Problems	Dr. Philipp Schlicht
Series 13	Dr. Philipp Lücke

Set theory - Winter Semester 2014

Problem 44. Let κ be an uncountable cardinal and \mathbb{S} be a tree of height κ with $|\mathbb{S}(\alpha)| < \kappa$ for all $\alpha < \kappa$.

- (1) (2 points) Show that there is a closed unbounded subset D of κ and a tree $\mathbb{T} = (\kappa, \leq_{\mathbb{T}})$ such that the following statements hold.
 - (a) The trees \mathbb{S} and \mathbb{T} are isomorphic.
 - (b) If $\langle d_{\alpha} \mid \alpha < \kappa \rangle$ is the monotone enumeration of D, then the α -th level of \mathbb{T} is equal to the interval $[d_{\alpha}, d_{\alpha+1})$.
- (2) (2 points) Let \mathbb{T} be the tree constructed above. Show that there is a *C*-sequence $\langle C_{\alpha} \mid \alpha < \kappa \rangle$ such that the following statements hold for every limit ordinal α less than κ .
 - (a) If $\bar{\alpha} = \sup(D \cap \alpha) < \alpha$, then $C_{\alpha} = (\bar{\alpha}, \alpha)$.
 - (b) If $\alpha = \sup(D \cap \alpha)$, then C_{α} is equal to the set $D_{\alpha} = \{\bar{\alpha} < \alpha \mid \bar{\alpha} <_{\mathbb{T}} \alpha\}$ together with the limit points of D_{α} smaller then α (i.e. C_{α} is the closure of D_{α} in the order-topology on α).
- (3) (6 points) Let $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ be the *C*-sequence constructed above. Assume that there is a closed unbounded subset *C* of κ such that for every $\alpha < \kappa$ there is a $\alpha \leq \beta < \kappa$ with $C \cap \alpha = C_{\beta} \cap \alpha$. Let Γ denote the set of all successor ordinals $\gamma < \kappa$ with $C \cap [d_{\gamma}, d_{\gamma+1}) \neq \emptyset$. Show that

$$c = \{ \min(C \cap [d_{\gamma}, d_{\gamma+1})) \mid \gamma \in \Gamma \}$$

is a chain in $\mathbb T$ of order-type $\kappa.$

Problem 45 (6 points). Show that the following statements are equivalent for every inaccessible cardinal κ .

- (1) The cardinal κ has the tree property.
- (2) If $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ is a *C*-sequence, then there is a club subset *C* of κ such that for every $\alpha < \kappa$ there is a $\alpha \leq \beta < \kappa$ with $C \cap \alpha = C_{\beta} \cap \alpha$.

(Hint: Use Lemma 5.5.11 and Lemma 5.5.12 to prove the implication $(1) \Rightarrow (2)$. Use Problem 44 to prove the converse implication.)

Due Wednesday, January 21, before the lecture.