Endomorphisms of \aleph_n -free modules over the p-adic integers

Lutz H. Strüngmann¹,

It has been a long tradition in module theory and in particular in Abelian group theory to construct large modules/groups that have a prescribed endomorphism ring. In ordinary settheory ZFC these constructions mostly used a combinatorial principle due to Saharon Shelah and called *Black-Box*. The resulting modules or groups had additional freeness properties, e.g. in the torsion-free case every countable subset was contained in a free submodule. Whenever a stronger freeness-condition was required replacing countable by larger cardinalities one had to assume additional set-theoretic axioms to carry out the construction. Examples are the diamond principle in Gödel's universe or Martin's axiom.

In this talk we will present a recent result showing the existence of large \aleph_n -free J_p -modules with prescribed dual/endomorphism ring in ZFC. Necessarily these modules have to be very-large to ensure the freeness-property in ZFC. A new combinatorial principle called \aleph_n -free Black Box is used.

This is joint work with Rüdiger Göbel and Saharon Shelah from [1].

Keywords: abelian groups, endomorphism rings, p-adic integers

Mathematics Subject Classification 2010: 20K15

Referencias

[1] R. GÖBEL, S. SHELAH, L. STRÜNGMANN, \aleph_n -free Modules over complete discrete valuation domains with almost trivial dual. to appear in Forum Mathematicum.

¹Institute for Applied Mathematics Department of Computer Sciences University of Applied Sciences Mannheim 68163 Mannheim, Germany 1.struengmann@hs-mannheim.de