10. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 37 (κ -chain condition). Suppose κ is a regular cardinal. Adapt Lemmas 8.3 and 8.6 and their proofs to κ -c.c. forcings (see Problem 33).

Problem 38 (Ultrafilters). Let A be a Boolean algebra.

- a) A set $S \subseteq A$ has the finite intersection property (f.i.p.) if for all nand all $a_1, ..., a_n \in A$, $a_1 \wedge ... \wedge a_n \neq 0$. By Zorn's Lemma, every set with the f.i.p. is contained in a maximal set with the f.i.p. Show that a maximal set $S \subseteq A$ with the f.i.p. is an ultrafilter on A (see Definition 9.7).
- b) For each $a \in A$ let $D_a = \{b \in A : b \le a \lor b \perp a\}$. Then each D_a is a dense subset of A. If $F \subseteq A$ is a $(D_a)_{a \in A}$ -generic filter, then F is an ultrafilter.

Problem 39 (Coherent map). Construct a sequence $(f_{\alpha} : \alpha < \omega_1)$ such that for all $\alpha < \beta < \omega_1$,

- 1. $f_{\alpha} : \alpha \to \omega$ is injective,
- 2. $f_{\alpha}(\gamma) = f_{\beta}(\gamma)$ holds for all but finitely many $\gamma < \alpha$, and
- 3. $\omega range(f_{\alpha})$ is infinite.

Problem 40 (Aronszajn tree). Let $(f_{\alpha} : \alpha < \omega_1)$ be a sequence as in Problem 39. Let $T := \{f_{\alpha} \upharpoonright \beta : \alpha, \beta < \omega_1\}$ and $pred_T(t) := \{s \in T : s \subseteq t\}$. Let $Lev_{\alpha}(T) := \{t \in T : \text{the order type of } pred_T(t) \text{ is } \alpha\}$ denote the α^{th} level of T. Show:

- a) There is no branch of length ω_1 in T.
- b) $0 < |Lev_{\alpha}(T)| < \omega_1$ for every $\alpha < \omega_1$.

Such a tree is called an Aronszajn tree.

Please hand in your solutions on Wednesday, 15 June before the lecture.