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1 Good points

Convention. In the whole section, X will stand for a set of cardinality x and I will
denote an ideal on X. If not stated otherwise, f = (f; | ¢ < A) is an [-increasing

sequence in XOrd. Furthermore, we call A = lh(f) the length of f. If & < A, then
we write f [ a for the sequence (f; | i < ).

Definition 1.1. Two [—increasing sequences f and § of functions in ¥Ord are said
to be cofinally interleaved, if

\_/l

1. for all ¢ < 1h(f) there exists j < lh(g) such that f; <; gj,

—

2. for all j < 1h(g) there exists ¢ < lh(f) such that g; <; fi.

~—~

Remark 1.2. If f and ¢ are cofinally interleaved, then every eub for f is an eub for
g and vice versa. Conversely, if f and g have a common eub, then they are cofinally
interleaved.

Remark 1.3. If f and § are cofinally interleaved, then cf(Ih(f)) = cf(lh(g)).

—

Proof. Assume that f and § are cofinally interleaved and let A = Ih(f) and p = 1h(g).
By symmetry it is enough to show that cf(p) < cf(\). Let

7 A= pyi— min{j <1h(g) | fi <1 g;}-

By assumption, 7 is well-defined and it is cofinal in 1h(g): Let j < p. Then there
is i < A such that g; <; f; and f; <; gr(s- Then j < 7(i). This shows that
cf(p) < cf(N). O



Definition 1.4. Let |X| = x and I an ideal on X and f a <j-increasing sequence
of functions in *Ord. Then o < 1h(f) is said to be a good point for f if only if
cf(a) > K and there is an eub h for f | a such that cf(h(z)) = cf(«) for all z € X.

Remark 1.5. By adjusting the eub i on an I-small set, in Definition 1.4 it is enough
to assume that cf(h(z)) = cf(a) for I-almost all z € X.

Remark 1.6. If cf(a) > k and h is an eub for f1aand i > k is a cardinal such that
cf(h(x)) = p for all x € X, then p = cf(a).

—

Proof. Let h be an eub for f | « such that cf(h(z)) = p for all x € X. This means
that for every x € X there is a strictly increasing sequence (h;(x) | i < u) cofinal in
h(z). We show that i = (h; | i < ) is cofinally interleaved with f | o. Then the
claim follows from Remark 1.3.

Firstly, note that each h; <; h, so since h is an eub for f [ a, there is 7 < a such
that h; <; f;. Conversely, let i < . Without loss of generality (by adjusting f; on
an [-small set) we can assume that f; < h. Then for every z € X there is i, < p
such that fi(z) < h;, (x). Now consider 8 = sup{i, | v € X}. Since |X| =k <
and p is regular, 8 < p; hence f; < hg. ]

Definition 1.7. Let X be a set and [ an ideal on X. A sequence f of functions
in ¥Ord of length ) is said to be strongly I-increasing, if there exist /-small sets
(Yi |7 < ) such that for all i < j < X and for all x € Y; UY], fi(z) < f;(z).

Theorem 1.8. Let | X| =k, let I be an ideal on X an fan <r-increasing sequence.

—

Then for any o < 1h(f) such that cf(a) > K the following are equivalent:
1. « s good.

2. There is a sequence (h; | i < cf(a)) of functions in *Ord which is pointwise
increasing and cofinally interleaved with f | .

3. For every unbounded set B C « there is an unbounded set A C B such that
(fi | i € A) is strongly I-increasing.

4. There is an unbounded set A C « such that (f; | i € A) is strongly [-increasing.

Proof.

(1. = 2.) Construct h as in Remark 1.6 and use the same arguments.



(2. = 3.) Suppose that h = (h; | i < cf(@)) is pointwise increasing and cofinally inter-
leaved with f [ a. Let B C a be unbounded. For every i < cf(a)) we choose
0; € B, ki, ki < cf(a) as follows:

e Let §p € B be the least ordinal in B such that there exists ky < cf(«) such
that hy, < fs, and let ky < cf(a) such that f5, <r hy.

o If for all j < i, 0;,k;, k; are defined, then let k; > sup,_; ¥}, 0; € B such

7Yy
that hg, <; fs, and k; > k; such that f5, <; hy.

Then let A = {6; | i < cf(a)}. Clearly, A C B is unbounded. Now for every
0 =6, € A we have
hoe; <1 fs <1 hu

So for every 6 = §; € A we can find Yy € I such that for all z € X \ Y5,
hi,(z) < f5(x) < hy(x). Then for i < j < cf(a) and for ¥ € X \ (Y5, UY;,) we
have

fs.(x) < hy(2) < gy () < f5;()

which proves the desired condition.
(3. = 4.) is trivial.

(4. = 1.) Assume that A C « is unbounded such that (f; | i € A) is strongly I-increasing
and choose witnessing I-small sets Y; for every i € A. Without loss of generaliy
assume that otp(A) = cf(«). Put

h(z) =sup{fs(z) | € ANz € X\ Ys}.

Here we suppose without loss of generality that there is no x such that x € Y
for every 0 € A. We show that A is an eub for f . Let g<;hand Y € 1
such that in X \' Y g < h. Then for every x ¢ Y there is some §, € A such
that x ¢ Y5, and g(z) < fs5,(x). Now since cf(ar) > k and A is unbounded
there is € A such that for all z ¢ Y, §, < §. Then for z ¢ (Y UYj),

g(x) < fs5,.(x) < fs(x). Hence g <; fs.
Last but not least, we have to verify that for every x € X, cf(h(z)) = cf(a).
Let

Y={xeX||{6d€A|x¢Ys} <cfla)}.

Then for every x € Y there is §, € A such that for every 6 > d,, ©z € Y.
Since cf(a) > &, there is § € A such that for every z € Y, 6, < §. Then
Y C Yj and hence Y is I-small. We can change the values of h on Y such that



cf(h(x)) = cf(a) without affecting the property we have previously shown. On
X\ 'Y, we clearly have cf(h(x)) = cf(cr). This proves 1.

O
Definition 1.9. For § < ) regular, define S3 = {n € \| cf(n) = 6}.
Remark 1.10. For § < X regular infinite cardinals, S§ C \ is stationary.

Theorem 1.11. Let |X|=kr <d=cf(0) < A ), let I be an ideal on X and f

= cf(A
be an I-increasing sequence such that Ih(f) = X. Then the following conditions are
equivalent:

1. There are stationarily many good points in Sy.

2. There is an eub h for f such that for all x € X, cf(h(z)) > 6.

Proof.

(1. = 2.) We will use the Trichotomy Theorem to show that we are in the Good case by
checking that both the Bad and the Ugly case fail.

e Assume we are in the Ugly case. Then there is ¢ € ¥Ord such that the
sequence ({x € X | fi(x) < g(z)} | i < A) is not eventually constant mod
I. Equivalently, the sequence (X; | i < \), where X; = {x € X | g(z) <
fi(x)} does not stabilize mod I. Then we can find a club C' C A such
that for every ¢ < j in C, X; C; X;. By our assumption, there is a good
point o € Lim(C') N cof(d). By the previous theorem, there is a sequence
(h; | i < 0) which is pointwise increasing and cofinally interleaved with
f T a. Now since a € Lim(C), we can assume without loss of generality
that for every ¢ < § there are § < v < «a in C such that

hz‘ <7 fﬁ <7 f'y <7 hi—‘rl- (1)
Now for i < d let Y; = {z € X | g(z) < hi(z)}. By (1) we obtain that
YiCr Xg Cr X, Cr Vi (2)

In particular, (2) implies that for any i < j < 6, Y; C; Yj, thus the
sequence (Y; | ¢ < 0) is not eventually constant mod /. This contradicts
the fact that h has an eub.



(2.=1.)

e Assume now that we are in the Bad case. Take sets S, C Ord for x € X
such that |S,| < ¢ and an ultrafilter U on X such that U NI = ) and for
every a < A there are g € [[,.y S: and 3 < A such that f, <y g <v f3.
Then there is a club set C' C A such that for every o < 8 in C' there is g €
[L.cx S with fo <y g <v fs. Choose a good point a € Lim(C') N cof(6)
and an eub h for f | « such that for every z € X, cf(h(z)) = 5. Now
define g(x) = sup S, N h(x). Since cf(g(x)) < 6 we obtain that g < h,
thus there is 8 < a such that g <; fz. But the Bad case allows us to find
g € 1liex Sz and v < a with fz <y ¢’ <¢ f,. Since UNI = 0, this yields

9<vfs<vd <vfy<vh
which clearly contradicts the definition of g.

Since we are in the Good case, there is an eub h for f such that cf(h(z)) > &
for every z € X. Let Y = {x € X | cf(h(z)) = §}. Suppose for a contradiction
that Y € I™. Then consider the ideal J = {ZNY | Z € I} on Y. Since
Y € I, h=h Y isstil an eub for (f; [ Y | i < A). But then Remark
1.6 implies that A = 0 which is absurd. By modifying A on an I-small set, we
obtain 2.

Let h be an eub for f such that cf(h(z)) = d for every € X. Without loss of
generality we assume that f; < h for every ¢ < \. Put

S ={a € S} |aisagood point}.

Let C' C X be a club set. Inductively, we construct an increasing sequence
(o | i < 6) of ordinals in C' as follows: At stage i < 0 let g;(x) = sup{ fo,(z) |
j < i} for every x € X. Now since f,,(z) < h(z) for every x € X and every
J < i and cf(h(z)) > d, we get that g;(z) < h(x) for all x € X. Hence there is
a; € C'\ U;;(a; + 1) such that g; <r fa,

Now let o = sup{a; | i < §} € S} N C. We show that a € S. Clearly,
F 1 a is cofinally interleaved with § = (g; | © < 9) and since § is <-increasing,
g =sup{g; | i < d} is an eub for ¢ and by Remark 1.2 also for f [ a.

]

Definition 1.12. Let S C X be a stationary set. Then a sequence (C, | n € S) is
said to be a club guessing sequence, if it satisfies



1. C, C nis club for every n € S,

2. For every club £/ C A there is n € S such that C,, C E.

Theorem 1.13 (Shelah’s Club Guessing Theorem). Let 0, A be reqular cardinals
such that 67 < X\ and let S C S} be stationary. Then S has a club guessing sequence
(Cy | m e S) such that otp(C,)) = § for everyn € S.

Proof. Since we only need the case where 6 > Ny, we will only prove this case. We
start with any sequence C' = (Cyy | n € S) of club sets C;, C n of order type ¢. For a
club £ C X put
C1E=(C,nE|neSnLim(E)).

Observe that if n € S N Lim(E), then C,, N E C n is club. We will construct some
E C X club such that C | E is a club guessing sequence for S N Lim(FE). If such
E exists, then we extend it to a club guessing sequence for S by taking C, for any
n e S\ Lim(E).

Now suppose for a contradiction that for every £ C A club there exists club
Dg C X such that for every n € SNLim(E), C, N E € Dg. Inductively, construct a
sequence (E¢ | € < dT) of club subsets of A as follows:

.EOZ/\.

o If £ <47 is a limit ordinal and for every i < ¢, Ej is defined, let B = (0, Ei.
Since £ < A\, B¢ C A is club.

e Given Eg, define E5+1 = le(Eg N DEg)

By construction we obtain that for any n € S N Lim(E¢), C,, N E¢ € Eeyq. Finally,
define £ = ﬂg s+ Fe. Since 67 < A\, E is a club subset of \. Now consider some
n € SNE. Then the sequence (C,,NE¢ | £ < §T) is decreasing with respect to C, but
since every |C,, N E¢| = § for every & < 0% it must stabilize, i.e. there is £ < 6T such
that for every ¢ > &, C, N E; = C, N E¢. But n € SN Eeyq, hence C, N Ee € Eeyy
which is absurd. O

Theorem 1.14 (Abraham, Magidor). Let |X| = &, I an ideal on X and k <
) <_)5+ < p < X be reqular cardinals. Let f be an I[-increasing sequence such that
Ih(f) = X and assume that for every £ € S;,\ there is a club Ee C £ such that

Sup;ep, fi <1 fe. Then f has an eub h such that cf(h(z)) > 6 for all z € X.



Proof. By Theorem 1.11 it is enough to show that
S ={a € S} |aisagood pooint}

is stationary in .

Let E C A be club. Since 0% < p, there is a club guessing sequence (C, | n € S%)
for S§. We construct an increasing sequence 7 = (7; | i < p+ 1) of elements of E as
follows:

o Let v € E.

e Suppose that ; € E has already been defined. For every n € S§ let h%(m) =
sup{ f,,(z) | j € C, N (i +1)}; furthermore, let i, < A such that b, <; f;,, if
such i, exists; else i, = v; + 1. Since p < A and E is club, there is ;1 € E
such that ;41 > sup({i, | n € S} U {y; + 1}).

e In the limit case, define v; = sup,;7; € E.

Now put D ={i<p|~ € E,}.
Claim. D is closed unbounded in p.

Proof. D is closed since E,, is closed. Clearly, the set C' = {; | i < p} is closed
unbounded in v, and v, € S;,\. Hence C'N E,, is club in ,. But this implies that D
is club in p. [

Now pick n € S§ such that C, C D.
Claim. The sequence (f,, | i € C, \ Lim(C,)) is strongly increasing.

Proof. For every i € C, v; € E,, which means that f,, <; f, . By construction
of ~;, this means that hfz <1 fyin <1 fy;, where j = min{k € C, | k > i} is the
C,-successor of i. Now let Y; € I witness this. Now every ¢ € C, \ Lim(C,), has a
predecessor in C,,. Consider i < k < j in C, \ Lim(C},) such that & is the predecessor
of j in C,. Then for every z € X \ Y;

f%(x) < hl:,(x) < ij(x)-
O

Since {7; | ¢ € C,, \ Lim(C,))} is unbounded in ~,, Theorem 1.8 implies that ~, is
a good point and cf(v,) = cf(n) = 6. Hence v, € SN E. O



2 Applications

Recall our goal to prove the following result of Shelah:

Theorem 2.1 (Shelah). There is an infinite set A C w and a sequence f = (f; |i <
Ny41) such that f is increasing and cofinal in [], . 4 R, under the eventual domination
ordering.

We have already reduced the proof of this result to

Lemma 2.2. There is a sequence f = (fi | i < Nyy1) and a function h with f; €
[L.c,Rn and h € I], ., (R, + 1) such that the following properties hold:

1. The sequence f is increasing and cofinal in [[, -, h(n) under the eventual dom-

ination ordering.

necw

2. For each m € w, the set By, = {n € w| cf(h(n)) = N,,} is finite.

Proof. We are in the case |[X| =wand [ = {Y Cw | |Y]| < NO} and we want to
find an I-increasing sequence f €], Nn and an eub h € [ _ N,41. We build f
inductively as follows:

new new

e Let fy be any function in ]

nEw
e In the successor case, let fii1(n) = fi(n) +1

o If v < N, ;isalimit, let § = cf(a) < X,. Now let E, C « be closed unbounded
of order type cf(a). Let § = N,, for some m € w, then put

o) = {sup{fi(n) |i€ E.}, n>m

0 else.

By construction, since otp(Ea) = N,,, for n > m we have sup{ fi(n) | i € E,} <
N,,. Thus f, € Hnew

Claim. The sequence f = (f; | i < Ny4q) is I-increasing.

Proof. Let av < N,,41 and assume that for every 8 < o and for every i < 3, f; <; f3.
Let ¢ < a. We check that f; <; f.. If ais a successor ordinal, this is trivial. Suppose
that o is a limit and choose 8 € E, such that ¢ < 8. Then by construction fz <; fa
and by induction hypothesis also f; <r f3. O



Now we are ready to apply Theorem 1.14. For any n > 0 in w, we obtain an eub
hy, for f such that cf(h,(z)) > N, for all z € X.

Claim. h = h; already satisfies the desired properties.

Proof. Assume that m > 1 such that B,, is infinite. Since both A and h,, are eubs,
we have h = hy,,. But cf(h,,(z)) > X, for every x € X. Contradiction. O

]

Theorem 2.3. Let p be a singular cardinal with cf(p) =k > w and let C C p be a
club set of singular cardinals. Then there is a club subset D C C' and a sequence f

of length p* which is increasing and cofinal in [[,cp AT modulo the nonstationary
ideal NS.

Proof. Like in the previous theorem, we construct a sequence f € [Lec A" with an
eub h such that for every § < u, {\ € C'| cf(h(\)) = ¢} is non-stationary. We need
to verify that h(A\) = AT for NS-almost all A € C. If not, then the set

S={\eC|cf(h(N) < A}

is stationary in p; moreover, on S the function A — cf(h()\)) is regressive and hence
by Fodor there is some § € p such that {\ € C | cf(h(\)) = 0} is stationary.
Contradiction. W

Theorem 2.4 (Silver). Let k be a singular cardinal such that cf(k) is uncountable.
Suppose that there is a stationary set S C k such that for every § € S, §) = §+.
Then k%) = k.

Proof. Let S C k be a stationary set of order type cf(x) such that for all 6 € S we
have 6°®) = §+. By the previous theorem, there is a club set C' C & of singular
cardinals and a sequence f = (f; | i < k%) which is NS-increasing and cofinal in
[Iscc 0. Now by replacing S by SN C and f¢ by fe | S we obtain that f is
NS-increasing and cofinal in [, 467

Since every § € S satisfies 6=") = §*, we can define bijective maps

cs o [0]5HR) 5 o+
We use this to code sets X € [k]®) by

hx € [J6%,6 cs(X N ).
0es



Claim. If X # Y, then there is § € S such that for all A > 9, hx(\) # hy ().

Proof. If X # Y, then there is a minimal § € S such that X Nd # Y N 4. Then for
every A >0, X NA# Y NAand hence hx(A) =cx(XNA) #cen(YNA) =hy(N). O

Claim. For every g € [[;c507", the set
Fy = {X € [x]"" | hx <xs g}

has cardinality < k.

Proof. Suppose that for some g, |F,| > x*. For 0 € S, g(§) < d*, so there is an
enumeration (g | i < is) of order type is < §. Now define for X € F,, Sx = {6 € X |
hx(0) < g(0) and a function kx on Sx by kx(0) = ¢ for the unique ¢ < i5 such that
hx(6) = g¢. Then Sy is stationary in k and ky is regressive, so there is a stationary
Tx C Sx and dy < k such that kx(§) < dx for all 6 € T'x. Since there are at most
2¢f(%) subsets of S and 2°(") < k* < |F,|, there is Fy C F, such that |Fy| = k%, a
stationary set Sy C S and dy < k such that for all X € Fy, Sx = Sy and dx = dy.
Without loss of generality, assume that &y € S. Now there are at most 60" = &
many different possibilities for the functions kx, X € Fy. So (by thinning out Fp) we
can also assume that for all X € Fj the functions kx are all the same ky. But then
for X € F and 0 € Sy we have hx(§) = g,‘ix(a) = 920(5) which does not depend on X.
This contradicts the previous claim. O

Now we obtain that for every g € [[;c40", |Fy| < . But since f is cofinal in
[Tses 0, every X € [5]") is in some Fy, € < x*. This implies

A = < ) Bl S w7k =t
E<rt
O]

Corollary 2.5 (Silver). Let  be a singular cardinal of uncountable cardinality and
assume that GCH holds below k. Then 2% = k™.

Proof. First observe that the set S = {0 < k| cf(d) < cf(r) < d} is stationary in k.
Now for every § € S we have

o )< 5cf(§) < 5cf(n)

° 5cf(ﬁ) < 65 — 920 — ot



This clearly implies that if § € S, then 6*) = 20 = §*. Thus the previous theorem
implies that x®) = k% and thus in particular 2° = x* since for (xk; | i < cf(k))
cofinal in &,

Z’i = 2Zi<cf(ﬂ) Ri — H 2’{1' S K,Cf(“{)

i<cf(k)



