strongly inaccessible.

Consider functions f , g:κ→κ such that

f <Ū g .

Then {i <κ| f(i)< g(i)}∈ Ū . By definition of Ū from U this means

B: ={α<A| {i <α| f(i)< g(i)}∈Uα}∈U.
By standard closure arguments

C := {α<κ| f [α]⊆α and g[α]⊆α}∈ Cκ⊆U.

For α∈B ∩C ∈U we have f ↾α<Uα g ↾α and

H(f)(α)= ‖f ↾α‖Uα< ‖g ↾α‖Uα=H(g)(α).

Thus

H(f)<UH(g). �

Lemma 200. In the situation of the previous Lemma we have

a) for all f :κ→ κ ‖f ‖Ū 6 ‖H(f)‖U ;
b) there is a function h:κ→κ such that H(f)<Uh for all f :κ→κ ;

c) sup {‖f ‖Ū| f ∈κκ}< sup {‖f ‖U| f ∈κκ}.

Proof. a) by induction on the well-founded relation <Ū . Assume that the claim holds for all
g <Ū f . Then

‖H(f)‖U =
⋃

{‖h‖U +1 |h<UH(f)}
>
⋃

{‖H(g)‖U +1 | g <Ū f }
>
⋃

{‖g‖Ū +1 | g <Ū f }
= ‖f ‖Ū

b) Define h:κ→κ by

h(α)= (2α)+= card(αα)+> ‖f ↾α‖Uα=H(f)(α).

c)

sup {‖f ‖U| f ∈κκ} > ‖h‖U
> sup {‖H(f)‖U| f ∈κκ}
> sup {‖f ‖Ū| f ∈κκ}.

�

Clause c) implies the following

Theorem 201. The relation ≺κ is strongly well-founded. The Mitchell order of a κ-complete,
non-principal normal ultrafilter U on κ is the rank of U in ≺κ :

oκ(U) =
⋃

{oκ(Ū)+ 1 | Ū ≺κU }.

The Mitchell order of a cardinal κ is defined as

o(κ)=
⋃

{oκ(U)+ 1 |U is a κ-complete, non-principal normal ultrafilter on κ}.

A cardinal is measurable iff o(κ)> 1 .

The existence of a measurable cardinal of Mitchell order α is a large cardinal axiom. Working
with such cardinals requires the assumption that such cardinals exist. We have extended the
large cardinal hierarchy beyond measurable cardinals:
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0= 1
···

the smallest measurable cardinal with Mitchell order ∞?
···

the smallest measurable cardinal with Mitchell order κ++

···
the smallest measurable cardinal with Mitchell order κ

···
the smallest measurable cardinal with Mitchell order 2

∨
the smallest measurable cardinal

∨
the smallest Ramsey cardinal

∨
···
∨

κ(β)

∨
κ(α)

∨
the smallest inaccessible cardinal
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