Prof. Dr. Peter Koepke, Dr. Philipp Lücke	Problem sheet 4
---	-----------------

Problem 14 (4 Points). Let \mathbb{R} denote the set of real numbers (constructed as Dedekind-cuts of $(\mathbb{Q}, <)$) and M be a transitive set with ZFC^M . Show: if \mathbb{R}^M denotes the set of real numbers constructed in M, then \mathbb{R}^M is a subset of \mathbb{R} that is dense with respect to the natural ordering of the reals.

Problem 15 (6 Points). Let $\varphi(v_0, v_1)$ be a definite formula.

- (1) Show that the formula $\exists x \ \varphi(v_0, x)$ is $H(\kappa)$ -absolute for every uncountable regular cardinal κ (Hint: Use Skolem hulls and Mostowski collapses).
- (2) Show that the formula $\exists x \ \varphi(v_0, x)$ is $H(\kappa)$ -absolute for every uncountable cardinal κ with $(ZF^{-})^{H_{\kappa}}$.

Problem 16 (6 Points). Let $\varphi(v)$ be the canonical \in -formula defining the class of inaccessible cardinals.

- (1) Show that φ is V_{α} -absolute for every $\alpha \in \text{Ord.}$
- (2) Show: if M and N are transitive sets with ZFC^M , ZFC^N and $M \subseteq N$, then

$$\langle N, \in \rangle \models \varphi(\kappa) \longrightarrow \langle M, \in \rangle \models \varphi(\kappa)$$

for all $\kappa \in M$.

(3) Show: if ZFC is consistent, then ZFC $\not\vdash \exists \kappa \varphi(\kappa)$.

Problem 17 (4 Points). Let $\varphi(v)$ be the canonical \in -formula defining the cardinal \aleph_1 . Show that $\varphi(v)$ is not definite (Hint: Consider the model $\operatorname{H}_{\aleph_2}$ and form the Skolem hull of $\{\aleph_1\}$).

Please hand in your solutions on Wednesday, May 08 before the lecture.