Models of Set Theory I - Summer 2013

Prof. Dr. Peter Koepke, Dr. Philipp Lücke \quad Problem sheet 5

Problem 18 (4 Points). Let M be a transitive set with ZFC^{M}, P be a partial order in M and G be a filter on P. Prove the following statements.
(1) If $x \in M[G]$, then there is a function $f \in M[G]$ with $\operatorname{dom}(f) \in \operatorname{Ord}$ and $x \subseteq \operatorname{ran}(f)$.
(2) If $\mathrm{ZF}^{M[G]}$, then $\mathrm{ZFC}^{M[G]}$.

Problem 19 (4 Points). Let P be a partial order. A condition p in P is an atom in P if all stronger conditions are compatible, i.e. if $q, r \in P$ with $q, r \leq p$, then there is an $s \in P$ with $s \leq q, r$. We say that P is atomless if there are no atoms in P.
Show that the following statements are equivalent for every transitive set M with ZFC^{M} and every partial order P in M.
(1) P is atomless.
(2) M does not contain a filter on P that is M-generic for P.
(Hint: Given a filter G on P, consider the subset $P \backslash G$).

Problem 20 (6 Points). Let P be a partial order. An antichain in P is a subset of P whose elements are pairwise incompatible in P. We call an antichain maximal if it is not a proper subset of another antichain in P.
(1) Prove that every antichain in a partial order is contained in a maximal antichain.
(2) Explicitly construct an infinite antichain in the partial order $\operatorname{Fn}\left(\omega, 2, \aleph_{0}\right)$.
(3) Prove that every atomless partial order contains an infinite antichain.

Problem 21 (6 Points). Given a partial order P, we call a subset U of P open in P if U is downwards-closed in P, i.e. if $p \in U, q \in P$ and $q \leq p$, then $q \in U$.
Show that the following statements are equivalent for every transitive set M with ZFC M, every partial order P in M and every filter G on P.
(1) G is M-generic for P.
(2) If $D \in M$ is dense and open in P, then $D \cap G \neq \emptyset$.
(3) If $A \in M$ is a maximal antichain in P, then $A \cap G \neq \emptyset$.
(Hint: To prove the implication (3) $\rightarrow(1)$, start with a dense subset $D \in M$, find an antichain $A \in M$ that is a maximal antichain in D and show that A is a maximal antichain in P).

Please hand in your solutions on Wednesday, May 15 before the lecture.

