SPECIALIZING ARONSZAJN TREES AND SQUARE SEQUENCES BY FORCING

PHILIPP LÜCKE

ABSTRACT. Let κ be an infinite cardinal and T be a κ^+ -Aronszajn tree. Then it is possible to specialize T by forcing with the $<\kappa$ -closed partial order \mathbb{P}_T consisting of partial specializing functions of cardinality less than κ . If T has height ω_1 , then a result of Baumgartner, Malitz and Reinhardt says that the partial order \mathbb{P}_T satisfies the countable chain condition. In contrast, Laver's construction of κ^+ -Aronszajn trees with ascent paths shows that forcings with \mathbb{P}_T can collapse κ^+ if κ is an uncountable cardinal.

Given an uncountable cardinal κ with $\kappa = \kappa^{<\kappa}$, we will show that the existence of antichains of size κ^+ in \mathbb{P}_T is equivalent to a certain combinatorial property of the tree T. We will then show that the canonical κ^+ -Aronszajn tree $T(\rho_0)$ constructed by Todorčević from a $\Box(\kappa^+)$ sequence does not satisfy this property and therefore can be specialized by a $<\kappa$ -closed partial order satisfying the κ^+ -chain condition. This observation can be used to derive lower bounds for the consistency strength of generalizations of Martin's Axiom to certain classes of $<\kappa$ -closed partial orders satisfying the κ^+ -chain condition whose consistency can be established using large cardinals.

MATHEMATISCHES INSTITUT, RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN, ENDENICHER ALLEE 60, 53115 BONN, GERMANY *E-mail address*: pluecke@math.uni-bonn.de