Models of Set Theory I - Summer 2013

Problem 41 (Mathias forcing, 10 Points). Fix a non-principal ultrafilter \mathcal{U} on ω. Let D be the set of all pairs (s, A) such that $s: n \longrightarrow \omega$ is a strictly increasing function for some $n<\omega$ and $A \in \mathcal{U}$. Given elements (s, A) and (t, B) of D, we define $(t, B)<_{P_{\mathcal{U}}}(s, A)$ to hold if $s \subseteq t, B \subseteq A$ and $t(k) \in A$ for all $k \in \operatorname{dom}(t) \backslash \operatorname{dom}(s)$.
(1) Show that $P_{\mathcal{U}}=(D,<\mathcal{U},(\emptyset, \omega))$ is a partial order.
(2) Show that $P_{\mathcal{U}}$ satisfies the countable chain condition.

Let M be a ground model, \mathcal{U} be a non-principal ultrafilter on ω in M and G be M-generic on $P_{\mathcal{U}}^{M}$.
(3) Prove that $s_{G}=\bigcup\{s \mid \exists A \in \mathcal{U}(s, A) \in G\}$ is a strictly increasing function with domain ω.
(4) Prove that the set $\operatorname{ran}\left(s_{G}\right) \backslash A$ is finite for every $A \in \mathcal{U}$.
(5) Given an infinite subset C of ω contained in M, show that there is an $A \in \mathcal{U}$ with $C \backslash A$ infinite.

Problem 42 (10 Bonus Points). Let κ be a regular uncountable cardinal. Let D denote the set of all partial functions $x: \kappa \xrightarrow{\text { part }} 2$ with the property that the set $\operatorname{dom}(x) \cap \rho$ is bounded in ρ whenever ρ is regular cardinal smaller than or equal to κ.
(1) Show that $P_{\kappa}=(D, \supseteq, \emptyset)$ is a partial order.

Let M be a ground model, κ be a regular uncountable cardinal in M and G be M-generic on P_{κ}^{M}.
(2) Show that $x_{G}=\bigcup G$ is a function with domain κ.
(3) Show that the GCH holds below κ in $M[G]$, i.e. if $\lambda<\kappa$ is a cardinal in $M[G]$, then $M[G] \vDash 2^{\lambda}=\lambda^{+}$(Hint: Generalize the argument used in the proof of Problem 37 to larger cardinalities).
(4) Show: if λ is a cardinal in M with $M \models 2^{\lambda}=\lambda^{+}$, then $\left(\lambda^{+}\right)^{M}$ is a regular cardinal in $M[G]$ (Hint: Show that the partial order P_{κ} is isomorphic to a product $Q_{0} \times Q_{1}$ of partial orders with the property that Q_{0} is λ^{++}-closed and Q_{1} satisfies the λ^{++}-chain condition. Then use Lemma 142).

Problem 43 (10 Bonus Points). Let M be a ground model with $M \models \mathrm{GCH}, F$ be a function in M satisfying the assumptions of Easton's Theorem and G be M-generic on the partial order given by Easton's Theorem. Calculate the value of $\left(2^{\nu}\right)^{M[G]}$ for every cardinal ν in $M[G]$ that is smaller than the least upper bound of $\operatorname{dom}(F)$.

Please hand in your solutions on Wednesday, July 10 before the lecture.

