Problems	Dr. Philipp Schlicht
Series 7	Dr. Philipp Lücke

Problem 26 (4 points). Suppose that E is an equivalence relation on a set x. A *transversal* for E is a set $y \subseteq x$ such that

- (1) for all $u \in x$, there is some $v \in y$ with uEv and
- (2) for all $u, v \in y$ with $u \neq v, \neg uEv$.

Show that the following statement is equivalent to the Axiom of Choice: For every set x and every equivalence relation E on x, there is a transversal for E.

Problem 27 (2 points). Show that every maximal filter on a set x is an ultrafilter on x.

Problem 28 (2 points). A subset C of a partial order (A, \leq) is called *cofinal* if

$$\forall x \in A \; \exists y \in C \; x \leq y$$

holds. Suppose that $\mu \leq \kappa$ are infinite cardinals. Let $[\kappa]^{\mu} = \{x \subseteq \kappa \mid |x| = \mu\}$. Show that $|[\kappa]^{\mu}| \leq |C| \cdot 2^{\mu}$ if C is cofinal in $([\kappa]^{\mu}, \subseteq)$.

Problem 29 (4 points). Suppose that there are ω many people p_n for $n \in \omega$, standing in a line, such that p_m can see p_n for all m < n. Each p_n is wearing a hat with color red or blue which only p_m with m < n can see. Everybody independently guesses the color of their own hat, and the game is won if all but finitely many guesses are right. The people can agree on a strategy before seeing the hats. Find a winning strategy using the Axiom of Choice. (*Hint: use the equivalence relation* E_0 defined in the lecture.)

Problem 30 (10 points). Suppose that γ is a limit ordinal with $cof(\gamma) > \omega$. Prove the following statements.

- (1) $\kappa \setminus \text{Lim is not club in } \gamma$.
- (2) If C, D are club in γ , then $C \cap D$ is club in γ .
- (3) If $S \subseteq \gamma$ is unbounded, then the sets of limit points $\alpha < \gamma$ of S is club in γ .
- (4) If γ is regular and $f: \gamma \to \gamma$ is a function, then set of *closure points* $\alpha < \gamma$ with $f[\alpha] \subseteq \alpha$ is club in γ .
- (5) Suppose that G is a countable subgroup of the group $Sym(\omega_1)$ of permutations of ω_1 . Show that the set of $\alpha < \omega_1$ such that $g[\alpha] \subseteq \alpha$ for all $g \in G$ is club in ω_1 .

Due Wednesday, November 26, before the lecture.