Prof. Dr. Peter Koepke, Dr. Philipp Lücke Problem sheet 8

Problem 28 (4 Points). Given functions $x, y : \omega \longrightarrow 2$, we define

 $D(x,y) = \{n < \omega \mid x(n) \neq y(n)\} \text{ and } E(x,y) = \{n < \omega \mid x(n) = y(n)\}.$

Let *M* be a ground model, *G* be *M*-generic on $\operatorname{Fn}(\omega, 2, \aleph_0)$ and $x_G = \bigcup G : \omega \longrightarrow 2$. Prove the following statements.

- (1) If $y: \omega \longrightarrow 2$ is an element of M, then the sets $D(x_G, y)$ and $E(x_G, y)$ are both infinite.
- (2) There is a function $z: \omega \longrightarrow 2$ in M[G] with the following properties.
 - (a) If y : ω → 2 is an element of M, then the sets D(y, z) and E(y, z) are both infinite.
 - (b) The filter $\{p \in \operatorname{Fn}(\omega, 2, \aleph_0) \mid p \subseteq z\}$ is not *M*-generic.

Problem 29 (4 Points). Let M and N be transitive with ZFC^M , ZFC^N and $\mathcal{P}(\alpha)^M \subseteq N$ for every $\alpha \in M \cap$ Ord. Prove that $M \subseteq N$ (Hint: Fix $x \in N$. Use a bijection $b : \operatorname{tc}(\{x\}) \longrightarrow \alpha$ to some $\alpha \in$ Ord and the Gödel pairing function to code x as a subset of α in M. Then use a Mostowski collapse to decode this subset in N.).

Problem 30 (4 Points). Let M be a ground model, P be a partial order in M, $\varphi(v_0, \ldots, v_{n-1})$ and $x_0, \ldots, x_{n-1} \in M$. Prove the following statements.

(1) Given a condition p in P and an automorphism π of P in M, we have $p \Vdash \varphi(\check{x}_0, \ldots, \check{x}_{n-1})$ if and only if $\pi(p) \Vdash \varphi(\check{x}_0, \ldots, \check{x}_{n-1})$.

A partial order P is weakly homogeneous if for all conditions $p, q \in P$ there is an automorphism π of P such that the conditions $\pi(p)$ and q are compatible in P.

- (2) If P is weakly homogeneous in M, then the following statements are equivalent.
 - (a) $1_P \Vdash \varphi(\check{x}_0, \ldots, \check{x}_{n-1}).$
 - (b) $p \Vdash \varphi(\check{x}_0, \dots, \check{x}_{n-1})$ for some condition p in P.

Problem 31 (6 Points). Let M be a ground model and G be an M-generic filter on $\operatorname{Fn}(\omega, 2, \aleph_0)$. Prove that $\operatorname{HOD}^{M[G]} \subseteq \operatorname{HOD}^M$ (Hint: Show that the partial order $\operatorname{Fn}(\omega, 2, \aleph_0)$ is weakly homogeneous. Then use Problem 29 and 30.). **Problem 32** (6 Points). Let M be a ground model, κ be an infinite cardinal in M, X be an infinite subset of κ contained in M and G be M-generic on $P = \operatorname{Fn}(\omega \times \kappa, 2, \aleph_0)$. Set $P \upharpoonright X = \operatorname{Fn}(\omega \times X, 2, \aleph_0)$ and $G \upharpoonright X = G \cap P \upharpoonright X$. Prove the following statements.

- (1) $G \upharpoonright X$ is *M*-generic on $P \upharpoonright X$.
- (2) If $X \subsetneq \kappa$, then $M[G \upharpoonright X] \subsetneq M[G]$ (Hint: Let $\alpha \in \kappa \setminus X$ and define

 $\dot{x} \ = \ \{ \langle \check{n}, p \rangle \ | \ n < \omega, \ p \in P, \ p(n, \alpha) = 1 \} \ \in \ M.$

Assume that $\dot{x}^G = \dot{y}^{G \upharpoonright X}$ for some $\dot{y} \in M$ and define

$$\dot{z} = \{ \langle \check{n}, p \rangle \mid n < \omega, \ p \in P \upharpoonright X, \ p \Vdash_{P \upharpoonright X}^{M} \check{n} \in \dot{y} \} \in M.$$

Show $\dot{x}^G = \dot{z}^{G \upharpoonright X} = \dot{z}^G$ and pick $p \in G$ with $p \Vdash_P^M \dot{x} = \dot{z}$. Derive a contradiction by constructing a suitable *M*-generic filter \bar{G} on *P* with $p \in \bar{G}$ and $\bar{G} \cap (P \upharpoonright X) = G \upharpoonright X$.

Please hand in your solutions on Wednesday, June 12 before the lecture.