Prof. Dr. Peter Koepke, Dr. Philipp Lücke	Problem sheet 10
---	------------------

Problem 37 (4 Points). Construct a dense embedding (see Problem 22) of the partial order $\operatorname{Fn}(\omega_1, 2^{\omega}, \langle \aleph_1 \rangle)$ into the partial order $\operatorname{Fn}(\omega_1, 2, \langle \aleph_1 \rangle)$.

Problem 38 (8 Points). A sequence $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ is a \diamond -sequence if the following statements hold.

- S_{α} is a subset of α for every $\alpha < \omega_1$.
- If X is a subset of ω_1 , then the set $\{\alpha < \omega_1 \mid S_\alpha = X \cap \alpha\}$ is a stationary subset of ω_1 .

Let M be a ground model with $(CH)^M$ and let G be M-generic on $\operatorname{Fn}(\omega_1, \omega_1, <\aleph_1)^M$. Show that there is a \diamond -sequence in M[G] (Hint: Start in M and fix an enumeration $\langle B_\alpha \mid \alpha < \omega_1 \rangle$ of all bounded subsets of ω_1 . In M[G], let $c : \omega_1 \longrightarrow \omega_1$ be the function corresponding to G and define $S_\alpha = B_{c(\alpha)} \cap \alpha$. Given $\dot{C}, \dot{X} \in M$ and $q \in \operatorname{Fn}(\omega_1, \omega_1, <\aleph_1)$ with $q \Vdash "\dot{C} \subseteq \omega_1$ is club $\land \dot{X} \subseteq \omega_1$ ", use the the fact that $\operatorname{Fn}(\omega_1, \omega_1, <\aleph_1)$ is ω_1 -closed to find $p \in \operatorname{Fn}(\omega_1, \omega_1, <\aleph_1)$, $\alpha < \omega_1$ and $Y \subseteq \alpha$ with $\operatorname{dom}(p) = \alpha, p \leq q$ and $p \Vdash "\alpha \in \dot{C} \land \check{Y} = \dot{X} \cap \check{\alpha}$ ").

Problem 39 (8 Points). Given an ordinal α , we let ${}^{<\alpha}2$ denote the set of all functions $s: \beta \longrightarrow 2$ with $\beta < \alpha$. We call $T \subseteq {}^{<\alpha}2$ a subtree of ${}^{<\alpha}2$ if T is closed under initial segments and we define $ht(T) = lub\{dom(s) \mid s \in T\}$. A subtree T of ${}^{<\alpha}2$ is normal if the following statements hold for all $s \in T$.

- If dom(s) + 1 < ht(T) and i < 2, then $s \cup \{(dom(s), i)\} \in T$.
- If dom $(s) \leq \alpha < ht(T)$, then there is an $\bar{s} \in T$ with $s \subseteq \bar{s}$ and dom $(\bar{s}) = \alpha$.

A subtree T of $\langle \omega_1 2 \rangle$ is a *Souslin tree* if $ht(T) = \omega_1$ and the partial order $\langle T, \supseteq, \emptyset \rangle$ satisfies the countable chain condition.

We let S denote the partial order consisting of countable normal subtrees of ${}^{<\omega_1}2$ ordered by end-extension, i.e. we have $t_0 \leq t_1$ if $t_1 = t_0 \cap {}^{<ht(t_1)}2$. Prove the following statements.

- (1) \mathbb{S} is ω_1 -closed.
- (2) If (CH) holds, then S satisfies the \aleph_2 -chain condition.
- (3) Let M be a ground model with $(CH)^M$ and let G be M-generic on \mathbb{S}^M . Then $T^G = \bigcup G$ is a Souslin tree in M[G] (Hint: First show that $ht(T^G) = \omega_1$ holds in M[G]. Let $\dot{T} \in M$ denote the canonical name for T^G and assume, towards a contradiction, that there is $\dot{A} \in M$ and $t_0 \in \mathbb{S}^M$ with $t_0 \Vdash "\dot{A}$ is an uncountable maximal antichain in $\dot{T}"$. Find $\alpha < \omega_1, t_1 \leq t_0$ and $B \subseteq {}^{<\alpha}2$ such that $\alpha = ht(t_1), t_1 \Vdash "\check{B} = \dot{A} \cap {}^{<\check{\alpha}}2"$ and B is a maximal antichain in $\langle t_1, \supseteq, \emptyset \rangle$. Then construct a condition t_2 in \mathbb{S}^M such that $ht(t_2) = \alpha + 1$ and for every $s \in t_2$ with dom $(s) = \alpha$ there is an $\bar{s} \in B$ with $\bar{s} \subseteq s$).

Problem 40 (4 Points). Let M be a ground model and P be a partial order in M. Prove: if P is ω_1 -closed in M, then P preserves stationary subsets of ω_1 , i.e. we have

$1_P \Vdash "\check{S} \text{ is a stationary subset of } \omega_1"$

for every stationary subset S of ω_1 in M (Hint: Assume, towards a contradiction, that there is $p \in P$ and $\dot{C} \in M$ with $p \Vdash "\dot{C}$ is a club subset of ω_1 with $\dot{C} \cap \check{S} = \emptyset$ ". Working in M, use this assumption to construct a descending sequence $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$ of conditions in P and a strictly increasing continuous sequence $\langle \gamma_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable ordinals such that $p_{\alpha} \Vdash "\check{\gamma}_{\alpha} \in \dot{C}"$ holds for every $\alpha < \omega_1$).

Please hand in your solutions on Wednesday, June 26 before the lecture.