THE EMBEDDABILITY RELATION ON MODELS OF SIZE κ IS (STRONGLY) INVARIANTLY UNIVERSAL WHEN $\kappa^{<\kappa} = \kappa$.

LUCA MOTTO ROS

ABSTRACT. Given an uncountable cardinal κ , we analyze the descriptive settheoretical complexity of the embeddability relation on models of size κ of a given $\mathcal{L}_{\kappa^+\kappa^-}$ -sentence. In particular, we show that if $\kappa^{<\kappa} = \kappa$, then the relation \sqsubseteq_{κ} of embeddability on models of size κ is strongly invariantly universal for analytic quasi-orders, that is: for every analytic quasi-order R on the generalized Cantor space κ^2 there is an $\mathcal{L}_{\kappa^+\kappa^-}$ -sentence ψ such that the restriction of \sqsubseteq_{κ} to the models of ψ is Borel-isomorphic to R. As a consequence, we get that such embeddability relations fully characterize the class of all analytic quasi-orders on arbitrary standard Borel κ -spaces. This work extends previous results dealing with the special cases $\kappa = \omega$ (Friedman-Motto Ros 2010) and κ weakly compact (Motto Ros 2011), and is optimal: if $\kappa^{<\kappa} > \kappa$, then \sqsubseteq_{κ} is not invariantly universal. This is joint work with Heike Mildenberger.