Dr. Philipp Lücke	Problem sheet 7
-------------------	-----------------

Problem 25 (16 Points). Let $\mathbb{B} = \langle \mathbb{B}, \leq, \wedge, \vee, 0, 1, ' \rangle$ be a complete boolean algebra, \mathbb{B}^* denote the corresponding partial order and \mathcal{U} be an ultrafilter on \mathbb{B} (i.e. there is an homomorphism $\pi_{\mathcal{U}}$ of boolean algebras from \mathbb{B} to the unique boolean algebra $\{0,1\}$ with two elements such that $\mathcal{U} = \pi^{-1}$ " $\{1\}$). Define a relation $\equiv_{\mathcal{U}}$ on $\mathbb{V}^{\mathbb{B}^*}$ by setting

$$\sigma \equiv_{\mathcal{U}} \tau \iff \llbracket "\sigma = \tau" \rrbracket_{\mathbb{B}} \in \mathcal{U}$$

for all $\sigma, \tau \in \mathbf{V}^{\mathbb{B}^*}$.

(1) Show that $\equiv_{\mathcal{U}}$ is an equivalence relation on $V^{\mathbb{B}^*}$.

Given $\tau \in V^{\mathbb{B}^*}$, define

$$[\tau]_{\mathcal{U}} = \{ \sigma \in \mathbf{V}^{\mathbb{B}^*} \mid \sigma \equiv_{\mathcal{U}} \tau \land \forall \rho \in \mathbf{V}^{\mathbb{B}^*} \mid \rho \equiv_{\mathcal{U}} \tau \longrightarrow \operatorname{rank}(\rho) \ge \operatorname{rank}(\sigma)] \} \in \mathbf{V}.$$

Let V/ \mathcal{U} denote the class $\{[\tau]_{\mathcal{U}} \mid \tau \in V^{\mathbb{B}^*}\}$ and define a relation $\in_{\mathcal{U}}$ on V/ \mathcal{U} by setting

$$[\sigma]_{\mathcal{U}} \in_{\mathcal{U}} [\tau]_{\mathcal{U}} \Leftrightarrow \llbracket "\sigma \in \tau" \rrbracket_{\mathbb{B}} \in \mathcal{U}$$

for all $\sigma, \tau \in \mathbf{V}^{\mathbb{B}^*}$.

- (2) Show that the relation $\in_{\mathcal{U}}$ is well-defined.
- (3) Show that

$$(V/\mathcal{U}, \in_{\mathcal{U}}) \models \varphi([\tau_0]_{\mathcal{U}}, \dots, [\tau_{n-1}]_{\mathcal{U}}) \iff \llbracket \varphi(\tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{B}} \in \mathcal{U}$$

holds for every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1})$ and all $\tau_0, \ldots, \tau_{n-1} \in \mathbb{V}^{\mathbb{B}^*}$.

(4) Show that $(V/\mathcal{U}, \in_{\mathcal{U}})$ is a model of ZFC.

Problem 26 (8 Points). Let M be a countable transitive model of ZFC, κ be an uncountable regular cardinal in M and $\mathbb{P} \in M$ be a separative partial order (see Problem 21). Show that, if \mathbb{P} is not $<\kappa$ -distributive in M, then there is G \mathbb{P} -generic over M and $f : \lambda \longrightarrow$ Ord with $\lambda < \kappa$ and $f \in M[G] \setminus M$. (Hint: Work in M and fix a sequence $\langle D_{\alpha} \mid \alpha < \lambda \rangle$ of dense open subsets of \mathbb{P} such that $\lambda < \kappa$ and $\bigcap_{\alpha < \lambda} D_{\alpha}$ is not dense in \mathbb{P} . Given $\alpha < \lambda$, let $\langle a_{\beta}^{\alpha} \mid \beta < \nu_{\alpha} \rangle$ enumerate a maximal antichain in D_{α} . Define

$$\sigma = \{ (\mathsf{op}(\check{\alpha},\check{\beta}), a^{\alpha}_{\beta}) \mid \alpha < \lambda, \ \beta < \nu_{\alpha} \} \in M^{\mathbb{P}}$$

and find G \mathbb{P} -generic over M such that $\sigma^G : \lambda \longrightarrow \text{Ord with } \sigma^G \notin M$).

Please hand in your solutions on Wednesday, June 10, before the lecture.