9. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 33 (Chain condition). Suppose κ is a cardinal and (\mathbb{P}, \leq) is a partial order. \mathbb{P} has the κ -chain condition (κ -c.c.) if every antichain in \mathbb{P} has size less than κ . Let κ be least such that \mathbb{P} has the κ -c.c.

- a) Suppose A ⊆ P is a maximal antichain and every p ∈ P is an atom,
 i.e. there are no q, r ≤ p with q ⊥ r. Show that κ = |A|.
- b) Show that $\kappa \neq \omega$. (To show this, begin with a maximal antichain and replace each nonatomic condition p with an antichain below p which is predense below p. Continue this process and find an infinite antichain.)

Problem 34 (Δ -systems). A family \mathcal{D} is a Δ -system if there is a finite set r (the root) such that $s \cap t = r$ for all $s \neq t$ in \mathcal{D} . Show:

- a) Let \mathcal{F} be a family of finite sets and $\kappa = |\mathcal{F}|$ a regular cardinal. Then there is a Δ -system $\mathcal{D} \subseteq \mathcal{F}$ of cardinality κ .
- b) If κ is a singular cardinal, there is a family \mathcal{F} of finite sets of cardinality κ with no Δ -system $\mathcal{D} \subseteq \mathcal{F}$ of cardinality κ .

Problem 35 (Nice names, cardinal arithmetic).

- a) Recall the definition of the sets a_α, α < κ mentioned in Lemma 8.1.
 Write down explicitly a nice name for each a_α. The name is allowed to mention Boolean values [[]]*.
- b) Suppose κ is an infinite cardinal and GCH holds. Show that $\kappa^{\omega} = \kappa$ if $cf(\kappa) > \omega$ and $\kappa^{\omega} = \kappa^+$ if $cf(\kappa) = \omega$.

Problem 36 (Random forcing is ω^{ω} -bounding). Let \mathbb{M} denote the collection of Borel subsets of \mathbb{R} of positive Lebesgue measure μ and let $p \leq q$ iff $p \subseteq q$ for $p, q \in \mathbb{M}$ (*Random forcing*). Suppose N is a countable transitive model of ZFC and G is \mathbb{M}^N -generic over N.

- a) Suppose $p \in \mathbb{M}^N$ forces over N that $\dot{f} : \omega \to \omega$. Let $\epsilon > 0$ and $n \in \omega$. Prove that there are $q \leq p$ in \mathbb{M}^N and $g_n \in \omega$ such that $q \Vdash \dot{f}(n) \leq g_n$ and $\mu(p-q) < \epsilon$.
- b) Prove that for any $f: \omega \to \omega$ in N[G], there is a function $g: \omega \to \omega$ in M with $f \leq^* g$.

Please hand in your solutions on Wednesday, 08 June before the lecture.