Prof. Dr. Peter Koepke, Dr. Philipp Lücke Problem sheet 1

Problem 1 (4 Points). Let W be a term and φ be an \in -formula which do not have common variables. Show: if φ is a tautology derivable from the sequent calculus (see *Mathematical Logic. An Introduction (Summer 2012)*, page 20), then φ holds in W.

Problem 2 (4 Points). Assume ZF. Let W be a transitive, non-empty class. Show:

- (1) $(Union)^W \iff \forall x \in W \bigcup x \in W.$
- (2) Let ψ be the instance of the Replacement schema for the \in -formula $\varphi(x, y, \vec{w})$. Then ψ^W is equivalent to $\forall \vec{w} \in W \; (\forall x, y, y' \in W \; [(\varphi^W(x, y, \vec{w}) \land \varphi^W(x, y', \vec{w})) \to y = y']$

$$\longrightarrow \forall a \in W \{ y \mid \exists x \in a \varphi^W(x, y, \vec{w}) \} \cap W \in W \}.$$

Problem 3 (4 Points). Assume ZF. Show:

- (1) For every ordinal α , we have $V_{\alpha} \models Extensionality$, Union, Separation, and Foundation.
- (2) If α is a limit ordinal, then $V_{\alpha} \models Pairing and Powerset$.

Problem 4 (8 points). Assume ZFC. Given a cardinal κ , we define

$$\mathbf{H}_{\kappa} = \{ x \mid \operatorname{card}(\operatorname{TC}(\{x\})) < \kappa \}.$$

Examine which ZFC-axioms hold in H_{κ} for various infinite cardinals κ .

Please hand in your solutions on Wednesday, April 17 before the lecture.