Problems	Dr. Philipp Schlicht
Series 1	Dr. Philipp Lücke

In the first three exercises, work in the system ZF^{-} .

Problem 1 (9 points). Prove the following statements.

- (1) $\forall x (x \neq \emptyset \rightarrow \bigcap x \in V).$
- $(2) \{\{x\} \mid x \in V\} \notin V.$
- (3) A set z is *transitive* if $x \in z$ holds for all $y \in z$ and all $x \in y$. Prove that $\emptyset \in x$ holds for every transitive set $x \neq \emptyset$.

Problem 2 (6 points).

- (1) Show that $\langle x, y \rangle := \{\{x, \emptyset\}, \{y, \{\{\emptyset\}\}\}\}\$ satisfies the fundamental property of ordered pairs.
- (2) Does $\langle x, y \rangle := \{x, \{y, \emptyset\}\}$ satisfy the fundamental property of ordered pairs?

Problem 3 (6 points). Suppose that F, G are functions.

- (1) Show that F = G if and only if dom(F) = dom(G) and F(x) = G(x) for all $x \in dom(F) = dom(G)$,
- (2) Show that F is injective if and only if there is a function H with dom(H) = ran(F) and H(F(x)) = x for all $x \in dom(F)$.

Problem 4 (3 points). The *Collection Scheme* states that for every relation R and every set x, there is a set y such that for every $u \in x$, if there is some v with uRv, then there is some $v \in y$ with uRv. Prove that the axioms and schemes of ZF^- without the Replacement Scheme with the Collection Scheme imply the Replacement Scheme.

Due Wednesday, October 15, before the lecture, in the mailboxes 6 and 7 for your tutorial, on the ground floor of the math department, Endenicher Allee 60.