
PCF

Regula Krapf and Ana Njegomir

December 1, 2014

1 Good points

Convention. In the whole section, X will stand for a set of cardinality κ and I will
denote an ideal on X. If not stated otherwise, ~f = 〈fi | i < λ〉 is an I-increasing

sequence in XOrd. Furthermore, we call λ = lh(~f) the length of ~f . If α ≤ λ, then

we write ~f � α for the sequence 〈fi | i < α〉.

Definition 1.1. Two I−increasing sequences ~f and ~g of functions in XOrd are said
to be cofinally interleaved, if

1. for all i < lh(~f) there exists j < lh(~g) such that fi <I gj,

2. for all j < lh(~g) there exists i < lh(~f) such that gj <I fi.

Remark 1.2. If ~f and ~g are cofinally interleaved, then every eub for ~f is an eub for
~g and vice versa. Conversely, if ~f and ~g have a common eub, then they are cofinally
interleaved.

Remark 1.3. If ~f and ~g are cofinally interleaved, then cf(lh(~f)) = cf(lh(~g)).

Proof. Assume that ~f and ~g are cofinally interleaved and let λ = lh(~f) and µ = lh(~g).
By symmetry it is enough to show that cf(µ) ≤ cf(λ). Let

π : λ→ µ, i 7→ min{j < lh(~g) | fi <I gj}.

By assumption, π is well-defined and it is cofinal in lh(~g): Let j < µ. Then there
is i < λ such that gj <I fi and fi <I gπ(i). Then j < π(i). This shows that
cf(µ) ≤ cf(λ).

1



Definition 1.4. Let |X| = κ and I an ideal on X and ~f a <I-increasing sequence

of functions in XOrd. Then α ≤ lh(~f) is said to be a good point for ~f if only if

cf(α) > κ and there is an eub h for ~f � α such that cf(h(x)) = cf(α) for all x ∈ X.

Remark 1.5. By adjusting the eub h on an I-small set, in Definition 1.4 it is enough
to assume that cf(h(x)) = cf(α) for I-almost all x ∈ X.

Remark 1.6. If cf(α) > κ and h is an eub for ~f � α and µ > κ is a cardinal such that
cf(h(x)) = µ for all x ∈ X, then µ = cf(α).

Proof. Let h be an eub for ~f � α such that cf(h(x)) = µ for all x ∈ X. This means
that for every x ∈ X there is a strictly increasing sequence 〈hi(x) | i < µ〉 cofinal in

h(x). We show that ~h = 〈hi | i < µ〉 is cofinally interleaved with ~f � α. Then the
claim follows from Remark 1.3.

Firstly, note that each hi <I h, so since h is an eub for ~f � α, there is j < α such
that hi <I fj. Conversely, let i < α. Without loss of generality (by adjusting fi on
an I-small set) we can assume that fi < h. Then for every x ∈ X there is ix < µ
such that fi(x) < hix(x). Now consider β = sup{ix | x ∈ X}. Since |X| = κ < µ
and µ is regular, β < µ; hence fi < hβ.

Definition 1.7. Let X be a set and I an ideal on X. A sequence ~f of functions
in XOrd of length λ is said to be strongly I-increasing, if there exist I-small sets
〈Yi | i < λ〉 such that for all i < j < λ and for all x ∈ Yi ∪ Yj, fi(x) < fj(x).

Theorem 1.8. Let |X| = κ, let I be an ideal on X an ~f an <I-increasing sequence.

Then for any α ≤ lh(~f) such that cf(α) > κ the following are equivalent:

1. α is good.

2. There is a sequence 〈hi | i < cf(α)〉 of functions in XOrd which is pointwise

increasing and cofinally interleaved with ~f � α.

3. For every unbounded set B ⊆ α there is an unbounded set A ⊆ B such that
〈fi | i ∈ A〉 is strongly I-increasing.

4. There is an unbounded set A ⊆ α such that 〈fi | i ∈ A〉 is strongly I-increasing.

Proof.

(1.⇒ 2.) Construct ~h as in Remark 1.6 and use the same arguments.



(2.⇒ 3.) Suppose that ~h = 〈hi | i < cf(α)〉 is pointwise increasing and cofinally inter-

leaved with ~f � α. Let B ⊆ α be unbounded. For every i < cf(α) we choose
δi ∈ B, ki, k

′
i < cf(α) as follows:

• Let δ0 ∈ B be the least ordinal in B such that there exists k0 < cf(α) such
that hk0 <I fδ0 and let k′0 < cf(α) such that fδ0 <I hk′0 .

• If for all j < i, δj, kj, k
′
j are defined, then let ki > supj<i k

′
j, δi ∈ B such

that hki <I fδi and k′i > ki such that fδi <I hk′i .

Then let A = {δi | i < cf(α)}. Clearly, A ⊆ B is unbounded. Now for every
δ = δi ∈ A we have

hki <I fδ <I hk′i .

So for every δ = δi ∈ A we can find Yδ ∈ I such that for all x ∈ X \ Yδ,
hki(x) < fδ(x) < hk′i(x). Then for i < j < cf(α) and for x ∈ X \ (Yδi ∪ Yδj) we
have

fδi(x) < hk′i(x) < hkj(x) < fδj(x)

which proves the desired condition.

(3.⇒ 4.) is trivial.

(4.⇒ 1.) Assume that A ⊆ α is unbounded such that 〈fi | i ∈ A〉 is strongly I-increasing
and choose witnessing I-small sets Yi for every i ∈ A. Without loss of generaliy
assume that otp(A) = cf(α). Put

h(x) = sup{fδ(x) | δ ∈ A ∧ x ∈ X \ Yδ}.

Here we suppose without loss of generality that there is no x such that x ∈ Yδ
for every δ ∈ A. We show that h is an eub for ~f � α. Let g <I h and Y ∈ I
such that in X \ Y g < h. Then for every x /∈ Y there is some δx ∈ A such
that x /∈ Yδx and g(x) < fδx(x). Now since cf(α) > κ and A is unbounded
there is δ ∈ A such that for all x /∈ Y , δx < δ. Then for x /∈ (Y ∪ Yδ),
g(x) < fδx(x) < fδ(x). Hence g <I fδ.

Last but not least, we have to verify that for every x ∈ X, cf(h(x)) = cf(α).
Let

Y = {x ∈ X | |{δ ∈ A | x /∈ Yδ}| < cf(α)}.

Then for every x ∈ Y there is δx ∈ A such that for every δ > δx, x ∈ Yδ.
Since cf(α) > κ, there is δ ∈ A such that for every x ∈ Y , δx < δ. Then
Y ⊆ Yδ and hence Y is I-small. We can change the values of h on Y such that



cf(h(x)) = cf(α) without affecting the property we have previously shown. On
X \ Y , we clearly have cf(h(x)) = cf(α). This proves 1.

Definition 1.9. For δ < λ regular, define Sλδ = {η ∈ λ | cf(η) = δ}.

Remark 1.10. For δ < λ regular infinite cardinals, Sλδ ⊆ λ is stationary.

Theorem 1.11. Let |X| = κ < δ = cf(δ) < λ = cf(λ), let I be an ideal on X and ~f

be an I-increasing sequence such that lh(~f) = λ. Then the following conditions are
equivalent:

1. There are stationarily many good points in Sλδ .

2. There is an eub h for ~f such that for all x ∈ X, cf(h(x)) > δ.

Proof.

(1.⇒ 2.) We will use the Trichotomy Theorem to show that we are in the Good case by
checking that both the Bad and the Ugly case fail.

• Assume we are in the Ugly case. Then there is g ∈ XOrd such that the
sequence 〈{x ∈ X | fi(x) < g(x)} | i < λ〉 is not eventually constant mod
I. Equivalently, the sequence 〈Xi | i < λ〉, where Xi = {x ∈ X | g(x) ≤
fi(x)} does not stabilize mod I. Then we can find a club C ⊆ λ such
that for every i < j in C, Xi (I Xj. By our assumption, there is a good
point α ∈ Lim(C) ∩ cof(δ). By the previous theorem, there is a sequence
〈hi | i < δ〉 which is pointwise increasing and cofinally interleaved with
~f � α. Now since α ∈ Lim(C), we can assume without loss of generality
that for every i < δ there are β < γ < α in C such that

hi <I fβ <I fγ <I hi+1. (1)

Now for i < δ let Yi = {x ∈ X | g(x) ≤ hi(x)}. By (1) we obtain that

Yi ⊆I Xβ (I Xγ ⊆I Yi+1. (2)

In particular, (2) implies that for any i < j < δ, Yi (I Yj, thus the
sequence 〈Yi | i < δ〉 is not eventually constant mod I. This contradicts

the fact that ~h has an eub.



• Assume now that we are in the Bad case. Take sets Sx ⊆ Ord for x ∈ X
such that |Sx| < δ and an ultrafilter U on X such that U ∩ I = ∅ and for
every α < λ there are g ∈

∏
x∈X Sx and β < λ such that fα <U g <U fβ.

Then there is a club set C ⊆ λ such that for every α < β in C there is g ∈∏
x∈X Sx with fα <U g <U fβ. Choose a good point α ∈ Lim(C) ∩ cof(δ)

and an eub h for ~f � α such that for every x ∈ X, cf(h(x)) = δ. Now
define g(x) = supSx ∩ h(x). Since cf(g(x)) < δ we obtain that g < h,
thus there is β < α such that g <I fβ. But the Bad case allows us to find
g′ ∈

∏
x∈X Sx and γ < α with fβ <U g

′ <U fγ. Since U ∩I = ∅, this yields

g <U fβ <U g
′ <U fγ <U h.

which clearly contradicts the definition of g.

Since we are in the Good case, there is an eub h for ~f such that cf(h(x)) ≥ δ
for every x ∈ X. Let Y = {x ∈ X | cf(h(x)) = δ}. Suppose for a contradiction
that Y ∈ I+. Then consider the ideal J = {Z ∩ Y | Z ∈ I} on Y . Since
Y ∈ I+, h̄ = h � Y is still an eub for 〈fi � Y | i < λ〉. But then Remark
1.6 implies that λ = δ which is absurd. By modifying h on an I-small set, we
obtain 2.

(2.⇒ 1.) Let h be an eub for ~f such that cf(h(x)) = δ for every x ∈ X. Without loss of
generality we assume that fi < h for every i < λ. Put

S = {α ∈ Sλδ | α is a good point}.

Let C ⊆ λ be a club set. Inductively, we construct an increasing sequence
〈αi | i < δ〉 of ordinals in C as follows: At stage i < δ let gi(x) = sup{fαj(x) |
j < i} for every x ∈ X. Now since fαj(x) < h(x) for every x ∈ X and every
j < i and cf(h(x)) > δ, we get that gi(x) < h(x) for all x ∈ X. Hence there is
αi ∈ C \

⋃
j<i(αj + 1) such that gi <I fαi .

Now let α = sup{αi | i < δ} ∈ Sλδ ∩ C. We show that α ∈ S. Clearly,
~f � α is cofinally interleaved with ~g = 〈gi | i < δ〉 and since ~g is ≤-increasing,

g = sup{gi | i < δ} is an eub for ~g and by Remark 1.2 also for ~f � α.

Definition 1.12. Let S ⊆ λ be a stationary set. Then a sequence 〈Cη | η ∈ S〉 is
said to be a club guessing sequence, if it satisfies



1. Cη ⊆ η is club for every η ∈ S,

2. For every club E ⊆ λ there is η ∈ S such that Cη ⊆ E.

Theorem 1.13 (Shelah’s Club Guessing Theorem). Let δ, λ be regular cardinals
such that δ+ < λ and let S ⊆ Sλδ be stationary. Then S has a club guessing sequence
〈Cη | η ∈ S〉 such that otp(Cη) = δ for every η ∈ S.

Proof. Since we only need the case where δ > ℵ0, we will only prove this case. We
start with any sequence ~C = 〈Cη | η ∈ S〉 of club sets Cη ⊆ η of order type δ. For a
club E ⊆ λ put

~C � E = 〈Cη ∩ E | η ∈ S ∩ Lim(E)〉.

Observe that if η ∈ S ∩ Lim(E), then Cη ∩ E ⊆ η is club. We will construct some

E ⊆ λ club such that ~C � E is a club guessing sequence for S ∩ Lim(E). If such
E exists, then we extend it to a club guessing sequence for S by taking Cη for any
η ∈ S \ Lim(E).

Now suppose for a contradiction that for every E ⊆ λ club there exists club
DE ⊆ λ such that for every η ∈ S ∩ Lim(E), Cη ∩E * DE. Inductively, construct a
sequence 〈Eξ | ξ < δ+〉 of club subsets of λ as follows:

• E0 = λ.

• If ξ < δ+ is a limit ordinal and for every i < ξ, Ei is defined, let Eξ =
⋂
i<ξ Ei.

Since ξ < λ, Eξ ⊆ λ is club.

• Given Eξ, define Eξ+1 = Lim(Eξ ∩DEξ).

By construction we obtain that for any η ∈ S ∩ Lim(Eξ), Cη ∩ Eξ * Eξ+1. Finally,
define E =

⋂
ξ<δ+ Eξ. Since δ+ < λ, E is a club subset of λ. Now consider some

η ∈ S∩E. Then the sequence 〈Cη∩Eξ | ξ < δ+〉 is decreasing with respect to ⊆, but
since every |Cη ∩Eξ| = δ for every ξ < δ+ it must stabilize, i.e. there is ξ < δ+ such
that for every ζ > ξ, Cη ∩ Eζ = Cη ∩ Eξ. But η ∈ S ∩ Eξ+1, hence Cη ∩ Eξ * Eξ+1

which is absurd.

Theorem 1.14 (Abraham, Magidor). Let |X| = κ, I an ideal on X and κ <

δ < δ+ < ρ < λ be regular cardinals. Let ~f be an I-increasing sequence such that
lh(~f) = λ and assume that for every ξ ∈ Sλρ there is a club Eξ ⊆ ξ such that

supi∈Eξ fi ≤I fξ. Then ~f has an eub h such that cf(h(x)) > δ for all x ∈ X.



Proof. By Theorem 1.11 it is enough to show that

S = {α ∈ Sλδ | α is a good pooint}

is stationary in λ.
Let E ⊆ λ be club. Since δ+ < ρ, there is a club guessing sequence 〈Cη | η ∈ Sρδ 〉

for Sρδ . We construct an increasing sequence γ̄ = 〈γi | i < ρ+ 1〉 of elements of E as
follows:

• Let γ0 ∈ E.

• Suppose that γi ∈ E has already been defined. For every η ∈ Sρδ let hiη(x) =
sup{fγj(x) | j ∈ Cη ∩ (i + 1)}; furthermore, let iη < λ such that hiη <I fiη , if
such iη exists; else iη = γi + 1. Since ρ < λ and E is club, there is γi+1 ∈ E
such that γi+1 ≥ sup({iη | η ∈ Sρδ} ∪ {γi + 1}).

• In the limit case, define γi = supj<i γj ∈ E.

Now put D = {i < ρ | γi ∈ Eγρ}.

Claim. D is closed unbounded in ρ.

Proof. D is closed since Eγρ is closed. Clearly, the set C = {γi | i < ρ} is closed
unbounded in γρ and γρ ∈ Sλρ . Hence C ∩Eγρ is club in γρ. But this implies that D
is club in ρ.

Now pick η ∈ Sρδ such that Cη ⊆ D.

Claim. The sequence 〈fγi | i ∈ Cη \ Lim(Cη)〉 is strongly increasing.

Proof. For every i ∈ Cη, γi ∈ Eγρ which means that fγi ≤I fγρ . By construction
of γi, this means that hiη <I fγi+1

≤I fγj , where j = min{k ∈ Cη | k > i} is the
Cη-successor of i. Now let Yj ∈ I witness this. Now every i ∈ Cη \ Lim(Cη), has a
predecessor in Cη. Consider i ≤ k < j in Cη \Lim(Cη) such that k is the predecessor
of j in Cη. Then for every x ∈ X \ Yj

fγi(x) ≤ hkη(x) < fγj(x).

Since {γi | i ∈ Cη \ Lim(Cη)} is unbounded in γη, Theorem 1.8 implies that γη is
a good point and cf(γη) = cf(η) = δ. Hence γη ∈ S ∩ E.



2 Applications

Recall our goal to prove the following result of Shelah:

Theorem 2.1 (Shelah). There is an infinite set A ⊆ ω and a sequence ~f = 〈fi | i <
ℵω+1〉 such that ~f is increasing and cofinal in

∏
n∈A ℵn under the eventual domination

ordering.

We have already reduced the proof of this result to

Lemma 2.2. There is a sequence ~f = 〈fi | i < ℵω+1〉 and a function h with fi ∈∏
n∈ω ℵn and h ∈

∏
n∈ω(ℵn + 1) such that the following properties hold:

1. The sequence ~f is increasing and cofinal in
∏

n∈ω h(n) under the eventual dom-
ination ordering.

2. For each m ∈ ω, the set Bm = {n ∈ ω | cf(h(n)) = ℵm} is finite.

Proof. We are in the case |X| = ω and I = {Y ⊆ ω | |Y | < ℵ0} and we want to

find an I-increasing sequence ~f ∈
∏

n∈ω ℵn and an eub h ∈
∏

n∈ω ℵn+1. We build ~f
inductively as follows:

• Let f0 be any function in
∏

n∈ω ℵn.

• In the successor case, let fi+1(n) = fi(n) + 1.

• If α < ℵω+1 is a limit, let δ = cf(α) < ℵω. Now let Eα ⊆ α be closed unbounded
of order type cf(α). Let δ = ℵm for some m ∈ ω, then put

fα(n) =

{
sup{fi(n) | i ∈ Eα}, n > m

0 else.

By construction, since otp(Eα) = ℵm, for n > m we have sup{fi(n) | i ∈ Eα} <
ℵn. Thus fα ∈

∏
n∈ω ℵn.

Claim. The sequence ~f = 〈fi | i < ℵω+1〉 is I-increasing.

Proof. Let α < ℵω+1 and assume that for every β < α and for every i < β, fi <I fβ.
Let i < α. We check that fi <I fα. If α is a successor ordinal, this is trivial. Suppose
that α is a limit and choose β ∈ Eα such that i < β. Then by construction fβ <I fα
and by induction hypothesis also fi <I fβ.



Now we are ready to apply Theorem 1.14. For any n > 0 in ω, we obtain an eub
hn for ~f such that cf(hn(x)) > ℵn for all x ∈ X.

Claim. h = h1 already satisfies the desired properties.

Proof. Assume that m > 1 such that Bm is infinite. Since both h and hm are eubs,
we have h =I hm. But cf(hm(x)) > ℵm for every x ∈ X. Contradiction.

Theorem 2.3. Let µ be a singular cardinal with cf(µ) = κ > ω and let C ⊆ µ be a

club set of singular cardinals. Then there is a club subset D ⊆ C and a sequence ~f
of length µ+ which is increasing and cofinal in

∏
λ∈D λ

+ modulo the nonstationary
ideal NS.

Proof. Like in the previous theorem, we construct a sequence ~f ∈
∏

λ∈C λ
+ with an

eub h such that for every δ < µ, {λ ∈ C | cf(h(λ)) = δ} is non-stationary. We need
to verify that h(λ) = λ+ for NS-almost all λ ∈ C. If not, then the set

S = {λ ∈ C | cf(h(λ)) < λ}
is stationary in µ; moreover, on S the function λ 7→ cf(h(λ)) is regressive and hence
by Fodor there is some δ ∈ µ such that {λ ∈ C | cf(h(λ)) = δ} is stationary.
Contradiction.

Theorem 2.4 (Silver). Let κ be a singular cardinal such that cf(κ) is uncountable.
Suppose that there is a stationary set S ⊆ κ such that for every δ ∈ S, δcf(κ) = δ+.
Then κcf(κ) = κ+.

Proof. Let S ⊆ κ be a stationary set of order type cf(κ) such that for all δ ∈ S we
have δcf(κ) = δ+. By the previous theorem, there is a club set C ⊆ κ of singular
cardinals and a sequence f̄ = 〈fi | i < κ+〉 which is NS-increasing and cofinal in∏

δ∈C δ
+. Now by replacing S by S ∩ C and fξ by fξ � S we obtain that f̄ is

NS-increasing and cofinal in
∏

δ∈S δ
+.

Since every δ ∈ S satisfies δ≤cf(κ) = δ+, we can define bijective maps

cδ : [δ]≤cf(κ) → δ+

We use this to code sets X ∈ [κ]cf(κ) by

hX ∈
∏
δ∈S

δ+, δ 7→ cδ(X ∩ δ).



Claim. If X 6= Y , then there is δ ∈ S such that for all λ ≥ δ, hX(λ) 6= hY (λ).

Proof. If X 6= Y , then there is a minimal δ ∈ S such that X ∩ δ 6= Y ∩ δ. Then for
every λ ≥ δ, X ∩ λ 6= Y ∩ λ and hence hX(λ) = cλ(X ∩ λ) 6= cλ(Y ∩ λ) = hY (λ).

Claim. For every g ∈
∏

δ∈S δ
+, the set

Fg = {X ∈ [κ]cf(κ) | hX <NS g}

has cardinality ≤ κ.

Proof. Suppose that for some g, |Fg| ≥ κ+. For δ ∈ S, g(δ) < δ+, so there is an
enumeration 〈gδi | i < iδ〉 of order type iδ ≤ δ. Now define for X ∈ Fg, SX = {δ ∈ X |
hX(δ) < g(δ) and a function kX on SX by kX(δ) = i for the unique i < iδ such that
hX(δ) = gδi . Then SX is stationary in κ and kX is regressive, so there is a stationary
TX ⊆ SX and δX < κ such that kX(δ) < δX for all δ ∈ TX . Since there are at most
2cf(κ) subsets of S and 2cf(κ) < κ+ ≤ |Fg|, there is F0 ⊆ Fg such that |F0| = κ+, a
stationary set S0 ⊆ S and δ0 < κ such that for all X ∈ F0, SX = S0 and δX = δ0.
Without loss of generality, assume that δ0 ∈ S. Now there are at most δ

cf(κ)
0 = δ+0

many different possibilities for the functions kX , X ∈ F0. So (by thinning out F0) we
can also assume that for all X ∈ F0 the functions kX are all the same k0. But then
for X ∈ F and δ ∈ S0 we have hX(δ) = gδkX(δ) = gδk0(δ) which does not depend on X.
This contradicts the previous claim.

Now we obtain that for every g ∈
∏

δ∈S δ
+, |Fg| ≤ κ. But since ~f is cofinal in∏

δ∈S δ
+, every X ∈ [κ]cf(κ) is in some Fξ, ξ < κ+. This implies

κcf(κ) = |[κ]cf(κ)| ≤ |
⋃
ξ<κ+

Fξ| ≤ κ+ · κ = κ+.

Corollary 2.5 (Silver). Let κ be a singular cardinal of uncountable cardinality and
assume that GCH holds below κ. Then 2κ = κ+.

Proof. First observe that the set S = {δ < κ | cf(δ) < cf(κ) < δ} is stationary in κ.
Now for every δ ∈ S we have

• δ < δcf(δ) ≤ δcf(κ)

• δcf(κ) ≤ δδ = 2δ = δ+.



This clearly implies that if δ ∈ S, then δcf(κ) = 2δ = δ+. Thus the previous theorem
implies that κcf(κ) = κ+ and thus in particular 2κ = κ+ since for 〈κi | i < cf(κ)〉
cofinal in κ,

2κ = 2
∑
i<cf(κ) κi =

∏
i<cf(κ)

2κi ≤ κcf(κ).


