Models of Set Theory I - Summer 2013

Problem 25 (12 Points). Let (X, τ) be a non-empty topological space. We let $\operatorname{ro}(X, \tau)$ denote the set of all regular open subsets of X (i.e. $\operatorname{int}(\operatorname{cl}(A))=A)$. Define $U \vee V=\operatorname{int}(c l(U \cup V))$ and $U^{\prime}=\operatorname{int}(X \backslash U)$ for all $U, V \in \operatorname{ro}(X, \tau)$.
(1) Show that

$$
\mathbb{B}(X, \tau)=\left\langle\operatorname{ro}(X, \tau), \subseteq, \cap, \vee, \emptyset, X,^{\prime}\right\rangle
$$

is a complete boolean algebra.
Given a partial order $P=\left\langle P, \leq_{P}, 1_{P}\right\rangle$, we define τ_{P} to be the set of all subsets of P that are open in P (see Problem 21).
(2) Show that $\left(P, \tau_{P}\right)$ is a topological space.

Given a boolean algebra $\mathbb{B}=\left\langle B, \leq, \wedge, \vee, 0,1,^{\prime}\right\rangle$, we define \mathbb{B}^{*} to be the partial order $\langle B \backslash\{0\}, \leq, 1\rangle$.
(3) Show that the map

$$
\pi_{P}: P \longrightarrow \operatorname{ro}\left(P, \tau_{P}\right) \backslash\{\emptyset\} ; p \longmapsto \operatorname{int}\left(c l\left(\left\{q \in P \mid q \leq_{P} p\right\}\right)\right)
$$

is a dense embedding of P into the partial order $\mathbb{B}\left(P, \tau_{P}\right)^{*}$.

Problem 26 (8 Points). A partial order P is separative if for all conditions p and q in P with $p \not \leq q$ there is a condition r in P that is stronger than p and incompatible with q.
(1) Show: if \mathbb{B} is a boolean algebra, then \mathbb{B}^{*} is separative.
(2) Show that a partial order P is separative if and only if the following statements hold.
(a) The embedding π_{P} constructed in part (3) of Problem 25 is injective.
(b) $\forall p, q \in P\left[p \leq q \longleftrightarrow \pi_{P}(p) \subseteq \pi_{P}(q)\right.$.
(3) If P is a partial order, then there is a surjective complete embedding of P into a separative partial order (Hint: Show that

$$
\begin{aligned}
p \approx_{\text {sep }} q & \Longleftrightarrow \forall r[p \text { and } r \text { are compatible in } P \\
& \longleftrightarrow q \text { and } r \text { are compatible in } P]
\end{aligned}
$$

defines an equivalence relation on P. Then define a suitable ordering of the quotient $P / \approx_{\text {sep }}$).

Problem 27 (4 Points). Let M be a ground model and P be a partial order contained in M. We fix a formula $\varphi\left(v_{0}, v_{1}\right)$, a condition p in P and names $\dot{y}, \dot{z} \in M$. Prove the following statements.
(1) $p \Vdash \forall x \in \dot{y} \varphi(x, \dot{z})$ if and only if $p \Vdash[\dot{x} \in \dot{y} \longrightarrow \varphi(\dot{x}, \dot{z})]$ for every $\dot{x} \in$ $\operatorname{dom}(\dot{y})$.
(2) $p \Vdash \exists x \varphi(x, \dot{z})$ if and only if the set $\{q \in P \mid \exists \dot{x} \in M q \Vdash \varphi(\dot{x}, \dot{z})\}$ is dense below p in P.
(3) $p \Vdash \exists x \in \dot{y} \varphi(x, \dot{z})$ if and only if the set $\{q \in P \mid \exists \dot{x} \in \operatorname{dom}(\dot{y}) q \Vdash \varphi(\dot{x}, \dot{z})\}$ is dense below p in P.
(4) $p \Vdash \dot{y} \in \dot{z}$ if and only if $p \Vdash \dot{x} \subseteq \dot{z}$ with $\dot{x}=\{(\dot{y}, 1)\}$.

