Problems	Dr. Philipp Schlicht
Series 10	Dr. Philipp Lücke

Set theory - Winter Semester 2014

Problem 37 (6 points). Let *I* denote the set of all strictly increasing functions $f : \alpha \longrightarrow \mathbb{Q}$ with $\alpha < \omega_1$. Define \mathbb{T} to be the partial order (I, \subseteq) .

- (1) Prove that the partial order \mathbb{T} is a tree.
- (2) Determine the following objects.
 - (a) The height $ht(\mathbb{T})$ of \mathbb{T} .
 - (b) The set $\partial \mathbb{T}$ of all maximal branches through \mathbb{T} .
 - (c) The set $[\mathbb{T}]$ of all cofinal branches through \mathbb{T} .

Problem 38 (6 points). Let κ be an infinite cardinal. Construct a tree \mathbb{T} with $ht(\mathbb{T}) = \kappa$, $[\mathbb{T}] = \emptyset$ and $|\mathbb{T}(\alpha)| \leq cof(\kappa)$ for all $\alpha < \kappa$.

Problem 39 (2 points). Construct a tree \mathbb{T} with $ht(\mathbb{T}) > \omega$ that is not extensional at limit levels.

Problem 40 (6 points). Let κ be an infinite cardinal and \mathbb{T} be a tree of height κ . Show that the following statements are equivalent.

- (1) $[\mathbb{T}] \neq \emptyset$.
- (2) There is a function $e: \sigma \mathbb{T} \setminus [\mathbb{T}] \longrightarrow \mathbb{T}$ with

$$b \subsetneq c \longrightarrow e(b) <_{\mathbb{T}} e(c)$$

for all $b, c \in \sigma \mathbb{T} \setminus [\mathbb{T}]$.

(Hint: To show (2) \Rightarrow (1), first show that we may assume that $[\mathbb{T}] = \emptyset$ and $\mathrm{lh}_{\mathbb{T}}(e(b)) = \mathrm{lh}_{\mathbb{T}}(b)$ holds for all $b \in \sigma \mathbb{T}$ and then construct $b \in [\mathbb{T}]$ with $b(\alpha) = e(\{b(\bar{\alpha}) \mid \bar{\alpha} < \alpha)\})$ for all $\alpha < \kappa$.)

Due Wednesday, December 17, before the lecture.