6. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 21 (Regular open sets). Suppose (\mathbb{P}, \leq) is a partial order.
a) Let $\mathcal{F} \subseteq \operatorname{ros}(\mathbb{P})$ be a family of regular open sets. Show that $\bigcap \mathcal{F}$ is regular open.
b) Let $A \subseteq \mathbb{P}$. Show that $\neg A$ is a regular open subset of \mathbb{P}.
c) Suppose $\mathbb{P}=F n(\omega, 2)$. Find regular open sets $A, B \subseteq \mathbb{P}$ such that $A \cup B$ is not regular open.
d) Suppose M is a countable transitive model of ZFC and $(\mathbb{P},<) \in M$. Show that for every formula $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ in the forcing language, the truth value $\llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket$ is a regular open subset of \mathbb{P}. Lemma 6.19 might be useful.

Problem 22 (Separative partial orders). A partial order $(\mathbb{P},<)$ is called weakly separative if for all $p, q \in \mathbb{P}$ we have

$$
p=q \Leftrightarrow \forall r \in \mathbb{P}(r \perp p \Leftrightarrow r \perp q) .
$$

\mathbb{P} is called separative if for all $p, q \in \mathbb{P}$ with $p \not \leq q$, there is $r \leq p$ with $r \perp q$. Suppose \mathbb{B} is a Boolean algebra with smallest element 0 . A set $A \subseteq \mathbb{B}$ is called dense in \mathbb{B} if $A-\{0\}$ is dense in $\mathbb{B}-\{0\}$. Let $e: \mathbb{P} \rightarrow r o(\mathbb{P})$ be the map defined in section 6.3. Show:
a) Every separative partial order is weakly separative.
b) Give an example of a finite partial order that is weakly separative, but not separative. It is sufficient to find a partial order without a largest element.
c) The range of e is dense in $\operatorname{ro}(\mathbb{P})$.
d) e is one-to-one iff \mathbb{P} is weakly separative.

Problem 23 (Boolean algebras). Suppose \mathbb{B} is a complete Boolean algebra and $S \subseteq \mathbb{B}-\{0\}$. Let $p \| q$ mean that p, q are compatible in the partial order $\mathbb{B}-\{0\}$, i.e. there is $r \leq p, q$ in $\mathbb{B}-\{0\}$. Show for all $p, q \in \mathbb{B}-\{0\}$:
a) $p \perp q$ iff $p \wedge q=0$, and $p \leq q$ iff $p \wedge q=p$ iff $p \wedge \neg q=0$.
b) $p \leq q$ implies $r \wedge p \leq r \wedge q$, and (\mathbb{B}, \leq) is separative (see Problem 22).
c) $p \wedge \bigvee S=\bigvee_{s \in S}(p \wedge s)$ (to show this, write $s=(p \wedge s) \vee(\neg p \wedge s)$ for each $s \in S)$.
d) S is predense below p iff $\forall q \leq p(q \| \bigvee S)$ iff $p \leq \bigvee S$.

Problem 24 (Generic filters). Suppose N is a countable transitive model of ZFC and $(\mathbb{P}, \leq) \in N$ is a partial order.
a) Suppose H is an arbitrary subset of \mathbb{P}. If σ, τ are \mathbb{P}-names, let $\sigma<_{H} \tau$ iff there is $p \in H$ with $(\sigma, p) \in \tau$. Show that $<_{H}$ is wellfounded on $N^{\mathbb{P}}$. Find the function F that is used in the Recursion Theorem 2.4 to define τ_{H} for $\tau \in N^{\mathbb{P}}$ (as in Definition 6.8).
b) Suppose $H \subseteq \mathbb{P}$ and $H \in N$. Show by induction on $<_{H}$ that $N[H] \subseteq N$.
c) Let $\alpha:=O r d^{N}$. Find a set $a \subseteq \omega$ such that $\alpha \in M$ for every model of ZFC with $a \in M$. You may use that there is a bijection $g: \omega \times \omega \rightarrow \omega$ which is an element of every transitive model of ZFC.
d) Let $\mathbb{P}=F n(\omega, 2)$ and $\alpha:=\operatorname{Ord}^{N}$. Let $\chi_{a}: \omega \rightarrow 2$ be the characteristic function of the set a in c). Use Problem 13 to find a filter $H \subseteq \mathbb{P}$ such that $\alpha \in M$ for every transitive model M of ZFC with $H \in M$. Conclude that $H \notin N[G]$ for every generic extension $N[G]$ of N.

Please hand in your solutions on Wednesday, 18 May before the lecture.

