Prof. Dr. Peter Koepke, Dr. Philipp Lücke	Problem sheet 11
---	------------------

Problem 41 (*Mathias forcing*, 10 Points). Fix a non-principal ultrafilter \mathcal{U} on ω . Let D be the set of all pairs (s, A) such that $s : n \longrightarrow \omega$ is a strictly increasing function for some $n < \omega$ and $A \in \mathcal{U}$. Given elements (s, A) and (t, B) of D, we define $(t, B) <_{P_{\mathcal{U}}} (s, A)$ to hold if $s \subseteq t, B \subseteq A$ and $t(k) \in A$ for all $k \in \text{dom}(t) \setminus \text{dom}(s)$.

- (1) Show that $P_{\mathcal{U}} = (D, <_{\mathcal{U}}, (\emptyset, \omega))$ is a partial order.
- (2) Show that $P_{\mathcal{U}}$ satisfies the countable chain condition.

Let M be a ground model, \mathcal{U} be a non-principal ultrafilter on ω in M and G be M-generic on $P_{\mathcal{U}}^M$.

- (3) Prove that $s_G = \bigcup \{ s \mid \exists A \in \mathcal{U} \ (s, A) \in G \}$ is a strictly increasing function with domain ω .
- (4) Prove that the set $ran(s_G) \setminus A$ is finite for every $A \in \mathcal{U}$.
- (5) Given an infinite subset C of ω contained in M, show that there is an $A \in \mathcal{U}$ with $C \setminus A$ infinite.

Problem 42 (10 Bonus Points). Let κ be a regular uncountable cardinal. Let D denote the set of all partial functions $x : \kappa \xrightarrow{part} 2$ with the property that the set $\operatorname{dom}(x) \cap \rho$ is bounded in ρ whenever ρ is regular cardinal smaller than or equal to κ .

(1) Show that $P_{\kappa} = (D, \supseteq, \emptyset)$ is a partial order.

Let M be a ground model, κ be a regular uncountable cardinal in M and G be M-generic on P_{κ}^{M} .

- (2) Show that $x_G = \bigcup G$ is a function with domain κ .
- (3) Show that the GCH holds below κ in M[G], i.e. if λ < κ is a cardinal in M[G], then M[G] ⊨ 2^λ = λ⁺ (Hint: Generalize the argument used in the proof of Problem 37 to larger cardinalities).
- (4) Show: if λ is a cardinal in M with $M \models 2^{\lambda} = \lambda^{+}$, then $(\lambda^{+})^{M}$ is a regular cardinal in M[G] (Hint: Show that the partial order P_{κ} is isomorphic to a product $Q_{0} \times Q_{1}$ of partial orders with the property that Q_{0} is λ^{++} -closed and Q_{1} satisfies the λ^{++} -chain condition. Then use Lemma 142).

Problem 43 (10 Bonus Points). Let M be a ground model with $M \models \text{GCH}$, F be a function in M satisfying the assumptions of *Easton's Theorem* and G be M-generic on the partial order given by *Easton's Theorem*. Calculate the value of $(2^{\nu})^{M[G]}$ for every cardinal ν in M[G] that is smaller than the least upper bound of dom(F).

Please hand in your solutions on Wednesday, July 10 before the lecture.