Problem sheet 1

Problem 1 (3 Points). Prove Proposition 1.1.2. from the lecture course: If $\mathcal{M} = (M, E)$ is an \mathcal{L}_{\in} -structure, $W \subseteq M$ is a class in \mathcal{M} and $\varphi(v_0, \ldots, v_{n-1})$ is an \mathcal{L}_{\in} -formula, then

$$\mathcal{M} \models \varphi^{W}(a_0, \dots, a_{n-1}) \iff (W, E \cap (W \times W)) \models \varphi(a_0, \dots, a_{n-1})$$

holds for all $a_0, \ldots, a_{n-1} \in W$.

Problem 2 (4 Points). Prove Lemma 1.1.4.(ii) from the lecture course: Assume ZF^- . Let W be a non-empty transitive class and $\varphi(v_0, \ldots, v_{n+1})$ be an \mathcal{L}_{\in} -formula. Then $(Replacement_{\varphi})^W$ holds if and only if for all $c_0, \ldots, c_{n-1} \in W$, either there are $a, b_0, b_1 \in W$ with $\varphi^W(a, b_i, c_0, \ldots, c_{n-1})$ for all i < 2, or there is an $a \in W$ with $\neg \varphi^W(a, b, c_0, \ldots, c_{n-1})$ for all $b \in W$, or

$$\{b \in W \mid \exists a \in d \ \varphi^W(a, b, c_0, \dots, c_{n-1})\} \in W$$

for every $d \in W$.

Problem 3 (2 Points). Prove Proposition 1.1.17.(ii) from the lecture course: If T is an \mathcal{L}_{\in} -theorie with $T \vdash (Collection_{\varphi})$ for every \mathcal{L}_{\in} -formula φ , then the classes of Σ_n^T -, Π_n^T - and Δ_n^T -formulas are closed under $\forall x \in v$ and $\exists x \in v$.

Problem 4 (5 Points). Prove the Σ -Recursion Theorem (Theorem 1.1.18) from the lecture course: Given an \mathcal{L}_{\in} -formula $\psi(v_0, \ldots, v_{n+1})$ and Σ -formulas $\varphi_0(v_0, \ldots, v_{n+2})$ and $\varphi_1(v_0, \ldots, v_{n+1})$, there is a Σ -formula $\Phi(v_0, \ldots, v_{n+1})$ such that the theory ZF^- – (Infinity) proves that for all c_0, \ldots, c_{n-1} with the property that $R = \{(a, b) \mid \psi(a, b, c_0, \ldots, c_{n-1})\}$ is a strongly well-founded relation, $G = \{((a_0, a_1), b) \mid \varphi_0(a_0, a_1, b, c_0, \ldots, c_{n-1})\}$ is a function with domain $V \times V$ and $P = \{(a, b) \mid \varphi_1(a, b, c_0, \ldots, c_{n-1})\}$ is a function with domain V and $P(a) = \operatorname{pred}_R(a)$ for all a, the class $F = \{(a, b) \mid \Phi(a, b, c_0, \ldots, c_{n-1})\}$ is a function with domain V and $F(a) = G(a, F \mid \operatorname{pred}_R(a))$ for all a.

Problem 5 (6 points). Assume ZFC. Examine which ZFC-axioms hold in $H(\kappa)$ for various infinite cardinals κ .

Please hand in your solutions on Wednesday, April 22, before the lecture.