Dr. Philipp Lücke	Problem sheet 10
-------------------	------------------

Problem 34 (4 Points). Prove Proposition 6.1.5. from the lecture course: Let X be a Polish space and $1 \le \alpha < \omega_1$.

- (1) The classes $\Sigma^0_{\alpha}(X)$, $\Pi^0_{\alpha}(X)$ and $\Delta^0_{\alpha}(X)$ are closed under finite intersections, finite unions and continuous preimages.
- (2) The class $\Sigma^0_{\alpha}(X)$ is closed under countable unions.
- (3) The class $\Pi^0_{\alpha}(X)$ is closed under countable intersections.
- (4) The class $\Delta^0_{\alpha}(X)$ is closed under complements.

Problem 35 (8 Points). Given topological spaces X and Y, a function $f : X \longrightarrow Y$ is *Borel*, if the preimage of every open (or, equivalently every Borel) subset of Y is Borel in X. Show that the following statements are equivalent for every Polish space X and every subset A of X.

- (1) $A \in \mathbf{\Sigma}_1^1(X)$.
- (2) There is a Polish space Y, a closed subset C of Y and a continuous function $f: Y \longrightarrow X$ with A = f[C].
- (3) There is a Polish space Y, a Borel subset B of Y and a Borel function $f: Y \longrightarrow X$ with A = f[B].

(Hint: Show that the graph of a Borel function $f: Y \longrightarrow X$ between Polish spaces X and Y is a Borel subset of $X \times Y$ by fixing a countable basis $\langle U_n \mid n < \omega \rangle$ of the topology on Y and showing that

$$f(x) = y \iff \forall n < \omega \ \left[y \in U_n \longrightarrow x \in f^{-1}[U_n] \right]$$

holds for all $(x, y) \in X \times Y$

Problem 36 (12 Points). Given a tree \mathbb{T} , define $\mathbb{P}_{\mathbb{T}}$ to be the partial order $(\mathbb{T}, \geq_{\mathbb{T}})$.

(1) Let κ be an uncountable regular cardinal and \mathbb{T} be a κ -Souslin tree with the property that for every $s \in \mathbb{T}$ and every $lh_{\mathbb{T}}(s) < \alpha < \kappa$, there is $t \in \mathbb{T}(\alpha)$ with $s <_{\mathbb{T}} t$. Show that the partial order $\mathbb{P}_{\mathbb{T}}$ satisfies the κ -chain condition and is $<\kappa$ -distributive.

Fix a non-atomic partial order $\mathbb P$ that satisfies the $\kappa\text{-chain}$ condition and is $<\!\kappa\text{-distributive}.$

(2) Construct $T_{\mathbb{P}} \subseteq \mathbb{P}$ such that $\mathbb{T}_{\mathbb{P}} = (T_{\mathbb{P}}, \geq_{\mathbb{P}})$ is a tree of height κ with the property that $\mathbb{T}_{\mathbb{P}}(\alpha)$ is a maximal antichain in \mathbb{P} for every $\alpha < \kappa$ and the property that for every $s \in \mathbb{T}_{\mathbb{P}}$ and every $lh_{\mathbb{T}_{\mathbb{P}}}(s) < \alpha < \kappa$, there is $t \in \mathbb{T}_{\mathbb{P}}(\alpha)$ with $s <_{\mathbb{T}_{\mathbb{P}}} t$. (Hint: Construct $\mathbb{T}(\alpha)$ recursively. If $\mathbb{T}(\alpha)$ is already constructed, then choose a maximal antichain A_p below p in \mathbb{P} for

every $p \in \mathbb{T}(\alpha)$ and define $\mathbb{T}(\alpha + 1) = \bigcup_{p \in \mathbb{T}(\alpha)} A_p$. If $\alpha \in \kappa \cap \text{Lim}$ and $\mathbb{T}(\bar{\alpha})$ is already constructed for all $\bar{\alpha} < \kappa$, then show that the set $D_{\alpha} = \{q \in \mathbb{P} \mid \forall \bar{\alpha} < \alpha \exists p \in \mathbb{T}(\bar{\alpha}) \ q \leq_{\mathbb{P}} p\}$ is open dense in \mathbb{P} and define $\mathbb{T}(\alpha)$ to be a maximal antichain in D_{α})

- (3) Show that $\mathbb{T}_{\mathbb{P}}$ is a κ -Souslin tree with the property that the inclusion map $i: \mathbb{P}_{\mathbb{T}_{\mathbb{P}}} \longrightarrow \mathbb{P}$ is a complete embedding.
- (4) Conclude that non-atomic partial orders that satisfy the θ -chain condition for some uncoutable regular cardinal θ are not $<\theta^+$ -distributive.