Problems	Dr. Philipp Schlicht
Series 12	Dr. Philipp Lücke

Problem 43. We let $\mathbb{T} = (I, \subseteq)$ denote the tree consisting of all strictly increasing functions $f : \alpha \longrightarrow \mathbb{Q}$ with $\alpha < \omega_1$ ordered by inclusion (see Problem 37).

- (1) (8 points) Construct a subset A of I with the following properties.
 - (a) A is closed under initial segments, i.e. if $t \in A$ and $s \in I$ with $s \subseteq t$, then $s \in A$.
 - (b) If $\alpha < \omega_1$, then the set $A \cap \mathbb{T}(\alpha)$ is countable.
 - (c) If $\alpha \leq \beta < \omega_1$, $s \in A \cap \mathbb{T}(\alpha)$ and $p, q \in \mathbb{Q}$ such that p < q and $s(\gamma) < p$ for all $\gamma < \alpha$, then there is $t \in A \cap \mathbb{T}(\beta)$ such that $s \subseteq t$ and $t(\gamma) < q$ for all $\gamma < \beta$.

(Hint: Define $A \cap \mathbb{T}(\alpha)$ by recursion on $\alpha < \omega_1$).

- (2) (4 points) Show that the resulting tree $\mathbb{A} = (A, \subseteq)$ is an Aronszajn tree.
- (3) (4 points) Show that \mathbb{A} is not a Souslin tree.
- (4) (4 bonus points) Show that there is no $S \subseteq A$ such that (S, \subseteq) is a Souslin tree.

Due Wednesday, January 14, before the lecture.