Problems	Dr. Philipp Schlicht
Series 6	Dr. Philipp Lücke

Set theory - Winter Semester 2014

Problem 22 (6 points). Prove the following equalities directly from the definition of the product, without using results about products from the lecture.

- (1) $\prod_{0\neq n\in\omega}n=2^{\aleph_0}.$
- (2) $\prod_{n \in \omega} \aleph_n = (\aleph_\omega)^\omega$.

Problem 23 (4 points). Determine λ^{κ} for all $\kappa, \lambda \in Card \setminus \omega$ assuming GCH.

Problem 24 (6 points). Suppose that κ is an infinite regular cardinal. Prove the following statements.

- (1) The Axiom of Choice holds in (H_{κ}, \in) .
- (2) The statement that |x| is defined for every set x holds in (H_{κ}, \in) .
- (3) If κ is a successor cardinal, then the Power Set Axiom does not hold in (H_{κ}, \in) .

Problem 25 (4 points). Prove in ZF that the following statement is equivalent to the Axiom of Choice: For all sets x, y and every surjective function $f: x \to y$, there is a function $g: y \to x$ with $f \circ g = id_y$.