Prof. Dr. Peter Koepke, Dr. Philipp Lücke Problem sheet 5

Problem 18 (4 Points). Let M be a transitive set with ZFC^M , P be a partial order in M and G be a filter on P. Prove the following statements.

- (1) If $x \in M[G]$, then there is a function $f \in M[G]$ with dom $(f) \in Ord$ and $x \subseteq ran(f)$.
- (2) If $\operatorname{ZF}^{M[G]}$, then $\operatorname{ZFC}^{M[G]}$.

Problem 19 (4 Points). Let P be a partial order. A condition p in P is an *atom in* P if all stronger conditions are compatible, i.e. if $q, r \in P$ with $q, r \leq p$, then there is an $s \in P$ with $s \leq q, r$. We say that P is *atomless* if there are no atoms in P. Show that the following statements are equivalent for every transitive set M with ZFC^M and every partial order P in M.

- (1) P is atomless.
- (2) M does not contain a filter on P that is M-generic for P.

(Hint: Given a filter G on P, consider the subset $P \setminus G$).

Problem 20 (6 Points). Let P be a partial order. An *antichain in* P is a subset of P whose elements are pairwise incompatible in P. We call an antichain *maximal* if it is not a proper subset of another antichain in P.

- (1) Prove that every antichain in a partial order is contained in a maximal antichain.
- (2) Explicitly construct an infinite antichain in the partial order $\operatorname{Fn}(\omega, 2, \aleph_0)$.
- (3) Prove that every atomless partial order contains an infinite antichain.

Problem 21 (6 Points). Given a partial order P, we call a subset U of P open in P if U is downwards-closed in P, i.e. if $p \in U$, $q \in P$ and $q \leq p$, then $q \in U$. Show that the following statements are equivalent for every transitive set M with ZFC^M , every partial order P in M and every filter G on P.

- (1) G is M-generic for P.
- (2) If $D \in M$ is dense and open in P, then $D \cap G \neq \emptyset$.
- (3) If $A \in M$ is a maximal antichain in P, then $A \cap G \neq \emptyset$.

(Hint: To prove the implication $(3) \rightarrow (1)$, start with a dense subset $D \in M$, find an antichain $A \in M$ that is a maximal antichain in D and show that A is a maximal antichain in P).

Please hand in your solutions on Wednesday, May 15 before the lecture.